Husam L. Saad

General Approximation Problem

Preof. Let us study the curve opips.
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[]

Remark 1.2. When p =g = 2 the Holder inequality becomes

[ 1omes <[ [ o " / |B(x)|2dxr

The above inequality called Cauchy-Schwarty inequality.

Theorem 1.2. (Minkowski inequality) Ifp = 1 and A, B € Cla,b], then
b
[/ [|A(z) + B(z)]] dx} {/ |Ax pdx} [/ | B(x |de}
Proof.

[[Az) + B(2)]” = [|A(x) + B(@)[] - [ A(z) + B()|]]"™
< JA@)|[|Al@) + B@) " + [Bx)|[|Az) + B@)[]"".  (1.2)

Applying Holder inequality to every term on the right hand side of (1.2)
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Luills

p
= =5 5:29—1 = p=({p—-1)g

/: [|A(z) + B@)|]"dz < Ub (| Az) + B(m)]pdx} 1Al + 1B,

b
Divide by {/ [A(x)—f—B(m)”pdx] " and use the fact that 1—l =L to get the required
a 4 P

result. L]

Remark 1.3. It will be noted that this method yields also the Holder inequality and

Minkowski inequality for series. i.e., we have
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11
(1) Ifp>1 and —+ = =1, then
Y2

N L N 1
>l < | Sl | S|
k=1 k=1

where G-, for k=1, 2. , N.

(2) If p=1 and ap, by € R fork=1,2,..., N, then

{ ) [|ak+bk|]pr < [imw]i Lf;wkpr.

k=i

Proof. HW. L]

Examples of Normed Linear Spaces

Example 1.1. Cla,b] with the p-norm

; :
1l = [/ |f<x>|pdx} L <p<oo

is a normed linear space over a field R with respect to operations addition and standard

multiplication which is defined as follows:
(1) (f +9)(@) = f(2) + g(x) for all f,g € Cla,l].
@) (r- @) =71 f(x) for allr € R and for all f € C[a, b].
Proof
i. Cla,b] is a linear space.

(1) (f +9)x) = fx) + g9(z) = g(x) + f{x) = (g + [)x).

(2) (f+g+h)(x) = f(z) +(g+h)(z) = fl2)+(g(x) +1(z)) = (f(z) +9(x)) +
hiz) = (f + 9)(2) + h(z) = (£ + g} + h)(z).
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3) (F+0)z) = f(z). = [f(@)+O0(x)=f(z). = Ox)=0 Vze o
i.e., the identity element is the function O : [a,b] — R which is defined by
O) =0 ¥ 2 € [5,1].

CONGE + Tl = O, = (=Fild) = =), T e iverssclsment is
shefungtion—7 : [a,b] — R

B) (r-(f+a)@) =r-(F+o)(® =r (f&)+9&) =r -f&) +r 9 =
(r- f)z) +(rg)(z).

(6) ((r+s)-NHa)y=0+s)-fla)=r-flx) +s-fla)=(r-)x)+ (s [Hx) =
(r-f+s-f)z).

(M) (r8)- @) =(r-s) - fla)=r-(s f(@) =7-(s Nlz) =(r (s N))(2).

@ 1-NH=)=1-f(z) = flx)

ii. The p-norm, 1 < p < oo, defines a norm on C|a, b].

(1) ||flp > 0 unless f =0.

It =] bf(xﬂpdxf.

if flgy=0 = |flp=0

if f(z) #0 = [fll;>0

(2) |Irflp = |||l fll, where r is scaler.

2

Irflo= | [ b rtayeas]” | | blf(x)|pdwr — #ll1 £l

(3) By Minkowski inequality we get ||f + ¢l < | fll, + 1|9/l

L]
Example 1.2. RY with the p-norm
= [i ] 1<pes
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