
Chapter 7 BASIC PROPERTIES
OF SOLUTIONS
AND ALGORITHMS

In this chapter we consider optimization problems of the form

minimize f�x�
subject to x ∈ ��

(1)

where f is a real-valued function and �, the feasible set, is a subset of En.
Throughout most of the chapter attention is restricted to the case where � = En,
corresponding to the completely unconstrained case, but sometimes we consider
cases where � is some particularly simple subset of En.

The first and third sections of the chapter characterize the first- and second-
order conditions that must hold at a solution point of (1). These conditions are
simply extensions to En of the well-known derivative conditions for a function of
a single variable that hold at a maximum or a minimum point. The fourth and
fifth sections of the chapter introduce the important classes of convex and concave
functions that provide zeroth-order conditions as well as a natural formulation for a
global theory of optimization and provide geometric interpretations of the derivative
conditions derived in the first two sections.

The final sections of the chapter are devoted to basic convergence charac-
teristics of algorithms. Although this material is not exclusively applicable to
optimization problems but applies to general iterative algorithms for solving
other problems as well, it can be regarded as a fundamental prerequisite for a
modern treatment of optimization techniques. Two essential questions are addressed
concerning iterative algorithms. The first question, which is qualitative in nature, is
whether a given algorithm in some sense yields, at least in the limit, a solution to the
original problem. This question is treated in Section 7.6, and conditions sufficient to
guarantee appropriate convergence are established. The second question, the more
quantitative one, is related to how fast the algorithm converges to a solution. This
question is defined more precisely in Section 7.7. Several special types of conver-
gence, which arise frequently in the development of algorithms for optimization,
are explored.
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184 Chapter 7 Basic Properties of Solutions and Algorithms

7.1 FIRST-ORDER NECESSARY CONDITIONS
Perhaps the first question that arises in the study of the minimization problem
(1) is whether a solution exists. The main result that can be used to address
this issue is the theorem of Weierstras, which states that if f is continuous and
� is compact, a solution exists (see Appendix A.6). This is a valuable result
that should be kept in mind throughout our development; however, our primary
concern is with characterizing solution points and devising effective methods for
finding them.

In an investigation of the general problem (1) we distinguish two kinds of
solution points: local minimum points, and global minimum points.

Definition. A point x∗ ∈ � is said to be a relative minimum point or a local
minimum point of f over � if there is an � > 0 such that f�x� � f�x∗� for all
x ∈ � within a distance � of x∗ (that is, x ∈ � and �x−x∗� < �). If f�x� > f�x∗�
for all x ∈ �, x �= x∗, within a distance � of x∗, then x∗ is said to be a strict
relative minimum point of f over �.

Definition. A point x∗ ∈ � is said to be a global minimum point of f over
� if f�x� � f�x∗� for all x ∈ �. If f�x� > f�x∗� for all x ∈ �, x �= x∗, then x∗

is said to be a strict global minimum point of f over �.

In formulating and attacking problem (1) we are, by definition, explicitly asking
for a global minimum point of f over the set �. Practical reality, however, both
from the theoretical and computational viewpoint, dictates that we must in many
circumstances be content with a relative minimum point. In deriving necessary
conditions based on the differential calculus, for instance, or when searching for
the minimum point by a convergent stepwise procedure, comparisons of the values
of nearby points is all that is possible and attention focuses on relative minimum
points. Global conditions and global solutions can, as a rule, only be found if the
problem possesses certain convexity properties that essentially guarantee that any
relative minimum is a global minimum. Thus, in formulating and attacking problem
(1) we shall, by the dictates of practicality, usually consider, implicitly, that we are
asking for a relative minimum point. If appropriate conditions hold, this will also
be a global minimum point.

Feasible Directions
To derive necessary conditions satisfied by a relative minimum point x∗, the basic
idea is to consider movement away from the point in some given direction. Along
any given direction the objective function can be regarded as a function of a single
variable, the parameter defining movement in this direction, and hence the ordinary
calculus of a single variable is applicable. Thus given x ∈ � we are motivated to say
that a vector d is a feasible direction at x if there is an �̄ > 0 such that x+�d ∈ �
for all �, 0 � � � �̄. With this simple concept we can state some simple conditions
satisfied by relative minimum points.
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Proposition 1 (First-order necessary conditions). Let � be a subset of En and
let f ∈ C1 be a function on �. If x∗ is a relative minimum point of f over �,
then for any d ∈ En that is a feasible direction at x∗, we have �f�x∗�d � 0.

Proof. For any �, 0 � � � �̄, the point x��� = x∗ +�d ∈ �. For 0 � � � �̄ define
the function g��� = f�x����. Then g has a relative minimum at � = 0. A typical g
is shown in Fig. 7.1. By the ordinary calculus we have

g���−g�0� = g′�0��+o���� (2)

where o��� denotes terms that go to zero faster than � (see Appendix A). If
g′�0� < 0 then, for sufficiently small values of � > 0, the right side of (2) will be
negative, and hence g���−g�0� < 0, which contradicts the minimal nature of g�0�.
Thus g′�0� = �f�x∗�d � 0.

A very important special case is where x∗ is in the interior of � (as would be
the case if � = En). In this case there are feasible directions emanating in every
direction from x∗, and hence �f�x∗�d � 0 for all d ∈ En. This implies �f�x∗� = 0.
We state this important result as a corollary.

Corollary. (Unconstrained case). Let � be a subset of En, and let f ∈ C1 be
a function’ on �. If x∗ is a relative minimum point of f over � and if x∗ is an
interior point of �, then �f�x∗� = 0.

The necessary conditions in the pure unconstrained case lead to n equations
(one for each component of �f ) in n unknowns (the components of x∗), which
in many cases can be solved to determine the solution. In practice, however, as
demonstrated in the following chapters, an optimization problem is solved directly
without explicitly attempting to solve the equations arising from the necessary
conditions. Nevertheless, these conditions form a foundation for the theory.

g(α)

slope > 0

0 αα

Fig. 7.1 Construction for proof
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Example 1. Consider the problem

minimize f�x1� x2� = x2
1 −x1x2 +x2

2 −3x2�

There are no constraints, so � = E2. Setting the partial derivatives of f equal to
zero yields the two equations

2x1 − x2 = 0
−x1 + 2x2 = 3�

These have the unique solution x1 = 1, x2 = 2, which is a global minimum point of f .

Example 2. Consider the problem

minimize f�x1� x2� = x2
1 −x1 +x2 +x1x2

subject to x1 � 0� x2 � 0�

This problem has a global minimum at x1 = 1
2 , x2 = 0. At this point

	f

	x1

= 2x1 −1+x2 = 0

	f

	x2

= 1+x1 = 3
2 �

Thus, the partial derivatives do not both vanish at the solution, but since any
feasible direction must have an x2 component greater than or equal to zero, we have
�f�x∗�d � 0 for all d ∈ E2 such that d is a feasible direction at the point (1/2, 0).

7.2 EXAMPLES OF UNCONSTRAINED PROBLEMS
Unconstrained optimization problems occur in a variety of contexts, but most
frequently when the problem formulation is simple. More complex formula-
tions often involve explicit functional constraints. However, many problems with
constraints are frequently converted to unconstrained problems by using the
constraints to establish relations among variables, thereby reducing the effective
number of variables. We present a few examples here that should begin to indicate
the wide scope to which the theory applies.

Example 1 (Production). A common problem in economic theory is the deter-
mination of the best way to combine various inputs in order to produce a certain
commodity. There is a known production function f�x1� x2� � � � � xn� that gives the
amount of the commodity produced as a function of the amounts xi of the inputs,
i = 1� 2� � � � � n. The unit price of the produced commodity is q, and the unit prices
of the inputs are p1, p2� � � � � pn. The producer wishing to maximize profit must
solve the problem

maximize qf�x1� x2� � � � � xn�−p1x1 −p2x2 � � �−pnxn�
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The first-order necessary conditions are that the partial derivatives with respect
to the xi’s each vanish. This leads directly to the n equations

q
	f

	xi

�x1� x2� � � � � xn� = pi� i = 1� 2� � � � � n�

These equations can be interpreted as stating that, at the solution, the marginal
value due to a small increase in the ith input must be equal to the price pi.

Example 2 (Approximation). A common use of optimization is for the purpose
of function approximation. Suppose, for example, that through an experiment
the value of a function g is observed at m points, x1� x2� � � � � xm. Thus, values
g�x1�� g�x2�� � � � � g�xm� are known. We wish to approximate the function by a
polynomial

h�x� = anx
n +an−1x

n−1 + � � �+a0

of degree n (or less), where n < m. Corresponding to any choice of the approximating
polynomial, there will be a set of errors �k = g�xk�−h�xk�. We define the best approx-
imation as the polynomial that minimizes the sum of the squares of these errors; that
is, minimizes

m∑

k=1

��k�
2�

This in turn means that we minimize

f�a� =
m∑

k=1


g�xk�− �anx
n
k +an−1x

n−1
k + � � �+a0��

2

with respect to a = �a0� a1� � � � � an� to find the best coefficients. This is a quadratic
expression in the coefficients a. To find a compact representation for this objective

we define qij = m∑

k=1
�xk�

i+j , bj = m∑

k=1
g�xk��xk�

j and c = m∑

k=1
g�xk�

2. Then after a bit of

algebra it can be shown that

f�a� = aT Qa −2bT a + c

where Q = 
qij�, b = �b1� b2� � � � � bn+1�.
The first-order necessary conditions state that the gradient of f must vanish. This

leads directly to the system of n+1 equations

Qa = b�

These can be solved to determine a.
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Example 3 (Selection problem). It is often necessary to select an assortment of
factors to meet a given set of requirements. An example is the problem faced by
an electric utility when selecting its power-generating facilities. The level of power
that the company must supply varies by time of the day, by day of the week, and
by season. Its power-generating requirements are summarized by a curve, h�x�, as
shown in Fig. 7.2(a), which shows the total hours in a year that a power level of at
least x is required for each x. For convenience the curve is normalized so that the
upper limit is unity.

The power company may meet these requirements by installing generating
equipment, such as (1) nuclear or (2) coal-fired, or by purchasing power from a
central energy grid. Associated with type i �i = 1� 2� of generating equipment is
a yearly unit capital cost bi and a unit operating cost ci. The unit price of power
purchased from the grid is c3.

Nuclear plants have a high capital cost and low operating cost, so they are
used to supply a base load. Coal-fired plants are used for the intermediate level,
and power is purchased directly only for peak demand periods. The requirements
are satisfied as shown in Fig. 7.2(b), where x1 and x2 denote the capacities of the
nuclear and coal-fired plants, respectively. (For example, the nuclear power plant
can be visualized as consisting of x1/� small generators of capacity �, where � is
small. The first such generator is on for about h��� hours, supplying �h��� units
of energy; the next supplies �h�2�� units, and so forth. The total energy supplied
by the nuclear plant is thus the area shown.)

The total cost is

f�x1� x2� = b1x1 +b2x2 + c1

∫ x1

0
h�x� dx

+ c2

∫ x1+x2

x1

h�x� dx+ c3

∫ 1

x1+x2

h�x� dx�

power (megawatts) power (megawatts)

purchase

x

hours required hours required

(a) (b)

11 x2x1

Fig. 7.2 Power requirements curve
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and the company wishes to minimize this over the set defined by

x1 � 0� x2 � 0� x1 +x2 � 1�

Assuming that the solution is interior to the constraints, by setting the partial
derivatives equal to zero, we obtain the two equations

b1 + �c1 − c2�h�x1�+ �c2 − c3�h�x1 +x2� = 0

b2 + �c2 − c3�h�x1 +x2� = 0�

which represent the necessary conditions.
If x1 = 0, then the general necessary condition theorem shows that the first

equality could relax to � 0. Likewise, if x2 = 0, then the second equality could
relax to � 0. The case x1 +x2 = 1 requires a bit more analysis (see Exercise 2).

Example 4 (Control). Dynamic problems, where the variables correspond to
actions taken at a sequence of time instants, can often be formulated as unconstrained
optimization problems. As an example suppose that the position of a large object is
controlled by a series of corrective control forces. The error in position (the distance
from the desired position) is governed by the equation

xk+1 = xk +uk�

where xk is the error at time instant k, and uk is the effective force applied at time
uk (after being normalized to account for the mass of the object and the duration of
the force). The value of x0 is given. The sequence u0, u1� � � � � un should be selected
so as to minimize the objective

J =
n∑

k=0

x2
k +u2

k��

This represents a compromise between a desire to have xk equal to zero and
recognition that control action uk is costly.

