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BASIC HYPERGEOMETRlC SERlES 

1.1 Introduction 

Our main objective in this chapter is to present the definitions and no­
tations for hypergeometric and basic hypergeometric series, and to derive the 
elementary formulas that form the basis for most of the summation, transfor­
mation and expansion formulas, basic integrals, and applications to orthogonal 
polynomials and to other fields that follow in the subsequent chapters. We be­
gin by defining Gauss' 2Fl hypergeometric series, the rFs (generalized) hyper­
geometric series, and pointing out some of their most important special cases. 
Next we define Heine's 2¢1 basic hypergeometric series which contains an addi­
tional parameter q, called the base, and then give the definition and notations 
for r¢s basic hypergeometric series. Basic hypergeometric series are called 
q-analogues (basic analogues or q-extensions) of hypergeometric series because 
an rFs series can be obtained as the q ---+ 1 limit case of an r¢s series. 

Since the binomial theorem is at the foundation of most of the summation 
formulas for hypergeometric series, we then derive a q-analogue of it, called the 
q-binomial theorem, and use it to derive Heine's q-analogues of Euler's trans­
formation formulas, Jacobi's triple product identity, and summation formulas 
that are q-analogues of those for hypergeometric series due to Chu and Vander­
monde, Gauss, Kummer, Pfaff and Saalschiitz, and to Karlsson and Minton. 
We also introduce q-analogues of the exponential, gamma and beta functions, 
as well as the concept of a q-integral that allows us to give a q-analogue of 
Euler's integral representation of a hypergeometric function. Many additional 
formulas and q-analogues are given in the exercises at the end of the chapter. 

1.2 Hypergeometric and basic hypergeometric series 

In 1812, Gauss presented to the Royal Society of Sciences at Gottingen his 
famous paper (Gauss [1813]) in which he considered the infinite series 

ab a(a + l)b(b + 1) 2 a(a + 1)(a + 2)b(b + 1)(b + 2) 3 ( ) 
1+-z+ z + z + ... 1.2.1 

l·c 1.2·c(c+l) 1.2·3·c(c+l)(c+2) 

as a function of a, b, c, z, where it is assumed that c -I=- 0, -1, -2, ... , so that 
no zero factors appear in the denominators of the terms of the series. He 
showed that the series converges absolutely for Izi < 1, and for Izl = 1 when 
Re (c - a - b) > 0, gave its (contiguous) recurrence relations, and derived his 
famous formula (see (1.2.11) below) for the sum of this series when z = 1 and 
Re(c-a-b»O. 
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2 Basic hypergeometric series 

Although Gauss used the notation F(a, b, c, z) for his series, it is now 
customary to use F(a, b; c; z) or either of the notations 

2Fl (a, b; c; z), 

for this series (and for its sum when it converges), because these notations 
separate the numerator parameters a, b from the denominator parameter c 
and the variable z. In view of Gauss' paper, his series is frequently called 
Gauss'series. However, since the special case a = 1, b = c yields the geometric 
senes 

1+z+z2 +z3 + ... , 

Gauss' series is also called the (ordinary) hypergeometric series or the Gauss 
hyper geometric series. 

Some important functions which can be expressed by means of Gauss' 
series are 

(1 + z)a = F( -a, b; b; -z), 

10g(1 + z) = zF(l, 1; 2; -z), 

sin-1 z = zF(1/2, 1/2; 3/2; z2), 

tan- 1 z = zF(1/2, 1;3/2; _z2), 

eZ = lim F(a, b; b; z/a), 
a-HXl 

(1.2.2) 

where Izl < 1 in the first four formulas. Also expressible by means of Gauss' 
series are the classical orthogonal polynomials, such as the Tchebichef polyno­
mials of the first and second kinds 

Tn(x) = F( -n, n; 1/2; (1 - x)/2), 

Un(x) = (n + l)F( -n, n + 2; 3/2; (1 - x)/2), 

the Legendre polynomials 

Pn(x) = F( -n, n + 1; 1; (1 - x)/2), 

the Gegenbauer (ultraspherical) polynomials 

>. (2'\)n 
en (x) = -,- F( -n, n + 2'\;'\ + 1/2; (1 - x)/2), 

n. 
and the more general Jacobi polynomials 

p~a,(3)(x)= (a+,l)n F(-n,n+a+,B+1; a+1;(1-x)/2), 
n. 

(1.2.3) 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2.7) 

where n = 0,1, ... , and (a)n denotes the shifted factorial defined by 

r(a+n) 
(a)o=l, (a)n=a(a+1)···(a+n-1)= r(a) , n=1,2, .... (1.2.8) 

Before Gauss, Chu [1303] (see Needham [1959, p. 138], Takacs [1973] and 
Askey [1975, p. 59]) and Vandermonde [1772] had proved the summation for­
mula 

(c- b)n 
F( -n, b; c; 1) = (c)n ' n = 0,1, ... , (1.2.9) 
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which is now called Vandermonde's formula or the Chu- Vandermonde formula, 
and Euler [1748] had derived several results for hypergeometric series, including 
his transformation formula 

F(a, b; c; z) = (1 - z)c-a-b F(c - a, c - b; c; z), Izl < 1. (1.2.10) 

Formula (1.2.9) is the terminating case a = -n of the summation formula 

r(c)r(c - a - b) 
F(a, b; c; 1) = r(c _ a)r(c _ b)' Re(c - a - b) > 0, (1.2.11) 

which Gauss proved in his paper. 
Thirty-three years after Gauss' paper, Heine [1846, 1847, 1878] introduced 

the series 
(1 - qa)(l - qb) (1 - qa)(l - qa+ 1)(1 - qb)(l - qb+ I) 2 

1+ (1 _ q)(l _ qc) z+ (1- q)(l _ q2)(1 _ qC)(l _ qC+ I) Z +- .. , (1.2.12) 

where it is assumed that q i- 1, c i- 0, -1, -2, ... and the principal value of 
each power of q is taken. This series converges absolutely for Izl < 1 when 
Iql < 1 and it tends (at least termwise) to Gauss' series as q ----> 1, because 

1 _ qa 
lim -- = a. (1.2.13) 
q--+I 1 - q 

The series in (1.2.12) is usually called Heine's series or, in view of the 
base q, the basic hyper geometric series or q-hypergeometric series. 

