Proof. Let us study the curve op_1p_2 .

$$y = x^{p-1} \Rightarrow x = y^{\frac{1}{p-1}}.$$

$$\frac{1}{p} + \frac{1}{q} = 1. \Rightarrow \frac{q}{p} + 1 = q. \Rightarrow \frac{q}{p} = q - 1.$$

$$\frac{1}{p} + \frac{1}{q} = 1. \Rightarrow 1 + \frac{p}{q} = p. \Rightarrow \frac{q}{p} = \frac{1}{p-1}.$$

$$A_S = \int_0^\alpha x^{p-1} dx = \frac{x^p}{p} \Big|_0^\alpha = \frac{\alpha^p}{p}.$$

$$A_T = \int_0^\beta y^{q-1} dy = \frac{y^q}{q} \Big|_0^\beta = \frac{\beta^q}{q}.$$

Note that

$$\alpha\beta \leqslant A_S + A_T$$

$$\leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q}.$$
(1.1)

Assume that $\alpha = \frac{|A(x)|}{\|A\|_p}$, $\beta = \frac{|B(x)|}{\|B\|_q}$ and substitute in (1.1) to get

$$\frac{|A(x)|}{\|A\|_{p}} \frac{|B(x)|}{\|B\|_{q}} \leqslant \frac{|A(x)|^{p}}{p\|A\|_{p}^{p}} + \frac{|B(x)|^{q}}{q\|B\|_{q}^{q}}.$$

$$\frac{1}{\|A\|_{p}\|B\|_{q}} \int_{a}^{b} |A(x)B(x)|dx \leqslant \frac{1}{p\|A\|_{p}^{p}} \int_{a}^{b} |A(x)|^{p}dx + \frac{1}{q\|B\|_{q}^{q}} \int_{a}^{b} |B(x)|^{q}dx$$

$$\leqslant \frac{1}{p\|A\|_{p}^{p}} \|A\|_{p}^{p} + \frac{1}{q\|B\|_{q}^{q}} \|B\|_{q}^{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Hence

$$\int_{a}^{b} |A(x)B(x)| dx \leqslant ||A||_{p} ||B||_{q} = \left[\int_{a}^{b} |A(x)|^{p} dx \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |B(x)|^{q} dx \right]^{\frac{1}{q}}.$$

Created with

Remark 1.2. When p = q = 2 the Holder inequality becomes

$$\int_a^b |A(x)B(x)|dx \leqslant \left[\int_a^b |A(x)|^2 dx\right]^{\frac{1}{2}} \cdot \left[\int_a^b |B(x)|^2 dx\right]^{\frac{1}{2}}.$$

The above inequality called Cauchy-Schwartz inequality.

Theorem 1.2. (Minkowski inequality) If $p \ge 1$ and $A, B \in C[a, b]$, then

$$\left[\int_a^b \left[|A(x)+B(x)|\right]^p dx\right]^{\frac{1}{p}} \leqslant \left[\int_a^b |A(x)|^p dx\right]^{\frac{1}{p}} + \left[\int_a^b |B(x)|^p dx\right]^{\frac{1}{p}}.$$

Proof.

$$[|A(x) + B(x)|]^{p} = [|A(x) + B(x)|] \cdot [|A(x) + B(x)|]^{p-1}$$

$$\leq |A(x)|[|A(x) + B(x)|]^{p-1} + |B(x)|[|A(x) + B(x)|]^{p-1}.$$
(1.2)

Applying Holder inequality to every term on the right hand side of (1.2)

$$\int_{a}^{b} \left[|A(x) + B(x)| \right]^{p} dx \leqslant \|A\|_{p} \left[\int_{a}^{b} \left[|A(x) + B(x)| \right]^{(p-1)q} dx \right]^{\frac{1}{q}} + \|B\|_{p} \left[\int_{a}^{b} \left[|A(x) + B(x)| \right]^{(p-1)q} dx \right]^{\frac{1}{q}} \right] \\
\leqslant \left[\int_{a}^{b} \left[|A(x) + B(x)| \right]^{(p-1)q} dx \right]^{\frac{1}{q}} \left[\|A\|_{p} + \|B\|_{p} \right].$$

$$\frac{1}{p} + \frac{1}{q} = 1 \quad \Rightarrow \quad 1 + \frac{p}{q} = p \quad \Rightarrow \quad \frac{p}{q} = p - 1 \quad \Rightarrow \quad p = (p - 1)q.$$

$$\int_{a}^{b} \left[|A(x) + B(x)| \right]^{p} dx \leqslant \left[\int_{a}^{b} \left[|A(x) + B(x)| \right]^{p} dx \right]^{\frac{1}{q}} \left[\|A\|_{p} + \|B\|_{p} \right].$$

Divide by $\left[\int_a^b \left[|A(x)+B(x)|\right]^p dx\right]^{\frac{1}{q}}$ and use the fact that $1-\frac{1}{q}=\frac{1}{p}$ to get the required result.