The problem can be converted to an unconstrained problem by eliminating the
xk variables, k = 1� 2� � � � � n, from the objective. It is readily seen that

xk = x0 +u0 +u1 +· · ·+uk−1�

The objective can therefore be rewritten as

J =
n∑

k=0

�x0 +u0 +· · ·+uk−1�
2 +u2

k��

This is a quadratic function in the unknowns uk. It has the same general structure
as that of Example 2 and it can be treated in a similar way.
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7.3 SECOND-ORDER CONDITIONS
The proof of Proposition 1 in Section 7.1 is based on making a first-order approx-
imation to the function f in the neighborhood of the relative minimum point.
Additional conditions can be obtained by considering higher-order approximations.
The second-order conditions, which are defined in terms of the Hessian matrix �2f
of second partial derivatives of f (see Appendix A), are of extreme theoretical
importance and dominate much of the analysis presented in later chapters.

Proposition 1 (Second-order necessary conditions). Let � be a subset of En

and let f ∈ C2 be a function on �. If x∗ is a relative minimum point of f over
�, then for any d ∈ En that is a feasible direction at x∗ we have

i� �f�x∗�d � 0 �3�

ii� if �f�x∗�d = 0� then dT �2f�x∗�d � 0� �4�

Proof. The first condition is just Proposition 1, and the second applies only if
�f�x∗�d = 0. In this case, introducing x��� = x∗ + �d and g��� = f�x���� as
before, we have, in view of g′�0� = 0,

g���−g�0� = 1
2 g′′�0��2 +o��2��

If g′′�0� < 0 the right side of the above equation is negative for sufficiently small
� which contradicts the relative minimum nature of g�0�. Thus

g′′�0� = dT �2f�x∗�d � 0�

Example 1. For the same problem as Example 2 of Section 7.1, we have for
d = �d1�d2�

�f�x∗�d = 3
2 d2�

Thus condition (ii) of Proposition 1 applies only if d2 = 0. In that case we have
dT �2f�x∗�d = 2d2

1 � 0, so condition (ii) is satisfied.
Again of special interest is the case where the minimizing point is an interior

point of �, as, for example, in the case of completely unconstrained problems. We
then obtain the following classical result.

Proposition 2 (Second-order necessary conditions—unconstrained case).
Let x∗ be an interior point of the set �, and suppose x∗ is a relative minimum
point over � of the function f ∈ C2. Then

i) �f�x∗� = 0 �5�

ii) for all d� dT �2f�x∗�d � 0� (6)
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For notational simplicity we often denote �2f�x�, the n×n matrix of the second
partial derivatives of f , the Hessian of f , by the alternative notation F(x). Condition
(ii) is equivalent to stating that the matrix F�x∗� is positive semidefinite. As we
shall see, the matrix F�x∗�, which arises here quite naturally in a discussion of
necessary conditions, plays a fundamental role in the analysis of iterative methods
for solving unconstrained optimization problems. The structure of this matrix is the
primary determinant of the rate of convergence of algorithms designed to minimize
the function f .

Example 2. Consider the problem

minimize f�x1� x2� = x3
1 −x2

1x2 +2x2
2

subject to x1 � 0� x2 � 0�

If we assume that the solution is in the interior of the feasible set, that is, if
x1 > 0� x2 > 0, then the first-order necessary conditions are

3x2
1 −2x1x2 = 0� −x2

1 +4x2 = 0�

There is a solution to these at x1 = x2 = 0 which is a boundary point, but there is
also a solution at x1 = 6� x2 = 9. We note that for x1 fixed at x1 = 6, the objective
attains a relative minimum with respect to x2 at x2 = 9. Conversely, with x2 fixed
at x2 = 9, the objective attains a relative minimum with respect to x1 at x1 = 6.
Despite this fact, the point x1 = 6� x2 = 9 is not a relative minimum point, because
the Hessian matrix is

F =
[

6x1 −2x2 −2x1

−2x1 4

]

�

which, evaluated at the proposed solution x1 = 6� x2 = 9, is

F =
[

18 −12
−12 4

]

�

This matrix is not positive semidefinite, since its determinant is negative. Thus the
proposed solution is not a relative minimum point.

Sufficient Conditions for a Relative Minimum
By slightly strengthening the second condition of Proposition 2 above, we obtain a
set of conditions that imply that the point x∗ is a relative minimum. We give here
the conditions that apply only to unconstrained problems, or to problems where the
minimum point is interior to the feasible region, since the corresponding conditions
for problems where the minimum is achieved on a boundary point of the feasible
set are a good deal more difficult and of marginal practical or theoretical value. A
more general result, applicable to problems with functional constraints, is given in
Chapter 11.
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Proposition 3 (Second-order sufficient conditions—unconstrained case).
Let f ∈ C2 be a function defined on a region in which the point x∗ is an interior
point. Suppose in addition that

i� �f�x∗� = 0 �7�

ii� F�x∗� is positive definite� (8)

Then x∗ is a strict relative minimum point of f .

Proof. Since F�x∗� is positive definite, there is an a > 0 such that for all
d� dT F�x∗�d � a�d�2. Thus by the Taylor’s Theorem (with remainder)

f�x∗ +d�−f�x∗� = 1
2 dT F�x∗�d +o��d�2�

� �a/2��d�2 +o��d�2�

For small �d� the first term on the right dominates the second, implying that both
sides are positive for small d.

7.4 CONVEX AND CONCAVE FUNCTIONS
In order to develop a theory directed toward characterizing global, rather than local,
minimum points, it is necessary to introduce some sort of convexity assumptions.
This results not only in a more potent, although more restrictive, theory but also
provides an interesting geometric interpretation of the second-order sufficiency
result derived above.

Definition. A function f defined on a convex set � is said to be convex if,
for every x1, x2 ∈ � and every �, 0 � � � 1, there holds

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2��

If, for every �, 0 < � < 1, and x1 �= x2, there holds

f��x1 + �1−��x2� < �f�x1�+ �1−��f�x2��

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig. 7.3.
Geometrically, a function is convex if the line joining two points on its graph lies
nowhere below the graph, as shown in Fig. 7.3(a), or, thinking of a function in two
dimensions, it is convex if its graph is bowl shaped.

Next we turn to the definition of a concave function.

Definition. A function g defined on a convex set � is said to be concave
if the function f = −g is convex. The function g is strictly concave if −g is
strictly convex.
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f

x
convex

(a)

f

x
nonconvex

(c)

f

x
convex

(b)

Fig. 7.3 Convex and nonconvex functions
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Combinations of Convex Functions
We show that convex functions can be combined to yield new convex functions
and that convex functions when used as constraints yield convex constraint sets.

Proposition 1. Let f1 and f2 be convex functions on the convex set �. Then
the function f1 +f2 is convex on �.

Proof. Let x1, x2 ∈ �, and 0 < � < 1. Then

f1��x1 + �1−��x2�+f2��x1�+ �1−��x2�

� �
f1�x1�+f2�x1��+ �1−��
f1�x2�+f2�x2���

Proposition 2. Let f be a convex function over the convex set �. Then the
function af is convex for any a � 0.

Proof. Immediate.

Note that through repeated application of the above two propositions it follows
that a positive combination a1f1 +a2f2 + � � �+amfm of convex functions is again
convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3. Let f be a convex function on a convex set �. The set
�c = x � x ∈ ��f�x� � c� is convex for every real number c.

Proof. Let x1, x2 ∈ �c. Then f�x1� � c, f�x2� � c and for 0 < � < 1,

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2� � c�

Thus �x1 + �1−��x2 ∈ �c.

We note that, since the intersection of convex sets is also convex, the set of
points simultaneously satisfying

f1�x� � c1� f2�x� � c2� � � � � fm�x� � cm�

where each fi is a convex function, defines a convex set. This is important in
mathematical programming, since the constraint set is often defined this way.

Properties of Differentiable Convex Functions
If a function f is differentiable, then there are alternative characterizations of
convexity.
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Proposition 4. Let f ∈ C1. Then f is convex over a convex set � if and only
if

f�y� � f�x�+�f�x��y −x� (9)

for all x� y ∈ �.

Proof. First suppose f is convex. Then for all �, 0 � � � 1,

f��y + �1−��x� � �f�y�+ �1−��f�x��

Thus for 0 < � � 1

f�x +��y −x��−f�x�

�
� f�y�−f�x��

Letting � → 0 we obtain

�f�x��y −x� � f�y�−f�x��

This proves the “only if” part.
Now assume

f�y� � f�x�+�f�x��y −x�

for all x, y ∈ �. Fix x1, x2 ∈ � and �, 0 � � � 1. Setting x = �x1 + �1−��x2 and
alternatively y = x1 or y = x2, we have

f�x1� � f�x�+�f�x��x1 −x� (10)

f�x2� � f�x�+�f�x��x2 −x�� (11)

Multiplying (10) by � and (11) by (1−�) and adding, we obtain

�f�x1�+ �1−��f�x2� � f�x�+�f�x�
�x1 + �1−��x2 −x��

But substituting x = �x1 + �1−��x2, we obtain

�f�x1�+ �1−��f�x2� � f��x1 + �1−��x2��

The statement of the above proposition is illustrated in Fig. 7.4. It can be
regarded as a sort of dual characterization of the original definition illustrated in
Fig. 7.3. The original definition essentially states that linear interpolation between
two points overestimates the function, while the above proposition states that linear
approximation based on the local derivative underestimates the function.

For twice continuously differentiable functions, there is another characterization
of convexity.
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f (y)

y
x

f (x) + ∇ f (x) (y – x)

Fig. 7.4 Illustration of Proposition 4

Proposition 5. Let f ∈ C2. Then f is convex over a convex set � containing
an interior point if and only if the Hessian matrix F of f is positive semidefinite
throughout �.

Proof. By Taylor’s theorem we have

f�y� = f�x� = �f�x��y −x�+ 1
2 �y −x�T F�x +��y −x���y −x� (12)

for some �, 0 � � � 1. Clearly, if the Hessian is everywhere positive semidefinite,
we have

f�y� � f�x�+�f�x��y −x�� (13)

which in view of Proposition 4 implies that f is convex.
Now suppose the Hessian is not positive semidefinite at some point x ∈ �. By

continuity of the Hessian it can be assumed, without loss of generality, that x is an
interior point of �. There is a y ∈ � such that �y −x�T F�x��y −x� < 0. Again by
the continuity of the Hessian, y may be selected so that for all �, 0 � � � 1,

�y −x�T F�x +��y −x���y −x� < 0�

This in view of (12) implies that (13) does not hold; which in view of Proposition 4
implies that f is not convex.

The Hessian matrix is the generalization to En of the concept of the curvature
of a function, and correspondingly, positive definiteness of the Hessian is the
generalization of positive curvature. Convex functions have positive (or at least
nonnegative) curvature in every direction. Motivated by these observations, we
sometimes refer to a function as being locally convex if its Hessian matrix is positive
semidefinite in a small region, and locally strictly convex if the Hessian is positive
definite in the region. In these terms we see that the second-order sufficiency result
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of the last section requires that the function be locally strictly convex at the point
x∗. Thus, even the local theory, derived solely in terms of the elementary calculus,
is actually intimately related to convexity—at least locally. For this reason we can
view the two theories, local and global, not as disjoint parallel developments but
as complementary and interactive. Results that are based on convexity apply even
to nonconvex problems in a region near the solution, and conversely, local results
apply to a global minimum point.

7.5 MINIMIZATION AND MAXIMIZATION
OF CONVEX FUNCTIONS

We turn now to the three classic results concerning minimization or maximization
of convex functions.

Theorem 1. Let f be a convex function defined on the convex set �. Then
the set � where f achieves its minimum is convex, and any relative minimum
of f is a global minimum.

Proof. If f has no relative minima the theorem is valid by default. Assume now
that c0 is the minimum of f . Then clearly � = x � f�x� � c0� x ∈ �� and this is
convex by Proposition 3 of the last section.

Suppose now that x∗ ∈ � is a relative minimum point of f , but that there
is another point y ∈ � with f�y� < f�x∗�. On the line �y + �1 −��x∗, 0 < � < 1
we have

f��y + �1−��x∗� � �f�y�+ �1−��f�x∗� < f�x∗��

contradicting the fact that x∗ is a relative minimum point.