Analogous to Gauss' notation, Heine used the notation ¢(a, b, c, q, z) for 
his series. However, since one would like to also be able to consider the case 
when q to the power a, b, or c is replaced by zero, it is now customary to define 
the basic hypergeometric series by 

¢(a,b;c;q,z) == 2¢I(a,b;c;q,z) == 2¢1 [a~b;q,z] 

= f ~a; q~n~b; q~n zn, (1.2.14) 
n= 0 q; q n c; q n 

where 

(a; q)n = { ~i _ a)(l - aq) ... (1 _ aqn-I), 
n=O, 
n= 1,2, ... , (1.2.15) 

is the q-shifted factorial and it is assumed that c i- q-rn for m = 0,1, .... 
Some other notations that have been used in the literature for the product 
(a; q)n are (a)q,n' [a]n, and even (a)n when (1.2.8) is not used and the base is 
not displayed. 

Another generalization of Gauss' series is the (generalized) hypergeometric 
series with r numerator parameters aI, ... ,ar and s denominator parameters 
bl , ... ,bs defined by 

rFs(al' a2, ... , ar; bl , ... , bs; z) == rFs [alb' a2,·· ·b' ar ; z] 
I, ... , s 

(1.2.16) 
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Some well-known special cases are the exponential function 

eZ = oFo(-;-;z), 

the trigonometric functions 

the Bessel function 

sin z = z oFI (-; 3/2; -z2/4), 

cosz = oFI (-; 1/2; _Z2 /4), 

Ja(z) = (z/2t oFI (-; a + 1; _z2 /4)/r(a + 1), 

(1.2.17) 

(1.2.18) 

(1.2.19) 

where a dash is used to indicate the absence of either numerator (when r = 0) 
or denominator (when s = 0) parameters. Some other well-known special cases 
are the Hermite polynomials 

Hn(x) = (2x)n 2Fo( -n/2, (1 - n)/2; -; _x-2), 

and the Laguerre polynomials 

a () (a + l)n ( ) Ln x = , IFI -n; a + 1; x . 
n. 

(1.2.20) 

(1.2.21 ) 

Generalizing Heine's series, we shall define an r¢s basic hyper geometric 
series by 

A. ( b b ) - A. [aI, a2, ... , ar ] r'f's al,a2,···,ar ; I,···, s;q,z = r'f's b b ;q,z 
1, ... , s 

= f (al;q)n(a2;q)n···(ar ;q)n [(_l t qG)]I+s-r zn 

n= 0 (q; q)n(bl ; q)n··· (bs; q)n 

with (~) = n(n - 1)/2, where q -=I 0 when r > s + 1. 

(1.2.22) 

In (1.2.16) and (1.2.22) it is assumed that the parameters bl , ... , bs are 
such that the denominator factors in the terms of the series are never zero. 
Since 

(-m)n = (q-m; q)n = 0, n = m + 1, m + 2, ... , (1.2.23) 

an rFs series terminates if one of its numerator parameters is zero or a negative 
integer, and an r¢s series terminates if one of its numerator parameters is 
of the form q-m with m = 0,1,2, ... , and q -=I O. Basic analogues of the 
classical orthogonal polynomials will be considered in Chapter 7 as well as in 
the exercises at the ends of the chapters. 

Unless stated otherwise, when dealing with nonterminating basic hyper­
geometric series we shall assume that Iql < 1 and that the parameters and 
variables are such that the series converges absolutely. Note that if Iql > 1, 
then we can perform an inversion with respect to the base by setting p = q-I 
and using the identity 

(1.2.24) 

to convert the series (1.2.22) to a similar series in base p with Ipi < 1 (see 
Ex. 1.4(i)). The inverted series will have a finite radius of convergence if the 
original series does. 



1.2 Hypergeometric series 5 

Observe that if we denote the terms of the series (1.2.16) and (1.2.22) 
which contain zn by Un and Vn , respectively, then 

U n + 1 (al + n)(a2 + n) ... (ar + n) 
--= z 

Un (l+n)(b1 +n)···(bs+n) 
(1.2.25) 

is a rational function of n, and 

(1.2.26) 

is a rational function of qn. Conversely, if L:: 0 Un and L:: 0 Vn are power 
series with Uo = Vo = 1 such that un+ dUn is a rational function of nand 
vn+ l/Vn is a rational function of qn, then these series are of the forms (1.2.16) 
and (1.2.22), respectively. 

By the ratio test, the rFs series converges absolutely for all z if r ::; s, and 
for Izl < 1 if r = s + 1. By an extension of the ratio test (Bromwich [1959, 
p. 241]), it converges absolutely for Izl = 1 if r = s + 1 and Re [b1 + ... + bs -

(a 1 + ... + ar )] > o. If r > s + 1 and z i=- 0 or r = s + 1 and I z I > 1, then this 
series diverges, unless it terminates. 