Remark 1.3. It will be noted that this method yields also the Holder inequality and Minkowski inequality for series. i.e., we have

5

(1) If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{k=1}^N |a_k b_k| \leqslant \left[\sum_{k=1}^N |a_k|^p\right]^{\frac{1}{p}} \cdot \left[\sum_{k=1}^N |b_k|^q\right]^{\frac{1}{q}},$$

where $a_k, b_k \in \mathbb{R}$ for k = 1, 2, ..., N.

(2) If $p \ge 1$ and $a_k, b_k \in \mathbb{R}$ for k = 1, 2, ..., N, then

$$\left[\sum_{k=1}^{N} \left[|a_k + b_k| \right]^p \right]^{\frac{1}{p}} \leqslant \left[\sum_{k=1}^{N} |a_k|^p \right]^{\frac{1}{p}} + \left[\sum_{k=1}^{N} |b_k|^p \right]^{\frac{1}{p}}.$$

Proof. H.W.

Examples of Normed Linear Spaces

Example 1.1. C[a,b] with the p-norm

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{\frac{1}{p}} \quad 1 \leqslant p < \infty$$

is a normed linear space over a field \mathbb{R} with respect to operations addition and standard multiplication which is defined as follows:

(1)
$$(f+g)(x) = f(x) + g(x)$$
 for all $f, g \in C[a, b]$.

(2)
$$(r \cdot f)(x) = r \cdot f(x)$$
 for all $r \in \mathbb{R}$ and for all $f \in C[a,b]$.

Proof.

i. C[a, b] is a linear space.

(1)
$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x)$$
.

(2)
$$(f+(g+h))(x) = f(x) + (g+h)(x) = f(x) + (g(x)+h(x)) = (f(x)+g(x)) + h(x) = (f+g)(x) + h(x) = ((f+g)+h)(x).$$

6

- (3) (f+O)(x)=f(x). \Rightarrow f(x)+O(x)=f(x). \Rightarrow O(x)=0 \forall $x\in[a,b]$. i.e., the identity element is the function $O:[a,b]\to\mathbb{R}$ which is defined by O(x)=0 \forall $x\in[a,b]$.
- (4) (f+(-f))(x) = O(x). \Rightarrow (-f)(x) = -f(x). i.e., the inverse element is the function $-f:[a,b]\to\mathbb{R}$
- (5) $(r \cdot (f+g))(x) = r \cdot (f+g)(x) = r \cdot (f(x)+g(x)) = r \cdot f(x) + r \cdot g(x) = (r \cdot f)(x) + (r \cdot g)(x).$
- (6) $((r+s)\cdot f)(x) = (r+s)\cdot f(x) = r\cdot f(x) + s\cdot f(x) = (r\cdot f)(x) + (s\cdot f)(x) = (r\cdot f+s\cdot f)(x).$
- $(7) \ ((r \cdot s) \cdot f)(x) = (r \cdot s) \cdot f(x) = r \cdot (s \cdot f(x)) = r \cdot (s \cdot f)(x) = (r \cdot (s \cdot f))(x).$
- (8) $(1 \cdot f)(x) = 1 \cdot f(x) = f(x)$.
- ii. The p-norm, $1 \leq p < \infty$, defines a norm on C[a,b].
 - (1) $||f||_p > 0$ unless f = 0.

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{\frac{1}{p}}.$$

if
$$f(x) = 0 \implies ||f||_p = 0$$
.

if
$$f(x) \neq 0 \implies ||f||_p > 0$$
.

(2) $||rf||_p = |r|||f||_p$ where r is scaler.

$$||rf||_p = \left[\int_a^b |rf(x)|^p dx\right]^{\frac{1}{p}} = |r| \left[\int_a^b |f(x)|^p dx\right]^{\frac{1}{p}} = |r| ||f||_p.$$

(3) By Minkowski inequality we get $||f + g||_p \le ||f||_p + ||g||_p$.

Example 1.2. \mathbb{R}^N with the p-norm

$$||f||_p = \left[\sum_{i=1}^N |f(x_i)|^p\right]^{\frac{1}{p}} \quad 1 \leqslant p < \infty$$

7

Created with