We might paraphrase the above theorem as saying that for convex functions, all
minimum points are located together (in a convex set) and all relative minima are
global minima. The next theorem says that if f is continuously differentiable and
convex, then satisfaction of the first-order necessary conditions are both necessary
and sufficient for a point to be a global minimizing point.

Theorem 2. Let f ∈ C1 be convex on the convex set �. If there is a point
x∗ ∈ � such that, for all y ∈ �, �f�x∗��y−x∗� � 0, then x∗ is a global minimum
point of f over �.

Proof. We note parenthetically that since y − x∗ is a feasible direction at x∗,
the given condition is equivalent to the first-order necessary condition stated in
Section 7.1. The proof of the proposition is immediate, since by Proposition 4 of
the last section

f�y� � f�x∗�+�f�x∗��y −x∗� � f�x∗��

Next we turn to the question of maximizing a convex function over a convex
set. There is, however, no analog of Theorem 1 for maximization; indeed, the
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tendency is for the occurrence of numerous nonglobal relative maximum points.
Nevertheless, it is possible to prove one important result. It is not used in subsequent
chapters, but it is useful for some areas of optimization.

Theorem 3. Let f be a convex function defined on the bounded, closed convex
set �. If f has a maximum over � it is achieved at an extreme point of �.

Proof. Suppose f achieves a global maximum at x∗ ∈ �. We show first that this
maximum is achieved at some boundary point of �. If x∗ is itself a boundary point,
then there is nothing to prove, so assume x∗ is not a boundary point. Let L be any
line passing through the point x∗. The intersection of this line with � is an interval
of the line L having end points y1, y2 which are boundary points of �, and we have
x∗ = �y1 + �1−��y2 for some �, 0 < � < 1. By convexity of f

f�x∗� � �f�y1�+ �1−��f�y2� � maxf�y1�� f�y2���

Thus either f�y1� or f�y2� must be at least as great as f�x∗�. Since x∗ is a maximum
point, so is either y1 or y2.

We have shown that the maximum, if achieved, must be achieved at a boundary
point of �. If this boundary point, x∗, is an extreme point of � there is nothing
more to prove. If it is not an extreme point, consider the intersection of � with a
supporting hyperplane H at x∗. This intersection, T1, is of dimension n−1 or less
and the global maximum of f over T1 is equal to f�x∗� and must be achieved at
a boundary point x1 of T1. If this boundary point is an extreme point of T1, it is
also an extreme point of � by Lemma 1, Section B.4, and hence the theorem is
proved. If x1 is not an extreme point of T1, we form T2, the intersection of T1 with a
hyperplane in En−1 supporting T1 at x1. This process can continue at most a total of
n times when a set Tn of dimension zero, consisting of a single point, is obtained.
This single point is an extreme point of Tn and also, by repeated application of
Lemma 1, Section B.4, an extreme point of �.

7.6 ZERO-ORDER CONDITIONS
We have considered the problem

minimize f�x�

subject to x ∈ � (14)

to be unconstrained because there are no functional constraints of the form g�x� � b
or h�x� = c. However, the problem is of course constrained by the set �. This
constraint influences the first- and second-order necessary and sufficient conditions
through the relation between feasible directions and derivatives of the function f .
Nevertheless, there is a way to treat this constraint without reference to derivatives.
The resulting conditions are then of zero order. These necessary conditions require
that the problem be convex is a certain way, while the sufficient conditions require
no assumptions at all. The simplest assumptions for the necessary conditions are
that � is a convex set and that f is a convex function on all of En.
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Fig. 7.5 The epigraph, the tubular region, and the hyperplane

To derive the necessary conditions under these assumptions consider the set
� ⊂ En+1 = �r� x� � r � f�x�� x ∈ En�. In a figure of the graph of f , the set � is the
region above the graph, shown in the upper part of Fig. 7.5. This set is called the
epigraph of f . It is easy to verify that the set � is convex if f is a convex function.

Suppose that x∗ ∈ � is the minimizing point with value f ∗ = f�x∗�. We
construct a tubular region with cross section � and extending vertically from −	
up to f ∗, shown as B in the upper part of Fig. 7.5. This is also a convex set, and it
overlaps the set � only at the boundary point �f ∗� b∗� above x∗ (or possibly many
boundary points if f is flat near x∗).

According to the separating hyperplane theorem (Appendix B), there is a
hyperplane separating these two sets. This hyperplane can be represented by a
nonzero vector of the form �s� �� ∈ En+1 with s a scalar and � ∈ En, and a
separation constant c. The separation conditions are

sr +�T x ≥ c for all x ∈ En and r ≥ f�x� (15)

sr +�T x ≤ c for all x ∈ � and r ≤ f ∗� (16)

It follows that s �= 0; for otherwise � �= 0 and then (15) would be violated for some
x ∈ En. It also follows that s � 0 since otherwise (16) would be violated by very
negative values of r. Hence, together we find s > 0 and by appropriate scaling we
may take s = 1.

It is easy to see that the above conditions can be expressed alternatively as two
optimization problems, as stated in the following proposition.

Proposition 1 (Zero-order necessary conditions). If x∗ solves (14) under the
stated convexity conditions, then there is a nonzero vector � ∈ En such that x∗

is a solution to the two problems:
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minimize f�x�+�T x

subject to x ∈ En (17)

and

maximize �T x

subject to x ∈ �� (18)

Proof. Problem (17) follows from (15) (with s = 1) and the fact that f�x� ≤ r
for r ≥ f�x�. The value c is attained from above at �f ∗� x∗�. Likewise (18) follows
from (16) and the fact that x∗ and the appropriate r attain c from below.

Notice that problem (17) is completely unconstrained, since x may range over
all of En. The second problem (18) is constrained by � but has a linear objective
function.

It is clear from Fig. 7.5 that the slope of the hyperplane is equal to the slope
of the function f when f is continuously differentiable at the solution x∗.

If the optimal solution x∗ is in the interior of �, then the second problem (18)
implies that � = 0, for otherwise there would be a direction of movement from
x∗ that increases the product �T x above �T x∗. The hyperplane is horizontal in
that case. The zeroth-order conditions provide no new information in this situation.
However, when the solution is on a boundary point of � the conditions give very
useful information.

Example 1 (Minimization over an interval). Consider a continuously differen-
tiable function f of a single variable x ∈ E1 defined on the unit interval [0,1] which
plays the role of � here. The first problem (17) implies f ′�x∗� = −�. If the solution
is at the left end of the interval (at x = 0) then the second problem (18) implies
that � ≤ 0 which means that f ′�x∗� ≥ 0. The reverse holds if x∗ is at the right end.
These together are identical to the first-order conditions of section 7.1.

Example 2 As a generalization of the above example, let f ∈ C1 on En, and let f
have a minimum with respect to � at x∗. Let d ∈ En be a feasible direction at x∗.
Then it follows again from (17) that �f�x∗�d ≥ 0.

Sufficient Conditions. The conditions of Proposition 1 are sufficient for x∗ to be
a minimum even without the convexity assumptions.

Proposition 2 (Zero-order sufficiency conditions). If there is a � such that
x∗ ∈ � solves the problems (17) and (18), then x∗ solves (14).

Proof. Suppose x1 is any other point in �. Then from (17)

f�x1�+�T x1 � f�x∗�+�T x∗�

This can be rewritten as

f�x1�−f�x∗� � �T x∗ −�T x1�
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7.10 EXERCISES
1. To approximate a function g over the interval [0, 1] by a polynomial p of degree n (or

less), we minimize the criterion

f�a� =
∫ 1

0

g�x�−p�x��2 dx�

where p�x� = anx
n + an−1x

n−1 + � � � + a0. Find the equations satisfied by the optimal
coefficients a = �a0� a1� � � � � an�.

2. In Example 3 of Section 7.2 show that if the solution has x1 > 0, x1 +x2 = 1, then it is
necessary that

b1 −b2 + �c1 − c2�h�x1� = 0

b2 + �c2 − c3�h�x1 +x2� � 0�

Hint: One way is to reformulate the problem in terms of the variables x1 and y = x1 +x2.

3. a) Using the first-order necessary conditions, find a minimum point of the function

f�x� y� z� = 2x2 +xy +y2 +yz+ z2 −6x−7y −8z+9�

b) Verify that the point is a relative minimum point by verifying that the second-order
sufficiency conditions hold.

c) Prove that the point is a global minimum point.

4. In this exercise and the next we develop a method for determining whether a given
symmetric matrix is positive definite. Given an n×n matrix A let Ak denote the principal
submatrix made up of the first k rows and columns. Show (by induction) that if the
first n−1 principal submatrices are nonsingular, then there is a unique lower triangular
matrix L with unit diagonal and a unique upper triangular matrix U such that A = LU.
(See Appendix C.)

5. A symmetric matrix is positive definite if and only if the determinant of each of its
principal submatrices is positive. Using this fact and the considerations of Exercise 4,
show that an n×n symmetric matrix A is positive definite if and only if it has an LU
decomposition (without interchange of rows) and the diagonal elements of U are all
positive.

6. Using Exercise 5 show that an n×n matrix A is symmetric and positive definite if and
only if it can be written as A = GGT where G is a lower triangular matrix with positive
diagonal elements. This representation is known as the Cholesky factorization of A.

7. Let fi, i ∈ I be a collection of convex functions defined on a convex set �. Show that
the function f defined by f�x� = sup

i∈I
fi�x� is convex on the region

where it is finite.
8. Let � be a monotone nondecreasing function of a single variable (that is, ��r� � ��r ′�

for r ′ > r) which is also convex; and let f be a convex function defined on a convex
set �. Show that the function ��f� defined by ��f��x� = �
f�x�� is convex on �.
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9. Let f be twice continuously differentiable on a region � ⊂ En. Show that a sufficient
condition for a point x∗ in the interior of � to be a relative minimum point of f is that
�f�x∗� = 0 and that f be locally convex at x∗.

10. Define the point-to-set mapping on En by

A�x� = y � yT x � b��

where b is a fixed constant. Is A closed?

11. Prove the two corollaries in Section 7.6 on the closedness of composite mappings.

12. Show that if A is a continuous point-to-point mapping, the Global Convergence Theorem
is valid even without assumption (i). Compare with Example 2, Section 7.7.

13. Let rk�
	
k=0 and ck�

	
k=0 be sequences of real numbers. Suppose rk → 0 average linearly

and that there are constants c > 0 and C such that c � ck � C for all k. Show that
ckrk → 0 average linearly.

14. Prove a proposition, similar to the one in Section 7.8, showing that the order of conver-
gence is insensitive to the error function.

15. Show that if rk → r∗ (step-wise) linearly with convergence ratio �, then rk → r∗ (average)
linearly with average convergence ratio no greater than �.

REFERENCES
7.1–7.5 For alternative discussions of the material in these sections, see Hadley [H2], Fiacco
and McCormick [F4], Zangwill [Z2] and Luenberger [L8].

7.6 Although the general concepts of this section are well known, the formulation as zero-
order conditions appears to be new.

7.7 The idea of using a descent function (usually the objective itself) in order to guarantee
convergence of minimization algorithms is an old one that runs through most literature
on optimization, and has long been used to establish global convergence. Formulation of
the general Global Convergence Theorem, which captures the essence of many previously
diverse arguments, and the idea of representing an algorithm as a point-to-set mapping are
both due to Zangwill [Z2].

7.8 Most of the definitions given in this section have been standard for quite some time. A
thorough discussion which contributes substantially to the unification of these concepts is
contained in Ortega and Rheinboldt [O7].



Chapter 11 CONSTRAINED
MINIMIZATION
CONDITIONS

We turn now, in this final part of the book, to the study of minimization problems
having constraints. We begin by studying in this chapter the necessary and sufficient
conditions satisfied at solution points. These conditions, aside from their intrinsic
value in characterizing solutions, define Lagrange multipliers and a certain Hessian
matrix which, taken together, form the foundation for both the development and
analysis of algorithms presented in subsequent chapters.

The general method used in this chapter to derive necessary and sufficient
conditions is a straightforward extension of that used in Chapter 7 for unconstrained
problems. In the case of equality constraints, the feasible region is a curved surface
embedded in En. Differential conditions satisfied at an optimal point are derived by
considering the value of the objective function along curves on this surface passing
through the optimal point. Thus the arguments run almost identically to those for
the unconstrained case; families of curves on the constraint surface replacing the
earlier artifice of considering feasible directions. There is also a theory of zero-order
conditions that is presented in the final section of the chapter.