If 0 < Iql < 1, the r¢s series converges absolutely for all z if r ::; sand 
for Izl < 1 if r = s + 1. This series also converges absolutely if Iql > 1 
and Izl < Ib1b2·· ·bsql/lala2·· ·arl· It diverges for z i=- 0 if 0 < Iql < 1 and 
r > s + 1, and if Iql > 1 and Izl > Ib1b2·· ·bsql/lala2· ··arl, unless it termi­
nates. As is customary, the rFs and r¢s notations are also used for the sums 
of these series inside the circle of convergence and for their analytic contin­
uations (called hyper geometric functions and basic hypergeometric functions, 
respectively) outside the circle of convergence. 

Observe that the series (1.2.22) has the property that if we replace z by 
z/ar and let ar ---+ 00, then the resulting series is again of the form (1.2.22) 
with r replaced by r -1. Because this is not the case for the r¢s series defined 

[ (n)]l+s-r 
without the factors (_I)nq 2 in the books of Bailey [1935] and Slater 

[1966] and we wish to be able to handle such limit cases, we have chosen to use 
the series defined in (1.2.22). There is no loss in generality since the Bailey and 
Slater series can be obtained from the r = s + 1 case of (1.2.22) by choosing s 
sufficiently large and setting some of the parameters equal to zero. 

An r+ 1 Fr series is called k-balanced if b1 + b2 + ... + br = k + al + a2 + 
... + ar+ 1 and z = 1; a I-balanced series is called balanced (or Saalschutzian). 
Analogously, an r+ 1 ¢r series is called k- balanced if b1 b2 ... br = qk al a2 ... ar+ 1 

and z = q, and a I-balanced series is called balanced (or Saalschutzian). We will 
first encounter balanced series in §1.7, where we derive a summation formula 
for such a series. 

For negative subscripts, the shifted factorial and the q-shifted factorials 
are defined by 

1 
( a ) -n = -:------:--:------:---:------:-

(a-l)(a-2)···(a-n) 

1 
(1.2.27) 

(a-n)n 
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1 1 
(a;q)-n= (1-aq-l)(1-aq-2) ... (1-aq-n) (aq-n;q)n 

where n = 0,1, .... We also define 

00 

(a; q)oo = II (1- aqk) 
k= 0 

( -qja)nqG) 

(qja; q)n ' 
(1.2.28) 

(1.2.29) 

for Iql < 1. Since the infinite product in (1.2.29) diverges when a -=I- 0 and 
Iql 2:: 1, whenever (a; q)oo appears in a formula, we shall assume that Iql < 1. 
The following easily verified identities will be frequently used in this book: 

() (a; q)oo 
a; q n = ( n ) , aq ; q 00 

(a- 1 ql-n; q)n = (a; q)n( _a- 1 )nq-G), 

(a;q)n-k = (a;q)n (_qa-l)kq(~)-nk, 
(a- 1ql-n; q)k 

(a; q)n+ k = (a; q)n(aqn; q)k, 

( k) (a;q)n 
aq ;q n-k = -( -)-, 

a;q k 

( 2k.) _ (a; q)n(aqn; q)k 
aq ,q n-k - () , 

a; q 2k 

( -no ) = (q; q)n (_1)k (~)-nk q ,qk () q, 
q; q n-k 

( -no ) _ (a; q)k(qa-1 ; q)n -nk 
aq ,q k - (-1 l-k.) q , a q ,q n 

(a; q)zn = (a; q2)n(aq; q2)n, 

(a2; q2)n = (a; q)n( -a; q)n, 

(1.2.30) 

(1.2.31 ) 

(1.2.32) 

(1.2.33) 

(1.2.34) 

(1.2.35) 

(1.2.36) 

(1.2.37) 

(1.2.38) 

(1.2.39) 

(1.2.40) 

where nand k are integers. A more complete list of useful identities is given 
in Appendix I at the end of the book. 

Since products of q-shifted factorials occur so often, to simplify them we 
shall frequently use the more compact notations 

(ai, a2,···, am; q)n = (al; q)n(a2; q)n··· (am; q)n, 

(ai, a2, ... , am; q)oo = (al; q)oo (a2; q)oo ... (am; q)oo. 

(1.2.41 ) 

(1.2.42) 
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The ratio (1 - qa)/(1 - q) considered in (1.2.13) is called a q-number (or 
basic number) and it is denoted by 

1 _ qa 
[a]q = -1-' q -I- 1. 

-q 
(1.2.43) 

It is also called a q-analogue, q-deformation, q-extension, or a q-generalization 
of the complex number a. In terms of q-numbers the q-number factorial [n]q! 
is defined for a nonnegative integer n by 

n 

[n]q! = II [k]q, 
k= I 

and the corresponding q-number shifted factorial is defined by 

n-I 
[a]q;n = II [a + k]q. 

k=O 

Clearly, 
1· []' - , 1m n q. - n., 
q-tl 

lim [a]q = a, 
q-tl 

and 
lim [a]q;n = (a)n. q-tl 

Corresponding to (1.2.41) we can use the compact notation 

[aI, a2,···, am]q;n = [adq;n[a2]q;n'" [am]q;n. 