11.1 CONSTRAINTS
We deal with general nonlinear programming problems of the form

minimize f�x�
subject to h1�x� = 0 g1�x� � 0

h2�x� = 0 g2�x� � 0
���

���
hm�x� = 0 gp�x� � 0
x�∈ � ⊂ En�

(1)

where m � n and the functions f , hi� i = 1� 2� � � � �m and gj� j = 1� 2� � � � � p
are continuous, and usually assumed to possess continuous second partial

321
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derivatives. For notational simplicity, we introduce the vector-valued functions
h = �h1� h2� � � � � hm� and g = �g1� g2� � � � � gP� and rewrite (1) as

minimize f�x�
subject to h�x� = 0� g�x� � 0

x ∈ ��
(2)

The constraints h�x� = 0� g�x� � 0 are referred to as functional constraints,
while the constraint x ∈ � is a set constraint. As before we continue to de-emphasize
the set constraint, assuming in most cases that either � is the whole space En or
that the solution to (2) is in the interior of �. A point x ∈ � that satisfies all the
functional constraints is said to be feasible.

A fundamental concept that provides a great deal of insight as well as simpli-
fying the required theoretical development is that of an active constraint. An
inequality constraint gi�x� � 0 is said to be active at a feasible point x if gi�x� = 0
and inactive at x if gi�x� < 0. By convention we refer to any equality constraint
hi�x� = 0 as active at any feasible point. The constraints active at a feasible point
x restrict the domain of feasibility in neighborhoods of x, while the other, inactive
constraints, have no influence in neighborhoods of x. Therefore, in studying the
properties of a local minimum point, it is clear that attention can be restricted to the
active constraints. This is illustrated in Fig. 11.1 where local properties satisfied by
the solution x∗ obviously do not depend on the inactive constraints g2 and g3.

It is clear that, if it were known a priori which constraints were active at the
solution to (1), the solution would be a local minimum point of the problem defined
by ignoring the inactive constraints and treating all active constraints as equality
constraints. Hence, with respect to local (or relative) solutions, the problem could
be regarded as having equality constraints only. This observation suggests that the
majority of insight and theory applicable to (1) can be derived by consideration of
equality constraints alone, later making additions to account for the selection of the

x*

g2(x) = 0

g1(x) = 0

g3(x) = 0

Fig. 11.1 Example of inactive constraints
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active constraints. This is indeed so. Therefore, in the early portion of this chapter
we consider problems having only equality constraints, thereby both economizing
on notation and isolating the primary ideas associated with constrained problems.
We then extend these results to the more general situation.

11.2 TANGENT PLANE
A set of equality constraints on En

h1�x� = 0

h2�x� = 0

���

hm�x� = 0

(3)

defines a subset of En which is best viewed as a hypersurface. If the constraints
are everywhere regular, in a sense to be described below, this hypersurface is of
dimension n−m. If, as we assume in this section, the functions hi� i = 1� 2� � � � �m
belong to C1, the surface defined by them is said to be smooth.

Associated with a point on a smooth surface is the tangent plane at that point,
a term which in two or three dimensions has an obvious meaning. To formalize the
general notion, we begin by defining curves on a surface. A curve on a surface S
is a family of points x�t� ∈ S continuously parameterized by t for a � t � b. The
curve is differentiable if ẋ ≡ �d/dt�x�t� exists, and is twice differentiable if ẍ�t�
exists. A curve x�t� is said to pass through the point x∗ if x∗ = x�t∗� for some
t∗� a � t∗ � b. The derivative of the curve at x∗ is, of course, defined as ẋ�t∗�. It is
itself a vector in En.

Now consider all differentiable curves on S passing through a point x∗. The
tangent plane at x∗ is defined as the collection of the derivatives at x∗ of all these
differentiable curves. The tangent plane is a subspace of En.

For surfaces defined through a set of constraint relations such as (3), the
problem of obtaining an explicit representation for the tangent plane is a fundamental
problem that we now address. Ideally, we would like to express this tangent plane
in terms of derivatives of functions hi that define the surface. We introduce the
subspace

M = �y ��h�x∗�y = 0	

and investigate under what conditions M is equal to the tangent plane at x∗. The
key concept for this purpose is that of a regular point. Figure 11.2 shows some
examples where for visual clarity the tangent planes (which are sub-spaces) are
translated to the point x∗.
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Tangent plane

h(x*)T

h(x) = 0

x*

(a)
S

Δ

Tangent plane

h(x) = 0
(b)

h(x*)TΔ

Tangent plane

h2(x) = 0

h1(x) = 0
(c)

h(x*)TΔ

h1(x*)TΔ

Fig. 11.2 Examples of tangent planes (translated to x∗)
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Definition. A point x∗ satisfying the constraint h�x∗� = 0 is said
to be a regular point of the constraint if the gradient vectors
�h1�x∗���h2�x∗�� � � � ��hm�x∗� are linearly independent.

Note that if h is affine, h�x� = Ax + b, regularity is equivalent to A having
rank equal to m, and this condition is independent of x.

In general, at regular points it is possible to characterize the tangent plane in
terms of the gradients of the constraint functions.

Theorem. At a regular point x∗ of the surface S defined by h�x� = 0 the
tangent plane is equal to

M = �y ��h�x∗�y = 0	�

Proof. Let T be the tangent plane at x∗. It is clear that T ⊂ M whether x∗ is
regular or not, for any curve x�t� passing through x∗ at t = t∗ having derivative
ẋ�t∗� such that �h�x∗�ẋ�t∗� �= 0 would not lie on S.

To prove that M ⊂ T we must show that if y ∈ M then there is a curve on S
passing through x∗ with derivative y. To construct such a curve we consider the
equations

h�x∗ + ty +�h�x∗�T u�t�� = 0� (4)

where for fixed t we consider u�t� ∈ Em to be the unknown. This is a nonlinear
system of m equations and m unknowns, parameterized continuously, by t. At t = 0
there is a solution u�0� = 0. The Jacobian matrix of the system with respect to u at
t = 0 is the m×m matrix

�h�x∗��h�x∗�T �

which is nonsingular, since �h�x∗� is of full rank if x∗ is a regular point. Thus, by the
Implicit Function Theorem (see Appendix A) there is a continuously differentiable
solution u�t� in some region −a � t � a.

The curve x�t� = x∗ + ty+�h�x∗�T u�t� is thus, by construction, a curve on S.
By differentiating the system (4) with respect to t at t = 0 we obtain

0 = d

dt
h�x�t��

]

t=0

= �h�x∗�y +�h�x∗��h�x∗�T u̇�0��

By definition of y we have �h�x∗�y = 0 and thus, again since �h�x∗��h�x∗�T is
nonsingular, we conclude that ẋ�0� = 0. Therefore

ẋ�0� = y +�h�x∗�T ẋ�0� = y�

and the constructed curve has derivative y at x∗.

It is important to recognize that the condition of being a regular point is not a
condition on the constraint surface itself but on its representation in terms of an h.
The tangent plane is defined independently of the representation, while M is not.
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Example. In E2 let h�x1� x2� = x1. Then h�x� = 0 yields the x2 axis, and every
point on that axis is regular. If instead we put h�x1� x2� = x2

1, again S is the x2

axis but now no point on the axis is regular. Indeed in this case M = E2, while the
tangent plane is the x2 axis.

11.3 FIRST-ORDER NECESSARY CONDITIONS
(EQUALITY CONSTRAINTS)

The derivation of necessary and sufficient conditions for a point to be a local
minimum point subject to equality constraints is fairly simple now that the represen-
tation of the tangent plane is known. We begin by deriving the first-order necessary
conditions.

Lemma. Let x∗ be a regular point of the constraints h�x� = 0 and a local
extremum point (a minimum or maximum) of f subject to these constraints.
Then all y ∈ En satisfying

�h�x∗�y = 0 (5)

must also satisfy

�f�x∗�y = 0� (6)

Proof. Let y be any vector in the tangent plane at x∗ and let x�t� be any smooth
curve on the constraint surface passing through x∗ with derivative y at x∗; that is,
x�0� = x∗, ẋ�0� = y, and h�x�t�� = 0 for −a � t � a for some a > 0.

Since x∗ is a regular point, the tangent plane is identical with the set of y’s
satisfying �h�x∗�y = 0. Then, since x∗ is a constrained local extremum point of f ,
we have

d

dt
f�x�t��

]

t=0

= 0�

or equivalently,

�f�x∗�y = 0�

The above Lemma says that �f�x∗� is orthogonal to the tangent plane. Next
we conclude that this implies that �f�x∗� is a linear combination of the gradients
of h at x∗, a relation that leads to the introduction of Lagrange multipliers.
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Theorem. Let x∗ be a local extremum point of f subject to the constraints
h�x� = 0. Assume further that x∗ is a regular point of these constraints. Then
there is a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (7)

Proof. From the Lemma we may conclude that the value of the linear program

maximize �f�x∗�y

subject to �h�x∗�y = 0

is zero. Thus, by the Duality Theorem of linear programming (Section 4.2)
the dual problem is feasible. Specifically, there is � ∈ Em such that �f�x∗� +
�T �h�x∗� = 0.

It should be noted that the first-order necessary conditions

�f�x∗�+�T �h�x∗� = 0

together with the constraints

h�x∗� = 0

give a total of n + m (generally nonlinear) equations in the n + m variables
comprising x∗��. Thus the necessary conditions are a complete set since, at least
locally, they determine a unique solution.

It is convenient to introduce the Lagrangian associated with the constrained
problem, defined as

l�x��� = f�x�+�T h�x�� (8)

The necessary conditions can then be expressed in the form

�xl�x��� = 0 (9)

��l�x��� = 0� (10)

the second of these being simply a restatement of the constraints.

11.4 EXAMPLES
We digress briefly from our mathematical development to consider some examples
of constrained optimization problems. We present five simple examples that can
be treated explicitly in a short space and then briefly discuss a broader range of
applications.
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Example 1. Consider the problem

minimize x1x2 +x2x3 +x1x3

subject to x1 +x2 +x3 = 3�

The necessary conditions become

x2 + x3 + 
 = 0
x1 + x3 + 
 = 0
x1 + x2 + 
 = 0�

These three equations together with the one constraint equation give four equations
that can be solved for the four unknowns x1� x2� x3� 
. Solution yields x1 = x2 =
x3 = 1, 
 = −2.

Example 2 (Maximum volume). Let us consider an example of the type that is
now standard in textbooks and which has a structure similar to that of the example
above. We seek to construct a cardboard box of maximum volume, given a fixed
area of cardboard.

Denoting the dimensions of the box by x� y� z, the problem can be expressed
as

maximize xyz

subject to �xy +yz+xz� = c

2
� (11)

where c > 0 is the given area of cardboard. Introducing a Lagrange multiplier, the
first-order necessary conditions are easily found to be

yz+
�y + z� = 0

xz+
�x+ z� = 0 (12)

xy +
�x+y� = 0

together with the constraint. Before solving these, let us note that the sum of these
equations is �xy + yz+xz�+2
�x+ y + z� = 0. Using the constraint this becomes
c/2 + 2
�x + y + z� = 0. From this it is clear that 
 �= 0. Now we can show that
x� y, and z are nonzero. This follows because x = 0 implies z = 0 from the second
equation and y = 0 from the third equation. In a similar way, it is seen that if either
x� y, or z are zero, all must be zero, which is impossible.

To solve the equations, multiply the first by x and the second by y, and then
subtract the two to obtain


�x−y�z = 0�
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Operate similarly on the second and third to obtain


�y − z�x = 0�

Since no variables can be zero, it follows that x = y = z = √
c/6 is the unique

solution to the necessary conditions. The box must be a cube.

Example 3 (Entropy). Optimization problems often describe natural phenomena.
An example is the characterization of naturally occurring probability distributions
as maximum entropy distributions.

As a specific example consider a discrete probability density corresponding to
a measured value taking one of n values x1� x2� � � � � xn. The probability associated

with xi is pi. The pi’s satisfy pi � 0 and
n∑

i=1
pi = 1.

The entropy of such a density is

� = −
n∑

i=1

pi log�pi��

The mean value of the density is
n∑

i=1
xipi.

If the value of mean is known to be m (by the physical situation), the maximum
entropy argument suggests that the density should be taken as that which solves the
following problem:

maximize −
n∑

i=1

pi log�pi�

subject to
n∑

i=1

pi = 1

n∑

i=1

xipi = m

pi � 0� i = 1� 2� � � � � n�

(13)

We begin by ignoring the nonnegativity constraints, believing that they may
be inactive. Introducing two Lagrange multipliers, 
 and �, the Lagrangian is

l =
n∑

i=1

�−pi log pi +
pi +�xipi	−
−�m�

The necessary conditions are immediately found to be

− log pi −1+
+�xi = 0� i = 1� 2� � � � � n�

This leads to

pi = exp��
−1�+�xi	� i = 1� 2� � � � � n� (14)
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We note that pi > 0, so the nonnegativity constraints are indeed inactive. The result
(14) is known as an exponential density. The Lagrange multipliers 
 and � are
parameters that must be selected so that the two equality constraints are satisfied.

Example 4 (Hanging chain). A chain is suspended from two thin hooks that are
16 feet apart on a horizontal line as shown in Fig. 11.3. The chain itself consists of
20 links of stiff steel. Each link is one foot in length (measured inside). We wish
to formulate the problem to determine the equilibrium shape of the chain.

The solution can be found by minimizing the potential energy of the chain. Let
us number the links consecutively from 1 to 20 starting with the left end. We let
link i span an x distance of xi and a y distance of yi. Then x2

i +y2
i = 1. The potential

energy of a link is its weight times its vertical height (from some reference). The
potential energy of the chain is the sum of the potential energies of each link. We
may take the top of the chain as reference and assume that the mass of each link is
concentrated at its center. Assuming unit weight, the potential energy is then

1
2

y1 +
(

y1 + 1
2

y2

)

+
(

y1 +y2 + 1
2

y3

)

+· · ·

+
(

y1 +y2 +· · ·+yn−1 + 1
2

yn

)

=
n∑

i=1

(

n− i+ 1
2

)

yi�

where n = 20 in our example.
The chain is subject to two constraints: The total y displacement is zero, and

the total x displacement is 16. Thus the equilibrium shape is the solution of

minimize
n∑

i=1

(

n− i+ 1
2

)

yi

subject to
n∑

i=1

yi = 0 (15)

n∑

i=1

√

1−y2
i = 16�

chain
link

1ft

16 ft

Fig. 11.3 A hanging chain
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The first-order necessary conditions are
(

n− i+ 1
2

)

+
− �yi
√

1−y2
i

= 0 (16)

for i = 1� 2� � � � � n. This leads directly to

yi = − n− i+ 1
2 +


√

�2 + �n− i+ 1
2 +
�2

� (17)

As in Example 2 the solution is determined once the Lagrange multipliers are
known. They must be selected so that the solution satisfies the two constraints.

It is useful to point out that problems of this type may have local minimum
points. The reader can examine this by considering a short chain of, say, four links
and v and w configurations.

Example 5 (Portfolio design). Suppose there are n securities indexed by i =
1� 2� � � � � n. Each security i is characterized by its random rate of return ri which
has mean value ri. Its covariances with the rates of return of other securtities are
ij , for j = 1� 2� � � � � n. The portfolio problem is to allocate total available wealth
among these n securities, allocating a fraction wi of wealth to the security i.

The overall rate of return of a portfolio is r =∑n
i=1 wiri. This has mean value

r =∑n
i=1 wiri and variance 2 =∑n

i�j=1 wiijwj .
Markowitz introduced the concept of devising efficient portfolios which for a

given expected rate of return r have minimum possible variance. Such a portfolio
is the solution to the problem

min
wi�w2�����wn

∑n

i�j=1
wiijwj

subject to
∑n

i=1
wiri = r

∑n

i=1
wi = 1�

The second constraint forces the sum of the weights to equal one. There may be
the further restriction that each wi ≥ 0 which would imply that the securities must
not be shorted (that is, sold short).

Introducing Lagrange multipliers 
 and � for the two constraints leads easily
to the n+2 linear equations

n∑

j=1

ijwj +
ri +� = 0 for i = 1� 2� � � � � n

n∑

i=1

wiri = r

n∑

i=1

wi = 1

in the n+2 unknowns (the wi’s, 
 and �).
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Large-Scale Applications
The problems that serve as the primary motivation for the methods described in
this part of the book are actually somewhat different in character than the problems
represented by the above examples, which by necessity are quite simple. Larger,
more complex, nonlinear programming problems arise frequently in modern applied
analysis in a wide variety of disciplines. Indeed, within the past few decades
nonlinear programming has advanced from a relatively young and primarily analytic
subject to a substantial general tool for problem solving.

Large nonlinear programming problems arise in problems of mechanical struc-
tures, such as determining optimal configurations for bridges, trusses, and so
forth. Some mechanical designs and configurations that in the past were found by
solving differential equations are now often found by solving suitable optimization
problems. An example that is somewhat similar to the hanging chain problem is
the determination of the shape of a stiff cable suspended between two points and
supporting a load.

A wide assortment, of large-scale optimization problems arise in a similar way
as methods for solving partial differential equations. In situations where the under-
lying continuous variables are defined over a two- or three-dimensional region,
the continuous region is replaced by a grid consisting of perhaps several thousand
discrete points. The corresponding discrete approximation to the partial differ-
ential equation is then solved indirectly by formulating an equivalent optimization
problem. This approach is used in studies of plasticity, in heat equations, in the
flow of fluids, in atomic physics, and indeed in almost all branches of physical
science.

Problems of optimal control lead to large-scale nonlinear programming
problems. In these problems a dynamic system, often described by an ordinary
differential equation, relates control variables to a trajectory of the system state. This
differential equation, or a discretized version of it, defines one set of constraints.
The problem is to select the control variables so that the resulting trajectory satisfies
various additional constraints and minimizes some criterion. An early example of
such a problem that was solved numerically was the determination of the trajectory
of a rocket to the moon that required the minimum fuel consumption.

There are many examples of nonlinear programming in industrial operations
and business decision making. Many of these are nonlinear versions of the kinds
of examples that were discussed in the linear programming part of the book.
Nonlinearities can arise in production functions, cost curves, and, in fact, in almost
all facets of problem formulation.

Portfolio analysis, in the context of both stock market investment and evalu-
ation of a complex project within a firm, is an area where nonlinear programming
is becoming increasingly useful. These problems can easily have thousands of
variables.

In many areas of model building and analysis, optimization formulations are
increasingly replacing the direct formulation of systems of equations. Thus large
economic forecasting models often determine equilibrium prices by minimizing
an objective termed consumer surplus. Physical models are often formulated
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as minimization of energy. Decision problems are formulated as maximizing
expected utility. Data analysis procedures are based on minimizing an average
error or maximizing a probability. As the methodology for solution of nonlinear
programming improves, one can expect that this trend will continue.

11.5 SECOND-ORDER CONDITIONS
By an argument analogous to that used for the unconstrained case, we can also derive
the corresponding second-order conditions for constrained problems. Throughout
this section it is assumed that f� h ∈ C2.

Second-Order Necessary Conditions. Suppose that x∗ is a local minimum of
f subject to h�x� = 0 and that x∗ is a regular point of these constraints. Then
there is a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (18)

If we denote by M the tangent plane M = �y � �h�x∗�y = 0	, then the matrix

L�x∗� = F�x∗�+�T H�x∗� (19)

is positive semidefinite on M , that is, yT L�x∗�y � 0 for all y ∈ M .

Proof. From elementary calculus it is clear that for every twice differentiable
curve on the constraint surface S through x∗ (with x�0� = x∗) we have

d2

dt2
f�x�t��

]

t=0

� 0� (20)

By definition

d2

dt2
f�x�t��

]

t=0

= ẋ�0�T F�x∗�ẋ�0�+�f�x∗�ẍ�0�� (21)

Furthermore, differentiating the relation �T h�x�t�� = 0 twice, we obtain

ẋ�0�T �T H�x∗�ẋ�0�+�T �h�x∗�ẍ�0� = 0� (22)

Adding (22) to (21), while taking account of (20), yields the result

d2

dt2
f�x�t��

]

t=0

= ẋ�0�T L�x∗�ẋ�0� � 0�

Since ẋ�0� is arbitrary in M , we immediately have the stated conclusion.

The above theorem is our first encounter with the matrix L = F+�T H which
is the matrix of second partial derivatives, with respect to x, of the Lagrangian l.



334 Chapter 11 Constrained Minimization Conditions

(See Appendix A, Section A.6, for a discussion of the notation �T H used here.)
This matrix is the backbone of the theory of algorithms for constrained problems,
and it is encountered often in subsequent chapters.

We next state the corresponding set of sufficient conditions.

Second-Order Sufficiency Conditions. Suppose there is a point x∗ satisfying
h�x∗� = 0, and a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (23)

Suppose also that the matrix L�x∗� = F�x∗�+�T H�x∗� is positive definite on
M = �y � �h�x∗�y = 0	, that is, for y ∈ M , y �= 0 there holds yT L�x∗�y > 0.
Then x∗ is a strict local minimum of f subject to h�x� = 0.

Proof. If x∗ is not a strict relative minimum point, there exists a sequence of
feasible points �yk	 converging to x∗ such that for each k� f�yk� � f�x∗�. Write
each yk in the form yk = x∗ + �ksk where sk ∈ En, �sk� = 1, and �k > 0 for each
k. Clearly, �k → 0 and the sequence �sk	, being bounded, must have a convergent
subsequence converging to some s∗. For convenience of notation, we assume that
the sequence �sk	 is itself convergent to s∗. We also have h�yk�− h�x∗� = 0, and
dividing by �k and letting k → 
 we see that �h�x∗�s∗ = 0.

Now by Taylor’s theorem, we have for each j

0 = hj�yk� = hj�x∗�+�k�hj�x∗�sk + �2
k

2
sT
k �2hj��j�sk (24)

and

0 � f�yk�−f�x∗� = �k�f�x∗�sk + �2
k

2
sT
k �2f��0�sk� (25)

where each �j is a point on the line segment joining x∗ and yk. Multiplying (24)
by �j and adding these to (25) we obtain, on accounting for (23),

0 � �2
k

2
sT
k

{

�2f��0�+
m∑

i=1

�i�
2hi��i�

}

sk�

which yields a contradiction as k → 
.

Example 1. Consider the problem

maximize x1x2 +x2x3 +x1x3

subject to x1 +x2 +x3 = 3�
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In Example 1 of Section 11.4 it was found that x1 = x2 = x3 = 1� 
 = −2 satisfy
the first-order conditions. The matrix F+�T H becomes in this case

L =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦ �

which itself is neither positive nor negative definite. On the subspace M = �y �
y1 +y2 +y3 = 0	, however, we note that

yT Ly = y1�y2 +y3�+y2�y1 +y3�+y3�y1 +y2�

= −�y2
1 +y2

2 +y2
3��

and thus L is negative definite on M . Therefore, the solution we found is at least a
local maximum.

11.6 EIGENVALUES IN TANGENT SUBSPACE
In the last section it was shown that the matrix L restricted to the subspace M
that is tangent to the constraint surface plays a role in second-order conditions
entirely analogous to that of the Hessian of the objective function in the uncon-
strained case. It is perhaps not surprising, in view of this, that the structure of L
restricted to M also determines rates of convergence of algorithms designed for
constrained problems in the same way that the structure of the Hessian of the
objective function does for unconstrained algorithms. Indeed, we shall see that the
eigenvalues of L restricted to M determine the natural rates of convergence for
algorithms designed for constrained problems. It is important, therefore, to under-
stand what these restricted eigenvalues represent. We first determine geometrically
what we mean by the restriction of L to M which we denote by LM . Next we
define the eigenvalues of the operator LM . Finally we indicate how these various
quantities can be computed.

Given any vector y ∈ M , the vector Ly is in En but not necessarily in M .
We project Ly orthogonally back onto M , as shown in Fig. 11.4, and the result
is said to be the restriction of L to M operating on y. In this way we obtain a
linear transformation from M to M . The transformation is determined somewhat
implicitly, however, since we do not have an explicit matrix representation.

A vector y ∈ M is an eigenvector of LM if there is a real number 
 such that
LMy = 
y; the corresponding 
 is an eigenvalue of LM . This coincides with the
standard definition. In terms of L we see that y is an eigenvector of LM if Ly can
be written as the sum of 
y and a vector orthogonal to M . See Fig. 11.5.