Since 

f [al,a2, ... ,ar]q;n [(_I)n qG)]I+s-rzn 
n= 0 [n]q![b l , ... , bs]q;n 

_ A.. (a1 a2 ar • b, bs • (1 )I+s-r) - r'f/s q , q , ... , q , q , ... , q , q, z - q , 

(1.2.44) 

(1.2.45) 

(1.2.46) 

(1.2.4 7) 

(1.2.48) 

(1.2.49) 

anyone working with q-numbers and the q-number hyper geometric series on 
the left-hand side of (1.2.49) can use the formulas for reps series in this book 
that have no zero parameters by replacing the parameters by q"lj powers and 
applying (1.2.49). 

As in Frenkel and Turaev [1995] one can define a trigonometric number 
[a; u] by 

[a'u] = sin(7rua) 
, sin( 7ru) 

(1.2.50) 

for noninteger values of u and view [a; u] as a trigonometric deformation of a 
since lima-to [a; u] = a. The corresponding rts trigonometric hyper geometric 
series can be defined by 

rts(al, a2, ... , ar; bl , ... , bs; u, z) 

= f [al,a2, ... ,ar;u]n [(_lt e11"iaG)]I+s-rzn , 
n= 0 [n; u]![bl , ... , bs; u]n 

(1.2.51 ) 
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where 
n n-I 

[n; u]! = II [k; u], [a; u]n = II [a + k; u], (1.2.52) 
k= I k= 0 

and 
(1.2.53) 

From 
eniaa _ e-niaa 

[a· u] = -:-----,----
, e7ria _ e-7ricr 

qa/2 _ q-a/2 _ 1 - qa (l-a)/2 
ql/2 _ q-I/2 - 1 - q q , (1.2.54) 

where q = e2nia , it follows that 

[ . ] _ (qa;q)n n(l-a)/2-n(n-I)/4 
a, u n - (1 _ q)n q , (1.2.55) 

and hence 

rts(al' a2,···, ar ; bl ,···, bs; u, z) 
_ rI-. (a1 a2 ar • b1 bs • ) - r'l's q ,q , ... , q ,q , ... , q ,q, cz (1.2.56) 

with 
(1.2.57) 

which shows that the rts series is equivalent to the reps series in (1.2.49). 
Elliptic numbers [a; u, T], which are a one-parameter generalization (de­

formation) of trigonometric numbers, are considered in §1.6, and the corre­
sponding elliptic (and theta) hypergeometric series and their summation and 
transformation formulas are considered in Chapter 11. 

We close this section with two identities involving ordinary binomial coef­
ficients, which are particularly useful in handling some powers of q that arise 
in the derivations of many formulas containing q-series: 

(1.2.58) 

(1.2.59) 

1.3 The q-binomial theorem 

One of the most important summation formulas for hypergeometric series is 
given by the binomial theorem: 

2FI (a, C; C; z) = IFo(a;-; z) = f (a),n zn = (1- z)-a, 
n=O n. 

(1.3.1) 

where Izl < 1. We shall show that this formula has the following q-analogue 

rI-. (._. ) _ ~ (a;q)n n _ (az;q)oo 
1'l'0 a, ,q, z - ~ ( ) z - ( ) , 

n= 0 q; q n Z; q 00 

Izl < 1, Iql < 1, (1.3.2) 
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which was derived by Cauchy [1843]' Heine [1847] and by other mathemati­
cians. See Askey [1980a], which also cites the books by Rothe [1811] and 
Schweins [1820]' and the remark on p. 491 of Andrews, Askey, and Roy [1999] 
concerning the terminating form of the q-binomial theorem in Rothe [1811]. 

Heine's proof of (1.3.2), which can also be found in the books Heine [1878], 
Bailey [1935, p. 66] and Slater [1966, p. 92]' is better understood if one first 
follows Askey's [1980a] approach of evaluating the sum of the binomial series 
in (1.3.1), and then carries out the analogous steps for the series in (1.3.2). 

Let us set 

.. ( ) = ~ (a)n n Ja Z ~ ,z. 
n=O n. 

(1.3.3) 

Since this series is uniformly convergent in Izl ::; E when 0 < E < 1, we may 
differentiate it termwise to get 

Also 

f~(z) = f n(a/n zn-l 
n= 1 n. 

= f (a)~+ 1 zn = afa+ 1 (z). 
n. n= 0 

.. ( ) _.. () _ ~ (a)n - (a + l)n n 
Ja Z Ja+ 1 Z - ~ , Z 

n= 1 n. 

= f (a + l?n-l [a _ (a + n)] zn = _ f n(a + ~)n-l zn 
n= 1 n. n= 1 n. 

_ ~(a+1)nn+l_ .. () - -~ ,z - -Z J a+ 1 Z . 
n. n= 0 

(1.3.4) 

(1.3.5) 

Eliminating fa+ 1 (z) from (1.3.4) and (1.3.5), we obtain the first order differ­
ential equation 

(1.3.6) 

subject to the initial condition fa(O) = 1, which follows from the definition 
(1.3.3) of fa(z). Solving (1.3.6) under this condition immediately gives that 
fa(z) = (1 - z)-a for Izl < 1. 

Analogously, let us now set 

h ( ) - ~ (a; q)n n 
aZ-~( )z' 

n= 0 q; q n 
Izl < 1, Iql < 1. (1.3.7) 

Clearly, hqa (z) ----+ fa(z) as q ----+ 1. Since haq(z) is a q-analogue of fa+ 1 (z), we 
first compute the difference 

h ( ) _ h () = ~ (a; q)n - (aq; q)n n 
a Z aq Z ~ () Z 

n= 1 q; q n 
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= f (aq; q)n-l [1 - a - (1 - aqn)] zn 
n= 1 (q; q)n 

= -a f (1 - qn)(aq; q)n-l zn 
n= 1 (q; q)n 

__ ~ (aq; q)n-l n - _ h () 
- a ~ ( ) z - az aq Z , 

n= 1 q; q n-l 

giving an analogue of (1.3.5). Observing that 

!'(z) = lim J(z) - J(qz) 
q-+l (1 - q)z 

for a differentiable function J, we next compute the difference 

ha(z) - ha(qz) = f (a; q)n (zn _ qnzn) 
n= 1 (q; q)n 

= f (a;q)n zn = f (a;q)n+l zn+l 
n=l (q;q)n-l n=O (q;q)n 

= (1 - a)zhaq(z). 