To obtain a matrix representation for LM it is necessary to introduce a basis
in the subspace M . For simplicity it is best to introduce an orthonormal basis, say
e1� e2� � � � � en−m. Define the matrix E to be the n× �n−m� matrix whose columns
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Ly

LMy

M

y

Fig. 11.4 Definition of LM

consist of the vectors ei. Then any vector y in M can be written as y = Ez for some
z ∈ En−m and, of course, LEz represents the action of L on such a vector. To project
this result back into M and express the result in terms of the basis e1� e2� � � � � en−m,
we merely multiply by ET . Thus ET LEz is the vector whose components give the
representation in terms of the basis; and, correspondingly, the �n−m�× �n−m�
matrix ET LE is the matrix representation of L restricted to M .

The eigenvalues of L restricted to M can be found by determining the eigen-
values of ET LE. These eigenvalues are independent of the particular orthonormal
basis E.

Example 1. In the last section we considered

L =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦

Ly

λy y

M

Fig. 11.5 Eigenvector of LM
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restricted to M = �y � y1 +y2 +y3 = 0	. To obtain an explicit matrix representation
on M let us introduce the orthonormal basis:

e1 = 1√
2

�1� 0�−1�

e2 = 1√
6

�1�−2� 1��

This gives, upon expansion,

ET LE =
[ −1 0

0 −1

]

�

and hence L restricted to M acts like the negative of the identity.

Example 2. Let us consider the problem

extremize x1 +x2
2 +x2x3 +2x2

3

subject to
1
2

�x2
1 +x2

2 +x2
3� = 1�

The first-order necessary conditions are

1+ 
x1 = 0

2x2 +x3 +
x2 = 0

x2 +4x3 +
x3 = 0�

One solution to this set is easily seen to be x1 = 1, x2 = 0, x3 = 0, 
 = −1. Let us
examine the second-order conditions at this solution point. The Lagrangian matrix
there is

L =
⎡

⎣
−1 0 0

0 1 1
0 1 3

⎤

⎦ �

and the corresponding subspace M is

M = �y � y1 = 0	�

In this case M is the subspace spanned by the second two basis vectors in E3 and
hence the restriction of L to M can be found by taking the corresponding submatrix
of L. Thus, in this case,

ET LE =
[

1 1
1 3

]

�
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The characteristic polynomial of this matrix is

det
[

1−
 1
1 3−


]

= �1−
��3−
�−1 = 
2 −4
+2�

The eigenvalues of LM are thus 
 = 2±√
2, and LM is positive definite.

Since the LM matrix is positive definite, we conclude that the point found is a
relative minimum point. This example illustrates that, in general, the restriction of
L to M can be thought of as a submatrix of L, although it can be read directly from
the original matrix only if the subspace M is spanned by a subset of the original
basis vectors.

Bordered Hessians
The above approach for determining the eigenvalues of L projected onto M is quite
direct and relatively simple. There is another approach, however, that is useful
in some theoretical arguments and convenient for simple applications. It is based
on constructing matrices and determinants of order n + m rather than n − m, so
dimension is increased.

Let us first characterize all vectors orthogonal to M . M itself is the set of all x
satisfying �hx = 0. A vector z is orthogonal to M if zT x = 0 for all x ∈ M . It is not
hard to show that z is orthogonal to M if and only if z = �hT w for some w ∈ Em.
The proof that this is sufficient follows from the calculation zT x = wT �hx = 0.
The proof of necessity follows from the Duality Theorem of Linear Programming
(see Exercise 6).

Now we may explicitly characterize an eigenvector of LM . The vector x is
such an eigenvector if it satisfies these two conditions: (1) x belongs to M , and (2)
Lx = 
x + z, where z is orthogonal to M . These conditions are equivalent, in view
of the characterization of z, to

�hx = 0

Lx = 
x +�hT w�

This can be regarded as a homogeneous system of n + m linear equations in the
unknowns w� x. It possesses a nonzero solution if and only if the determinant of
the coefficient matrix is zero. Denoting this determinant p�
�, we have

det
[

0 �h
−�hT L−
I

]

≡ p�
� = 0 (26)

as the condition. The function p�
� is a polynomial in 
 of degree n−m. It is, as
we have derived, the characteristic polynomial of LM .
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Example 3. Approaching Example 2 in this way we have

p�
� ≡ det

⎡

⎢
⎢
⎣

0 1 0 0
−1 −�1+
� 0 0

0 0 �1−
� 1
0 0 1 �3−
�

⎤

⎥
⎥
⎦ �

This determinant can be evaluated by using Laplace’s expansion down the first
column. The result is

p�
� = �1−
��3−
�−1�

which is identical to that found earlier.

The above treatment leads one to suspect that it might be possible to extend
other tests for positive definiteness over the whole space to similar tests in the
constrained case by working in n+m dimensions. We present (but do not derive)
the following classic criterion, which is of this type. It is expressed in terms of the
bordered Hessian matrix

B =
[

0 �h
�hT L

]

� (27)

(Note that by convention the minus sign in front of �hT is deleted to make B
symmetric; this only introduces sign changes in the conclusions.)

Bordered Hessian Test. The matrix L is positive definite on the subspace
M = �x � �hx = 0	 if and only if the last n−m principal minors of B all have
sign �−1�m.

For the above example we form

B = det

⎡

⎢
⎢
⎢
⎣

0 1 0
��� 0

1 −1 0
��� 0

0 0 1
��� 1� � � � � � � � � � � � ��

0 0 1 3

⎤

⎥
⎥
⎥
⎦

and check the last two principal minors—the one indicated by the dashed lines and
the whole determinant. These are −1, −2, which both have sign �−1�1, and hence
the criterion is satisfied.

11.7 SENSITIVITY
The Lagrange multipliers associated with a constrained minimization problem have
an interpretation as prices, similar to the prices associated with constraints in linear
programming. In the nonlinear case the multipliers are associated with the particular
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solution point and correspond to incremental or marginal prices, that is, prices
associated with small variations in the constraint requirements.

Suppose the problem

minimize f�x�

subject to h�x� = 0
(28)

has a solution at the point x∗ which is a regular point of the constraints. Let � be the
corresponding Lagrange multiplier vector. Now consider the family of problems

minimize f�x�

subject to h�x� = c�
(29)

where c ∈ Em. For a sufficiently small range of c near the zero vector, the problem
will have a solution point x�c� near x�0� ≡ x∗. For each of these solutions there is a
corresponding value f�x�c��, and this value can be regarded as a function of c, the
right-hand side of the constraints. The components of the gradient of this function
can be interpreted as the incremental rate of change in value per unit change in
the constraint requirements. Thus, they are the incremental prices of the constraint
requirements measured in units of the objective. We show below how these prices
are related to the Lagrange multipliers of the problem having c = 0.

Sensitivity Theorem. Let f , h ∈ C2 and consider the family of problems

minimize f�x�

subject to h�x� = c�
(29)

Suppose for c = 0 there is a local solution x∗ that is a regular point and that,
together with its associated Lagrange multiplier vector �, satisfies the second-
order sufficiency conditions for a strict local minimum. Then for every c ∈ Em

in a region containing 0 there is an x�c�, depending continuously on c, such
that x�0� = x∗ and such that x�c� is a local minimum of (29). Furthermore,

� cf�x�c��

]

c=0

= −�T �

Proof. Consider the system of equations

�f�x�+�T �h�x� = 0 (30)

h�x� = c� (31)

By hypothesis, there is a solution x∗, � to this system when c = 0. The Jacobian
matrix of the system at this solution is

[
L�x∗� �h�x∗�T

�h�x∗� 0

]

�
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Because by assumption x∗ is a regular point and L�x∗� is positive definite on M ,
it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit
Function Theorem, there is a solution x�c����c� to the system which is in fact
continuously differentiable.

By the chain rule we have

� cf�x�c��

]

c=0

= �xf�x∗�� cx�0��

and

� ch�x�c��

]

c=0

= �xh�x∗�� cx�0��

In view of (31), the second of these is equal to the identity I on Em, while this, in
view of (30), implies that the first can be written

� cf�x�c��

]

c=0

= −�T �

11.8 INEQUALITY CONSTRAINTS
We consider now problems of the form

minimize f�x�

subject to h�x� = 0 (32)

g�x� � 0�

We assume that f and h are as before and that g is a p-dimensional function.
Initially, we assume f� h� g ∈ C1.

There are a number of distinct theories concerning this problem, based on
various regularity conditions or constraint qualifications, which are directed toward
obtaining definitive general statements of necessary and sufficient conditions. One
can by no means pretend that all such results can be obtained as minor extensions
of the theory for problems having equality constraints only. To date, however, these
alternative results concerning necessary conditions have been of isolated theoretical
interest only—for they have not had an influence on the development of algorithms,
and have not contributed to the theory of algorithms. Their use has been limited to
small-scale programming problems of two or three variables. We therefore choose
to emphasize the simplicity of incorporating inequalities rather than the possible
complexities, not only for ease of presentation and insight, but also because it is
this viewpoint that forms the basis for work beyond that of obtaining necessary
conditions.
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First-Order Necessary Conditions
With the following generalization of our previous definition it is possible to parallel
the development of necessary conditions for equality constraints.

Definition. Let x∗ be a point satisfying the constraints

h�x∗� = 0� g�x∗� � 0� (33)

and let J be the set of indices j for which gj�x∗� = 0. Then x∗ is said to be a
regular point of the constraints (33) if the gradient vectors �hi�x∗�, �gj�x∗�,
1 � i � m�j ∈ J are linearly independent.

We note that, following the definition of active constraints given in
Section 11.1, a point x∗ is a regular point if the gradients of the active constraints
are linearly independent. Or, equivalently, x∗ is regular for the constraints if it is
regular in the sense of the earlier definition for equality constraints applied to the
active constraints.

Karush–Kuhn–Tucker Conditions. Let x∗ be a relative minimum point for the
problem

minimize f�x�

subject to h�x� = 0� g�x� � 0�
(34)

and suppose x∗ is a regular point for the constraints. Then there is a vector
� ∈ Em and a vector � ∈ Ep with � � 0 such that

�f�x∗�+�T �h�x∗�+�T �g�x∗� = 0 (35)

�T g�x∗� = 0� (36)

Proof. We note first, since � � 0 and g�x∗� � 0, (36) is equivalent to the statement
that a component of � may be nonzero only if the corresponding constraint is
active. This a complementary slackness condition, stating that g�x∗�i < 0 implies
�i = 0 and �i > 0 implies g�x∗�i = 0.

Since x∗ is a relative minimum point over the constraint set, it is also a relative
minimum over the subset of that set defined by setting the active constraints to zero.
Thus, for the resulting equality constrained problem defined in a neighborhood of
x∗, there are Lagrange multipliers. Therefore, we conclude that (35) holds with
�j = 0 if gj�x∗� �= 0 (and hence (36) also holds).

It remains to be shown that � � 0. Suppose �k < 0 for some k ∈ J . Let S
and M be the surface and tangent plane, respectively, defined by all other active
constraints at x∗. By the regularity assumption, there is a y such that y ∈ M and
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�gk�x∗�y < 0. Let x�t� be a curve on S passing through x∗ (at t = 0) with ẋ�0� = y.
Then for small t � 0, x�t� is feasible, and

df

dt
�x�t��

]

t=0

= �f�x∗�y < 0

by (35), which contradicts the minimality of x∗.

Example. Consider the problem

minimize 2x2
1 +2x1x2 +x2

2 −10x1 −10x2

subject to x2
1 +x2

2 � 5

3x1 +x2 � 6�

The first-order necessary conditions, in addition to the constraints, are

4x1 +2x2 −10+2�1x1 +3�2 = 0

2x1 +2x2 −10+2�1x2 +�2 = 0

�1 � 0� �2 � 0

�1�x
2
1 +x2

2 −5� = 0

�2�3x1 +x2 −6� = 0�

To find a solution we define various combinations of active constraints and check
the signs of the resulting Lagrange multipliers. In this problem we can try setting
none, one, or two constraints active. Assuming the first constraint is active and the
second is inactive yields the equations

4x1 +2x2 −10+2�1x1 = 0

2x1 +2x2 −10+2�1x2 = 0

x2
1 +x2

2 = 5�

which has the solution

x1 = 1� x2 = 2� �1 = 1�

This yields 3x1 + x2 = 5 and hence the second constraint is satisfied. Thus, since
�1 > 0, we conclude that this solution satisfies the first-order necessary conditions.
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Second-Order Conditions
The second-order conditions, both necessary and sufficient, for problems with
inequality constraints, are derived essentially by consideration only of the equality
constrained problem that is implied by the active constraints. The appropriate
tangent plane for these problems is the plane tangent to the active constraints.