Eliminating haq(z) from (1.3.8) and (1.3.10) gives 

1- az 
ha(z) = --ha(qz). 

1-z 
Iterating this relation n - 1 times and then letting n ----- 00 we obtain 

h () = (az;q)nh (n) 
aZ ( ) aqz z;q n 

= (az; q)oo ha(O) = (az; q)oo, 
(z; q)oo (z; q)oo 

(1.3.8) 

(1.3.9) 

(1.3.10) 

(1.3.11) 

(1.3.12) 

since qn _____ 0 as n _____ 00 and ha(O) = 1 by (1.3.7), which completes the proof 
of (1.3.2). 

One consequence of (1.3.2) is the product formula 

l¢o(a;-;q,z) l¢o(b;-;q,az) = l¢o(ab;-;q,z), (1.3.13) 

which is a q-analogue of (1 - z)-a(1- z)-b = (1 - z)-a-b. 
In the special case a = q-n, n = 0,1,2, ... , (1.3.2) gives 

l¢O(q-n;_;q,z) = (zq-n;q)n = (-ztq-n(n+l)/2(q/Z;q)n, (1.3.14) 

where, by analytic continuation, z can be any complex number. From now 
on, unless stated othewise, whenever q- j , q-k, q-m, q-n appear as numerator 
parameters in basic series it will be assumed that j, k, m, n, respectively, are 
nonnegative integers. 

If we set a = 0 in (1.3.2), we get 

00 zn 1 
l¢O(O;-;q,z) = L -( -. -) = ( . ) ,Izl < 1, 

n= 0 q, q n Z, q 00 

(1.3.15) 
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which is a q-analogue of the exponential function eZ • Another q-analogue of eZ 

can be obtained from (1.3.2) by replacing z by -z/a and then letting a ----700 

to get 
00 qn(n-l)/2 n 

ocPo(-; -; q, -z) = L (.) z = (-z; q)oo. 
n=O q,q n 

(1.3.16) 

Observe that if we denote the q-exponential functions in (1.3.15) and 
(1.3.16) by eq(z) and Eq(z), respectively, then eq(z)Eq( -z) = 1, eq-" (z) = 

Eq( -qz) by (1.2.24), and 

lim eq(z(l - q)) = lim Eq(z(l - q)) = eZ • 
q---+l- q---+l-

(1.3.17) 

In deriving q-analogues of various formulas we shall sometimes use the 
observation that 

Thus 

lim (qa z ; q)oo = (1 _ z)-a, Izl < 1, a real. 
q---+l- (z; q)oo 

(1.3.19) 

By analytic continuation this holds for z in the complex plane cut along the 
positive real axis from 1 to 00, with (1 - z)-a positive when z is real and less 
than 1. 

Let Do and \7 be the forward and backward q-difference operators, respec­
tively, defined by 

Dof(z) = f(qz) - f(z), \7 f(z) = f(q-l z) - f(z), (1.3.20) 

where we take 0 < q < 1, without any loss of generality. Then the unique 
analytic solutions of 

Do~~) = f(z), f( ) d \7g(z) - () o = 1 an \7z - g z , g(O) = 1, (1.3.21 ) 

are 

f(z) = eq(z(l - q)) and g(z) = Eq(z(l - q)). (1.3.22) 

The symmetric q-difference operator 6q is defined by 

(1.3.23) 

If we seek an analytic solution of the initial-value problem 

6q!(Z) = f(z), f(O) = 1, 
uqz 

(1.3.24) 

in the form 2:: 0 anzn, then we find that 

1 - q nl2 
an+ 1 = 1 n+ 1 q an, aO = 1, -q 

(1.3.25) 
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n = 0,1,2,... Hence, an = (1 - q)nq(n2-n)/4 /(q; q)n, and we have a third 
q-exponential function 

00 (1 _ )n (n2-n)/4 00 1 
eXPq(z) = L q( .q) zn = L -[ -. -]' zn 

n=O q,q n n=O n,u. 
(1.3.26) 

with q = e21ria . This q-exponential function has the properties 

(1.3.27) 

and it is an entire function of z of order zero with an infinite product represen­
tation in terms of its zeros. See Nelson and Gartley [1994]' and Atakishiyev 
and Suslov [1992a]. The multi-sheet Riemann surface associated with the q­
logarithm inverse function z = lnq(w) of W = eXPq(z) is considered in Nelson 
and Gartley [1996]. 

Ismail and Zhang [1994] found an extension of eXPq(z) in the form 

00 m 2 /4 
f(z) = L -q-- (aq1 -;=+z,aq1-;=-Z;q) bm, 

m=O (q;q)m m 
(1.3.28) 

which has the property 

8f(z) = f( ) 
8x(z) z , 8f(z) = f(z + 1/2) - f(z - 1/2), (1.3.29) 

where 

(1.3.30) 

with C = -abql/4/(1 - q) is the so-called q-quadmtic lattice, and a and b 
are arbitrary complex parameters such that labl < 1. In the particular case 
qZ = e-if}, 0 ~ () ~ Jr, X = cos (), the q-exponential function in (1.3.28) becomes 
the function 

00 m 2 /4 
"q (1-=.f) 1-= Of}) Eq(x;a,b) = ~ -(-.-)- q-2-ae' ,q-2-ae-';q bm. 
m=O q,q m m 

(1.3.31 ) 

Ismail and Zhang showed that 

lim Eq(x; a, b(l - q)) = exp[(l + a2 - 2ax)b], 
q--->l 

(1.3.32) 

and that Eq(x; a, b) is an entire function of x when labl < 1. From (1.3.32) they 
observed that Eq(x; -i, -it/2) is a q-analogue of ext. It is now standard to use 
the notation in Suslov [2003] for the slightly modified q-exponential function 

( 2 2) 00 m 2 /4 a . q 00 " q (1-= of) 1-= of} ) Eq(X; a) = ; 2 ~ --( -iar -iq-2-e', -iq-2-e-' ; q , 
(qa;q)oom=O(q;q)m m 

(1.3.33) 
which, because of the normalizing factor that he introduced, has the nice prop­
erty that Eq(O;a) = 1 (see Suslov [2003, p.17]). 
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1.4 Heine's transformation formulas for 2<PI series 

Heine [1847, 1878] showed that 

( ) (b, az; q)oo ( I ) 2<PI a,b;c;q,z = ( ) 2<PI C b,z;az;q,b, 
c, z; q 00 

(1.4.1) 

where Izl < 1 and Ibl < 1. To prove this transformation formula, first observe 
from the q-binomial theorem (1.3.2) that 

(cqn; q)oo = f (clb; q)m (bqn)m. 
(bqn; q)oo m= 0 (q; q)m 

Hence, for Izl < 1 and Ibl < 1, 

'" ( b.. ) _ (b; q)oo ~ (a; q)n(cqn; q)oo n 
2 '/'1 a, ,c, q, z - ( ) ~ ( ) ( ) z 

c; q 00 n= 0 q; q n bqn; q 00 

= (b; q)oo f (a; q)n zn f (clb; q)m (bqn)m 
(c;q)oo n=O (q;q)n m=O (q;q)m 

= (b; q)oo f (clb; q)m bm f (a; q)n (zqmt 
(c; q)oo m= 0 (q; q)m n= 0 (q; q)n 

= (b; q)oo f (clb; q)m bm (azqm; q)oo 
(c; q)oo m= 0 (q; q)m (zqm; q)oo 

(b, az; q)oo ( I ) = ( ) 2<PI C b,z;az;q,b 
c, z; q 00 

by (1.3.2), which gives (1.4.1). 
Heine also showed that Euler's transformation formula 

2FI (a, b; c; z) = (1 - z)c-a-b 2FI (c - a, c - b; c; z) (1.4.2) 

has a q-analogue of the form 

(abz I c; q)oo 
2<PI(a,b;c;q,z) = ( ) 2<PI (cia, clb; c; q,abzlc). 

z;q 00 

(1.4.3) 

A short way to prove this formula is just to iterate (1.4.1) as follows 

( ) (b, az; q)oo ( I ) 2<PI a,b;c;q,z = ( ) 2<PI C b,z;az;q,b 
c, z; q 00 

(1.4.4) 

(clb, bz; q)oo (I I ) = ( ) 2<PI abz c,b;bz;q,c b 
c, z; q 00 

(1.4.5) 

(abzlc; q)oo 
= ( ) 2<PI (cia, clb; c; q, abzlc). 

z;q 00 

(1.4.6) 
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1.5 Heine's q-analogue of Gauss' summation formula 

In order to derive Heine's [1847] q-analogue of Gauss' summation formula 
(1.2.11) it suffices to set z = e/ab in (1.4.1), assume that Ibl < 1, le/abl < 1, 
and observe that the series on the right side of 

( /) (b, e/b; q)oo ( / ) 
2¢1 a,b;e;q,e ab = ( / b ) I¢O e ab;-;q,b 

e, e a ; q 00 

can be summed by (1.3.2) to give 

( /) (e/a,e/b;q)oo 
2¢1 a,b;c;q,e ab = ( / b ) . 

c, e a ; q 00 

(1.5.1) 

By analytic continuation, we may drop the assumption that Ibl < 1 and require 
only that le/abl < 1 for (1.5.1) to be valid. 

For the terminating case when a = q-n, (1.5.1) reduces to 

A. ( -n b nib) (e/b;q)n 
2 '/'1 q ,; c; q, eq = ( ) . 

c;q n 
(1.5.2) 

By inversion or by changing the order of summation it follows from (1.5.2) that 

A. ( -n b ) (e/b;q)nbn 
2 '/'1 q ,; e; q, q = () . 

e;q n 
(1.5.3) 

Both (1.5.2) and (1.5.3) are q-analogues of Vandermonde's formula (1.2.9). 
These formulas can be used to derive other important formulas such as, for 
example, Jackson's [1910a] transformation formula 

A. ( b.. ) = (az; q)oo ~ (a, c/b; q)k (-b )k (~) 
2 '/'1 a, ,e, q, z ( ) ~ ( ) z q 

z; q 00 k= 0 q, e, az; q k 

(az; q)oo (/ ) = ( ) 2¢2 a,e b;c,az;q,bz . 
z;q 00 

(1.5.4) 