Second-Order Necessary Conditions. Suppose the functions f� g� h ∈ C2 and
that x∗ is a regular point of the constraints (33). If x∗ is a relative minimum
point for problem (32), then there is a � ∈ Em, � ∈ Ep, � � 0 such that (35)
and (36) hold and such that

L�x∗� = F�x∗�+�T H�x∗�+�T G�x∗� (37)

is positive semidefinite on the tangent subspace of the active constraints at x∗.

Proof. If x∗ is a relative minimum point over the constraints (33), it is also a
relative minimum point for the problem with the active constraints taken as equality
constraints.

Just as in the theory of unconstrained minimization, it is possible to formulate
a converse to the Second-Order Necessary Condition Theorem and thereby obtain a
Second-Order Sufficiency Condition Theorem. By analogy with the unconstrained
situation, one can guess that the required hypothesis is that L�x∗� be positive definite
on the tangent plane M . This is indeed sufficient in most situations. However, if
there are degenerate inequality constraints (that is, active inequality constraints
having zero as associated Lagrange multiplier), we must require L�x∗� to be positive
definite on a subspace that is larger than M .

Second-Order Sufficiency Conditions. Let f� g� h ∈ C2. Sufficient conditions
that a point x∗ satisfying (33) be a strict relative minimum point of problem
(32) is that there exist � ∈ Em, � ∈ Ep, such that

� � 0 (38)

�T g�x∗� = 0 (39)

�f�x∗�+�T �h�x∗�+�T1�g�x∗� = 0� (40)

and the Hessian matrix

L�x∗� = F�x∗�+�T H�x∗�+�T G�x∗� (41)

is positive definite on the subspace

M ′ = �y � �h�x∗�y = 0��gj�x∗�y = 0 for all j ∈ J	�

where

J = �j � gj�x∗� = 0��j > 0	�
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Proof. As in the proof of the corresponding theorem for equality constraints in
Section 11.5, assume that x∗ is not a strict relative minimum point; let �yk	 be a
sequence of feasible points converging to x∗ such that f�yk� � f�x∗�, and write each
yk in the form yk = x∗ + �ksk with �sk� = 1� �k > 0. We may assume that �k → 0
and sk → s∗. We have 0 � �f�x∗�s∗, and for each i = 1� � � � �m we have

�hi�x∗�s∗ = 0�

Also for each active constraint gj we have gj�yk�−gj�x∗� � 0, and hence

�gj�x∗�s∗ � 0�

If �gj�x∗�s∗ = 0 for all j ∈ J , then the proof goes through just as in Section 11.5.
If �gj�x∗�s∗ < 0 for at least one j ∈ J , then

0 � �f�x∗�s∗ = −�T �h�x∗�s∗ −�T �g�x∗�s∗ > 0�

which is a contradiction.

We note in particular that if all active inequality constraints have strictly
positive corresponding Lagrange multipliers (no degenerate inequalities), then the
set J includes all of the active inequalities. In this case the sufficient condition is that
the Lagrangian be positive definite on M , the tangent plane of active constraints.

Sensitivity
The sensitivity result for problems with inequalities is a simple restatement of the
result for equalities. In this case, a nondegeneracy assumption is introduced so
that the small variations produced in Lagrange multipliers when the constraints are
varied will not violate the positivity requirement.

Sensitivity Theorem. Let f� g� h ∈ C2 and consider the family of problems

minimize f�x�
subject to h�x� = c

g�x� � d�
(42)

Suppose that for c = 0, d = 0, there is a local solution x∗ that is a regular
point and that, together with the associated Lagrange multipliers, ��� � 0,
satisfies the second-order sufficiency conditions for a strict local minimum.
Assume further that no active inequality constraint is degenerate. Then for
every �c� d� ∈ Em+p in a region containing �0� 0� there is a solution x�c� d�,
depending continuously on �c� d�, such that x�0� 0� = x∗, and such that x�c� d�
is a relative minimum point of (42). Furthermore,

� cf�x�c� d��

]

0�0

= −�T (43)

�df�x�c� d��

]

0�0

= −�T � (44)
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11.9 ZERO-ORDER CONDITIONS AND LAGRANGE
MULTIPLIERS

Zero-order conditions for functionally constrained problems express conditions in
terms of Lagrange multipliers without the use of derivatives. This theory is not only
of great practical value, but it also gives new insight into the meaning of Lagrange
multipliers. Rather than regarding the Lagrange multipliers as separate scalars,
they are identified as components of a single vector that has a strong geometric
interpretation. As before, the basic constrained problem is

minimize f�x�

subject to h�x� = 0� g�x� ≤ 0 (45)

x ∈ ��

where x is a vector in En, and h and g are m-dimensional and p-dimensional
functions, respectively.

In purest form, zero-order conditions require that the functions that define the
objective and the constraints are convex functions and sets. (See Appendix B).

The vector-valued function g consisting of p individual component functions
g1� g2� � � � � gp is said to be convex if each of the component functions is convex.

The programming problem (45) above is termed a convex programming
problem if the functions f and g are convex, the function h is affine (that is, linear
plus a constant), and the set � ⊂ En is convex.

Notice that according to Proposition 3, Section 7.4, the set defined by each of
the inequalities gj�x� ≤ 0 is convex. This is true also of a set defined by hi�x� =
0. Since the overall constraint set is the intersection of these and � it follows from
Proposition 1 of Appendix B that this overall constraint set is itself convex. Hence the
problem can be regarded as minimize f�x�� x ∈ �1 where �1 is a convex subset of �.

With this view, one could apply the zero-order conditions of Section 7.6 to the
problem with constraint set �1. However, in the case of functional constraints it
is common to keep the structure of the constraints explicit instead of folding them
into an amorphous set.

Although it is possible to derive the zero-order conditions for (45) all at
once, treating both equality and inequality constraints together, it is notationally
cumbersome to do so and it may obscure the basic simplicity of the arguments.
For this reason, we treat equality constraints first, then inequality constraints, and
finally the combination of the two.

The equality problem is

minimize f�x�

subject to h�x� = 0 (46)

x ∈ ��

Letting Y = En, we have h(x) ∈ Y for all x. For this problem we require a regularity
condition.
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Definition. An affine function h is regular with respect to � if the set C in Y
defined by C = �y � h�x� = y for some x ∈ �	 contains an open sphere around
0; that is, C contains a set of the form �y � �y� < �	 for some � > 0.

This condition means that h�x� can attain 0 and can vary in arbitrary directions
from 0.

Notice that this condition is similar to the definition of a regular point in the
context of first-order conditions. If h has continuous derivatives at a point x∗ the
earlier regularity condition implies that �h�x∗� is of full rank and the Implicit
Function Theorem (of Appendix A) then guarantees that there is an � > 0 such that
for any y with �y − h�x∗�� < � there is an x such that h�x� = y. In other words,
there is an open sphere around y∗ = h�x∗� that is attainable. In the present situation
we assume this attainability directly, at the point 0 ∈ Y.

Next we introduce the following important construction.

Definition. The primal function associated with problem (46) is

w�y� = inf�f�x� � h�x� = y� x ∈ �	�

defined for all y ∈ C.

Notice that the primal function is defined by varying the right hand side of the
constraint. The original problem (46) corresponds to ��0�. The primal function is
illustrated in Fig. 11.6.

Proposition 1. Suppose � is convex, the function f is convex, and h is affine.
Then the primal function � is convex.

Proof. For simplicity of notation we assume that � is the entire space X. Then
we observe

���y1 + �1−��y2� = inf�f�x� � h�x� = �y1 + �1−��y2	

≤ inf�f�x� � x = �x1 + �1−��x2� h�x1� = y1� h�x2� = y2	

≤ � inf�f�x1� � h�x1� = y1	+ �1−��inf�fx2� � h�x2� = y2	

= ���y1�+ �1−����y2��

ω (y)

y

Fig. 11.6 The primal function
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We now turn to the derivation of the Lagrange multiplier result for (46).

Proposition 2. Assume that � ⊂ En is convex, f is a convex function on �
and h is an m-dimensional affine function on �. Assume that h is regular with
respect to �. If x∗ solves (46), then there is � ∈ Em such that x∗ solves the
Lagrangian problem

minimize f�x�+�T h�x�

subject to x ∈ ��

Proof. Let f ∗ = f�x∗�. Define the sets A and B in Em+1 as

A = ��r� y� � r ≥ ��y�� y ∈ C	

B = ��r� y� � r ≤ f ∗� y = 0	�

A is the epigraph of � (see Section 7.6) and B is the vertical line extending below
f ∗ and aligned with the origin. Both A and B are convex sets. Their only common
point is at �f ∗� 0�. See Fig. 11.7

According to the separating hyperplane theorem (Appendix B), there is a
hyperplane separating A and B. This hyperplane can be represented by a nonzero
vector in Em+1 of the form �s���, with � ∈ Em, and a separation constant c. The
separation conditions are

sr +�T y ≥ c for all �r� y� ∈ A

sr +�T y ≤ c for all �r� y� ∈ B�

It follows immediately that s ≥ 0 for otherwise points �r� 0� ∈ B with r very negative
would violate the second inequality.

Hyperplane ←B

A

r

y

Fig. 11.7 The sets A and B and the separating hyperplane
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Geometrically, if s = 0 the hyperplane would be vertical. We wish to show
that s �= 0, and it is for this purpose that we make use of the regularity condition.
Suppose s = 0. Then � �= 0 since both s and � cannot be zero. It follows from the
second separation inequality that c = 0 because the hyperplane must include the
point �f ∗� 0�. Now, as y ranges over a sphere centered at 0 ∈ C, the left hand side
of the first separation inequality ranges correspondingly over �T y which is negative
for some y’s. This contradicts the first separation inequality. Thus s �= 0 and thus
in fact s > 0. Without loss of generality we may, by rescaling if necessary, assume
that s = 1.

Finally, suppose x ∈ �. Then �f�x�� h�x�� ∈ A and �f�x∗�� 0� ∈ B. Thus, from
the separation inequality (with s = 1) we have

f�x�+�T h�x� ≥ f�x∗� = f�x∗�+�T h�x∗��

Hence x∗ solves the stated minimization problem.

Example 1 (Best rectangle). Consider the classic problem of finding the rectangle
of of maximum area while limiting the perimeter to a length of 4. This can be
formulated as

minimize −x1x2

subject to x1 +x2 −2 = 0

x1 ≥ 0� x2 ≥ 0�

The regularity condition is met because it is possible to make the right hand side of
the functional constraint slightly positive or slightly negative with nonnegative x1

and x2. We know the answer to the problem is x1 = x2 = 1. The Lagrange multiplier
is 
 = 1. The Lagrangian problem of Proposition 2 is

minimize −x1x2 +1 · �x1 +x2 −2�

subject to x1 ≥ 0� x2 ≥ 0�

This can be solved by differentiation to obtain x1 = x2 = 1.
However the conclusion of the proposition is not satisfied! The value of the

Lagrangian at the solution is V = −1 + 1 + 1 − 2 = −1. However, at x1 = x2 = 0
the value of the Lagrangian is V ′ = −2 which is less than V . The Lagrangian is
not minimized at the solution. The proposition breaks down because the objective
function f�x1� x2� = −x1x2 is not convex.

Example 2 (Best diagonal). As an alternative problem, consider minimizing the
length of the diagonal of a rectangle subject to the perimeter being of length 4. This
problem can be formulated as

minimize
1
2

�x2
1 +x2

2�
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subject to x1 +x2 −2 = 0

x1 ≥ 0� x2 ≥ 0�

In this case the objective function is convex. The solution is x1 = x2 = 1 and the
Lagrange multiplier is 
 = −1. The Lagrangian problem is

minimize
1
2

�x2
1 +x2

2�−1 · �x1 +x2 −2�

subject to x1 ≥ 0� x2 ≥ 0�

The value of the Lagrangian at the solution is V = 1 which in this case is a minimum
as guaranteed by the proposition. (The value at x1 = x2 = 0 is V ′ = 2.)

Inequality constraints
We outline the parallel results for the inequality constrained problem

minimize f�x�

subject to g�x� ≤ 0

x ∈ �� (47)

where g is a p-dimensional function.
We let Z = Ep and define D ⊂ Z as D = {z ∈ Z : g(x) ≤ z for some x ∈ �}. The

regularity condition (called the Slater condition) is that there is a z1 ∈ D with z1 < 0.
As before we introduce the primal function.

Definition. The primal function associated with problem (47) is

w�z� = inf�f�x� � g�x� ≤ z� x ∈ �	�

The primal function is again defined by varying the right hand side of the
constraint function, using the variable z. Now the primal function in monotonically
decreasing with z, since an increase in z enlarges the constraint region.

Proposition 3. Suppose � ⊂ En is convex and f and g are convex functions.
Then the primal function � is also convex.

Proof. The proof parallels that of Proposition 1. One simply substitutes g�x� ≤ 0
for h�x� = y throughout the series of inequalities.

The zero-order necessary Lagrangian conditions are then given by the
proposition below.

Proposition 4. Assume � is a convex subset of En and that f and g are
convex functions. Assume also that there is a point x1 ∈ � such that g�x1� < 0.
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Then, if x∗ solves (47), there is a vector � ∈ Ep with � ≥ 0 such that x∗ solves
the Lagrangian problem

minimize f�x∗�+�T g�x� (48)
subject to x ∈ ��

Furthermore, �T g�x∗� = 0.

Proof. Here is the proof outline. Let f ∗ = f�x∗�. In this case define in Ep+1 the
two sets

A =��r� 0� � r ≥ f�x�� 0 ≥ g�x�� for some x ∈ �	

B =��r� 0� � r ≤ f ∗� 0 ≤ 0	�

A is the epigraph of the primal function �. The set B is the rectangular region at
or to the left of the vertical axis and at or lower than f ∗. Both A and B are convex.
See Fig. 11.8.

The proof is made by constructing a hyperplane separating A and B. The
regularity condition guarantees that this hyperplane is not vertical.

The condition �T g�x∗� = 0 is the complementary slackness condition that is
characteristic of necessary conditions for problems with inequality constraints.

Example 4. (Quadratic program). Consider the quadratic program

minimize xT Qx + cT x

subject to aT x ≤ b

x ≥ 0�

Let � = �x � x ≥ 0	 and g�x� = aT x−b. Assume that the n×n matrix Q is positive
definite, in which case the objective function is convex. Assuming that b > 0, the
Slater regularity condition is satisfied. Hence there is a Lagrange multiplier � ≥ 0

Hyperplane
A

0

r

z

B

Fig. 11.8 The sets A and B and the separating hyperplane for inequalities
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(a scalar in this case) such that the solution x∗ to the quadratic program is also a
solution to

minimize xT Qx + cT x +��aT x −b�

subject to x ≥ 0�

and ��aT x∗ −b� = 0.

Mixed constraints
The two previous results can be combined to obtain zero-order conditions for the
problem

minimize f�x�

subject to h�x� = 0� g�x� ≤ 0 (49)

x ∈ ��

Zero-order Lagrange Theorem. Assume that � ⊂ En is a convex set, f and
g are convex functions of dimension 1 and p, respectively, and h is affine of
dimension m. Assume also that h satisfies the regularity condition with respect
to � and that there is an x1 ∈ � with h�x1� = 0 and g�x1� < 0. Suppose x∗

solves (49). Then there are vectors � ∈ Em and � ∈ Ep with � ≥ 0 such that
x∗ solves the Lagrangian problem

minimize f�x�+�T h�x�+�T g�x� (50)

subject to x ∈ ��

Furthermore, �T g�x∗� = 0.

The convexity requirements of this result are satisfied in many practical
problems. Indeed convex programming problems are both pervasive and relatively
well treated by theory and numerical methods. The corresponding theory also
motivates many approaches to general nonlinear programming problems. In fact,
it will be apparent that many methods attempt to “convexify” a general nonlinear
problem either by changing the formulation of the underlying application or by
introducing devices that temporarily relax as the method progresses.

Zero-order sufficient conditions
The sufficiency conditions are very strong and do not require convexity.

Proposition 5. (Sufficiency Conditions). Suppose f is a real-valued function
on a set � ⊂ En. Suppose also that h and g are, respectively, m-dimensional
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and p-dimensional functions on �. Finally, suppose there are vectors x∗ ∈ �,
� ∈ Em, and � ∈ Ep with � ≥ 0 such that

f�x∗�+�T h�x∗�+�T g�x∗� ≤ f�x�+�T h�x�+�T g�x�

for all x ∈ �. Then x∗ solves

minimize f�x�

subject to h�x� = h�x∗�

g�x� ≤ g�x∗�

x ∈ ��

Proof. Suppose there is x1 ∈ � with f�x1� < f�x∗�, h�x1� = h�x∗�, and g�x1� ≤
g�x∗�� From � ≥ 0 it is clear that �T g�x1� ≤ �T g�x∗�. It follows that f�x1� +
�T h�x1�+�T g�x1� < f�x∗�+�T h�x∗�+�T g�x∗�, which is a contradiction.

This result suggests that Lagrange multiplier values might be guessed and used
to define a Lagrangian which is subsequently minimized. This will produce a special
value of x and special values of the right hand sides of the constraints for which
this x is optimal. Indeed, this approach is characteristic of duality methods treated
in Chapter 14.

The theory of this section has an inherent geometric simplicity captured clearly
by Figs. 11.7 and 11.8. It raises ones’s level of understanding of Lagrange multipliers
and sets the stage for the theory of convex duality presented in Chapter 14. It is
certainly possible to jump ahead and read that now.

11.10 SUMMARY
Given a minimization problem subject to equality constraints in which all functions
are smooth, a necessary condition satisfied at a minimum point is that the gradient
of the objective function is orthogonal to the tangent plane of the constraint surface.
If the point is regular, then the tangent plane has a simple representation in terms of
the gradients of the constraint functions, and the above condition can be expressed
in terms of Lagrange multipliers.

If the functions have continuous second partial derivatives and Lagrange multi-
pliers exist, then the Hessian of the Lagrangian restricted to the tangent plane plays
a role in second-order conditions analogous to that played by the Hessian of the
objective function in unconstrained problems. Specifically, the restricted Hessian
must be positive semidefinite at a relative minimum point and, conversely, if it is
positive definite at a point satisfying the first-order conditions, that point is a strict
local minimum point.

Inequalities are treated by determining which of them are active at a solution.
An active inequality then acts just like an equality, except that its associated
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Lagrange multiplier can never be negative because of the sensitivity interpretation
of the multipliers.

The necessary conditions for convex problems can be expressed without deriva-
tives, and these are according termed zero-order conditions. These conditions are
highly geometric in character and explicitly treat the Lagrange multiplier as a vector
in a space having dimension equal to that of the right-hand-side of the constraints.
This Lagrange multiplier vector defines a hyperplane that separates the epigraph
of the primal function from a set of unattainable objective and constraint value
combinations.

11.11 EXERCISES
1. In E2 consider the constraints

x1 � 0

x2 � 0

x2 − �x1 −1�2 � 0�

Show that the point x1 = 1, x2 = 0 is feasible but is not a regular point.

2. Find the rectangle of given perimeter that has greatest area by solving the first-order
necessary conditions. Verify that the second-order sufficiency conditions are satisfied.

3. Verify the second-order conditions for the entropy example of Section 11.4.

4. A cardboard box for packing quantities of small foam balls is to be manufactured as
shown in Fig. 11.9. The top, bottom, and front faces must be of double weight (i.e.,
two pieces of cardboard). A problem posed is to find the dimensions of such a box that
maximize the volume for a given amount of cardboard, equal to 72 sq. ft.

a) What are the first-order necessary conditions?
b) Find x� y� z.
c) Verify the second-order conditions.

x

z front

y

Fig. 11.9 Packing box
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5. Define

L =
⎡

⎣
4 3 2
3 1 1
2 1 1

⎤

⎦ � h = �1� 1� 0��

and let M be the subspace consisting of those points x = �x1� x2� x3� satisfying hT x = 0.

a) Find LM .
b) Find the eigenvalues of LM .
c) Find

p�
� = det
[

0 hT

−h L− I


]

�

d) Apply the bordered Hessian test.

6. Show that zT x = 0 for all x satisfying Ax = 0 if and only if z = AT w for some w. (Hint:
Use the Duality Theorem of Linear Programming.)

7. After a heavy military campaign a certain army requires many new shoes. The quarter-
master can order three sizes of shoes. Although he does not know precisely how many
of each size are required, he feels that the demand for the three sizes are independent
and the demand for each size is uniformly distributed between zero and three thousand
pairs. He wishes to allocate his shoe budget of four thousand dollars among the three
sizes so as to maximize the expected number of men properly shod. Small shoes cost
one dollar per pair, medium shoes cost two dollars per pair, and large shoes cost four
dollars per pair. How many pairs of each size should he order?

8. Optimal control. A one-dimensional dynamic process is governed by a difference
equation

x�k+1� = ��x�k��u�k�� k�

with initial condition x�0� = x0. In this equation the value x�k� is called the state at step
k and u�k� is the control at step k. Associated with this system there is an objective
function of the form

J =
N∑

k=0

��x�k��u�k�� k��

In addition, there is a terminal constraint of the form

g�x�N +1�� = 0�

The problem is to find the sequence of controls u�0�� u�1�� u�2�� � � � � u�N� and corre-
sponding state values to minimize the objective function while satisfying the terminal
constraint. Assuming all functions have continuous first partial derivatives and that the
regularity condition is satisfied, show that associated with an optimal solution there is a
sequence 
�k�� k = 0� 1� � � � �N and a � such that


�k−1� = 
�k��x�x�k��u�k�� k�+�x�x�k��u�k�� k�� k = 1� 2� � � � �N


�N� = �gx�x�N +1��

�u�x�k�� u�k�� k�+
�k��u�x�k��u�k�� k� = 0� k = 0� 1� 2� � � � �N�



356 Chapter 11 Constrained Minimization Conditions

9. Generalize Exercise 9 to include the case where the state x�k� is an n-dimensional vector
and the control u�k� is an m-dimensional vector at each stage k.

10. An egocentric young man has just inherited a fortune F and is now planning how to
spend it so as to maximize his total lifetime enjoyment. He deduces that if x�k� denotes
his capital at the beginning of year k, his holdings will be approximately governed by
the difference equation

x�k+1� = �x�k�−u�k�

x�0� = F�

where � � 1 (with �−1 as the interest rate of investment) and where u�k� is the amount
spent in year k. He decides that the enjoyment achieved in year k can be expressed as
��u�k�� where �, his utility function, is a smooth function, and that his total lifetime
enjoyment is

J =
N∑

k=0

��u�k���k�

where the term �k �0 < � < 1� reflects the notion that future enjoyment is counted
less today. The young man wishes to determine the sequence of expenditures that will
maximize his total enjoyment subject to the condition x�N +1� = 0.

a) Find the general optimality relationship for this problem.
b) Find the solution for the special case ��u� = u1/2.

11. Let A be an m×n matrix of rank m and let L be an n×n matrix that is symmetric and
positive definite on the subspace M = �x � Ax = 0	. Show that the �n+m�× �n+m�
matrix

[
L AT

A 0

]

is nonsingular.

12. Consider the quadratic program

minimize
1
2

xT Qx −bT x

subject to Ax = c�

Prove that x∗ is a local minimum point if and only if it is a global minimum point. (No
convexity is assumed.)

13. Maximize 14x−x2 +6y −y2 +7 subject to x+y � 2� x+2y � 3.

14. In the quadratic program example of Section 11.9, what are more general conditions on
a and b that satisfy the Slater condition?

15. What are the general zero-order Lagrangian conditions for the problem (46) without the
regularity condition? [The coefficient of f will be zero, so there is no real condition.]

16. Show that the problem of finding the rectangle of maximum area with a diagonal of
unit length can be formulated as an unconstrained convex programming problem using
trigonometric functions. [Hint: use variable � over the range 0 ≤ � ≤ 45 degrees.]
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Tucker [K11]. Later it was found that the essential elements of the theory were contained in
the 1939 unpublished M.Sci Disertation of W. Karush in the Department of Mathematics,
University of Chicago. It is common to recognize this contribution by including his name
to the conditions for optimality.

11.9 The theory of convex problems and the corresponding Lagrange multiplier theory was
developed by Slater [S7]. For presentations similiar to this section, see Hurwicz [H14] and
Luenberger [L8].
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