This formula is a q-analogue of the Pfaff-Kummer transformation formula 

2FI (a, b; e; z) = (1 - z)-a 2FI (a, e - b; e; z/(z - 1)). (1.5.5) 

To prove (1.5.4), we use (1.5.2) to write 



and hence 

1.6 Jacobi's triple product identity 

2¢1 (a, b; c; q, z) 

= f (a; q)k zk t (q-k, cjb; q)n (bqk) n 
k= 0 (q; qh n= 0 (q, c; q)n 

= f f (a; qh(cjb; q)n zk( -btqG) 
n= 0 k= n (q; q)k-n(q, c; q)n 

= ff (a;q)k+n(cjb;q)n(_bz)nZkq(~) 
n= 0 k= 0 (q; qh(q, c; q)n 

= f (a, cjb; q)n (-bz)nqG) f (aqn; q)k zk 
n=O (q,c;q)n k=O (q;qh 

= (az; q)oo f (a, cjb; q)n (-bztqG), 
(z;q)oo n=O (q,c,az;q)n 

15 

by (1.3.2). Also see Andrews [1973]. If a = q-n, then the series on the right 
side of (1.5.4) can be reversed (by replacing k by n - k) to yield Sears' [1951c] 
transformation formula 

2¢1 (q-n, b; c; q, z) 

= (~jb; r)n (bZ)n 3¢2(q-n, qjz, c-1ql-n; bc-1ql-n, 0; q, q). (1.5.6) 
c;q n q 

1.6 Jacobi's triple product identity, theta 
functions, and elliptic numbers 

Jacobi's [1829] well-known triple product identity (see Andrews [1971]) 
00 

(zq!,q!jz,q;q)oo= L (_lt qn2/2 zn, zyfO, 
n= -00 

can be easily derived by using Heine's summation formula (1.5.1). 

(1.6.1) 

First, set c = bzq! in (1.5.1) and then let b ---40 and a ---4 00 to obtain 

00 (_1)nqn2/2 1 L ( ) zn = (Zq2; q)oo. (1.6.2) 
n=O q; q n 

Similarly, setting c = zq in (1.5.1) and letting a ---4 00 and b ---400 we get 
00 2 qn zn 

~ (q,zq;q)n 
1 

(1.6.3) 
(zq; q)oo . 

Now use (1.6.2) to find that 

(zq!, q! jz; q)oo 
00 00 (_l)m+ nqCm2+ n2)/2 

= L L zm-n 
m= 0 n= 0 (q; q)m(q; q)n 
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00 (_l)n n2/2 00 k2 
_ '" q zn '" q qnk 
- ~ (q;q)n ~ (q,qn+ l;qh 

00 (-l)n n2/2 00 k2 
+ '" q -n '" q nk 
~ (q;q)n Z ~(q,qn+1;qhq· (1.6.4) 

Formula (1.6.1) then follows from (1.6.3) by observing that 

1 

An important application of (1.6.1) is that it can be used to express the 
theta functions (Whittaker and Watson [1965, Chapter 21]) 

00 

191 (x, q) = 2 L( _1)nq(n+ 1/2)2 sin(2n + l)x, (1.6.5) 
n= 0 

00 

192 (x, q) = 2 L q(n+ 1/2)2 cos(2n + l)x, (1.6.6) 
n= 0 

00 

193 (x,q) = 1 + 2 L qn2 cos2nx, (1.6.7) 
n= 1 

00 

194(x,q) = 1 + 2 L(-ltqn2 cos2nx (1.6.8) 
n= 1 

in terms of infinite products. Just replace q by q2 in (1.6.1) and then set z 
equal to qe2ix , _qe2ix , _e2ix , e2ix , respectively, to obtain 

00 

191 (x, q) = 2q1/4 sinx II (1 - q2n)(1 - 2ln cos 2x + q4n), (1.6.9) 
n= 1 

00 

192 (x, q) = 2q1/4 cos x II (1- q2n)(1 + 2q2n cos2x + q4n), (1.6.10) 
n= 1 

00 

193 (X, q) = II (1- q2n)(1 + 2q2n-1 cos2x + q4n-2), (1.6.11) 
n= 1 

and 
00 

194 (X, q) = II (1- q2n)(1_ 2q2n-1 cos2x + q4n-2). (1.6.12) 
n= 1 

It is common to write 19k (x) for 19k (x, q), k = 1, ... ,4. 
Since, from (1.6.9) and (1.6.10), 

(1.6.13) 

one can think of the theta functions 191 (x, q) and 192 (x, q) as one-parameter 
deformations (generalizations) of the trigonometric functions sin x and cos x, 
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respectively. This led Frenkel and Turaev [1995] to define an elliptic number 
[a; CT, T] by 

(1.6.14) 

where a is a complex number and the modular parameters CT and T are fixed 
complex numbers such that 1m (T) > ° and CT -I- m + nT for integer val­
ues of m and n, so that the denominator f)l (1[CT, e7riT) in (1.6.14) is never 
zero. Then, from (1.6.9) it is clear that [a; CT, T] is well-defined, [-a; CT, T] = 
-[a;CT,TJ, [1;CT,T] = 1, and 

. sin( 1[CTa) 
hm [a; CT, T] = . ( ) = [a;CT]. 

III T-tOO sIn 1[CT 
(1.6.15) 

Hence, the elliptic number [a; CT, T] is a one-parameter deformation of the 
trigonometric number [a; CT] and a two-parameter deformation of the number 
a. Notice that [a; CT, T] is called an "elliptic number" even though it is not an 
elliptic (doubly periodic and meromorphic) function of a. However, [a;CT,T] 
is a quotient of f)l functions and, as is well-known (see Whittaker and Wat­
son [1965, §21.5]), any (doubly periodic meromorphic) elliptic function can be 
written as a constant multiple of a quotient of products of f)l functions. The 
corresponding elliptic hypergeometric series are considered in Chapter 11. 

1. 7 A q-analogue of Saalschiitz's summation formula 

Pfaff [1797] discovered the summation formula 

(c - a)n(c - b)n 
3F2(a,b,-n;c,l+a+b-c-n;I)= (c)n(c-a-b)n' n=O,I, ... , (1.7.1) 

which sums a terminating balanced 3F2(1) series with argument 1. It was 
rediscovered by Saalschutz [1890] and is usually called Saalschiitz formula or 
the Pfaff-Saalschiitz formula; see Askey [1975]. To derive a q-analogue of 
(1.7.1), observe that since, by (1.3.2), 

(abzjc; q)oo = f (abjc; q)k zk 
(z;q)oo k=O (q;q)k 

the right side of (1.4.3) equals 

f f (abjc; q)k(cja, cjb; q)m (ab)m zk+ m, 

k= 0 m= 0 (q; qh(q, c; q)m C 

and hence, equating the coefficients of zn on both sides of (1.4.3) we get t (q-n, cja,cjb; q)j qj = (a,b;q)n . 
. (q,c,cql-njab;q)j (c,abjc;q)n 

J= 0 

Replacing a, b by cj a, cjb, respectively, this gives the following sum of a termi­
nating balanced 3 (P2 series 

( -n -I I-n ) (cja, cjb; q)n 3(P2 a,b,q ;c,abc q ;q,q = ( j b ) , n=O,I, ... , 
c, c a ; q n 

(1. 7.2) 



18 Basic hypergeometric series 

which was first derived by Jackson [1910a]. It is easy to see that (1.7.1) follows 
from (1.7.2) by replacing a, b, c in (1. 7.2) by qa, qb, qC, respectively, and letting 
q -+ 1. Note that letting a -+ 00 in (1.7.2) gives (1.5.2), while letting a -+ 0 
gives (1.5.3). 

1.8 The Bailey-Daum summation formula 

Bailey [1941] and Daum [1942] independently discovered the summation for­
mula 

,/, ( b' jb' _ jb) = (-q; q)oc,(aq, aq2 jb2; q2)00 
2'f'1 a, ,aq ,q, q ( jb _ jb' ) , aq , q ,q 00 

(1.8.1) 

which is a q-analogue of Kummer's formula 

r(1 + a - b)r(1 + ta) 
2FI(a,b;l+a-b;-I)= ( ) ( I ). (1.8.2) r 1 + a r 1 + 'ia - b 

Formula (1.8.1) can be easily obtained from (1.4.1) by using the identity 
(1.2.40) and a limiting form of (1.2.39), namely, (a; q)oo = (a, aq; q2)00, to 
see that 

2¢1 (a, b; aqjb; q, -qjb) 

(a, -q; q)oo ,/, (jb jb ) 
( j b _ jb') 2'f'1 q ,-q ;-q;q,a aq,q,qoo 

(a,-q;q)oo ~ (q2jb2;q2)n n 
= (aqjb, -qjb; q)oo ~ (q2; q2)n a 

(a, -q; q)oo (aq2 jb2; q2)00 
(aqjb, -qjb; q)oo (a; q2)00 

by (1.3.2) 

(-q; q)oo (aq, aq2 jb2; q2 )00 
(aqjb, -qjb; q)oo 

1.9 q-analogues of the Karlsson-Minton 
summation formulas 

Minton [1970] showed that if a is a negative integer and ml, m2, ... , mr are 
nonnegative integers such that -a 2: ml + ... + mT) then 

F [a, b, bl + ml , ... , br + mr . 1] 
r+ 2 r+ I b + 1, bl , ... , br ' 

r(b + 1)r(1 - a) (b l - b)ml ... (br - b)m r 

r(1 + b - a) (bdml ... (br)m r 

(1.9.1) 

where, as usual, it is assumed that none of the factors in the denominators 
of the terms of the series is zero. Karlsson [1971] showed that (1.9.1) also 
holds when a is not a negative integer provided that the series converges, i.e., 
if Re( -a) > ml + ... + mr - 1, and he deduced from (1.9.1) that 

F [a, bl + ml , ... , br + mr . 1] - 0 
r+1 r b b ,- , 

1, ... , r 
Re (-a) > ml + ... + mT) (1.9.2) 
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(1.9.3) 

These formulas are particularly useful for evaluating sums that appear as so­
lutions to some problems in theoretical physics such as the Racah coefficients. 
They were also used by Gasper [1981b] to prove the orthogonality on (0,27f) 
of certain functions that arose in Greiner's [1980] work on spherical harmonics 
on the Heisenberg group. Here we shall present Gasper's [1981a] derivation of 
q-analogues of the above formulas. Some of the formulas derived below will 
be used in Chapter 7 to prove the orthogonality relation for the continuous 
q-ultraspherical polynomials. 

Observe that if m and n are nonnegative integers with m ~ n, then 

'" (-n -m b ) (brqm; q)n -mn 
2'1-'1 q , q ; r; q, q = (b') q 

r,qn 

by (1.5.3), and hence 

'" [al, ... ,ar,brqm. ] 
r+ 1 'l-'r b b b' q, Z I,···, r-I, r 

~ (al, ... ,ar;q)n n~ (q-n,q-m;q)k mn+k 
= ~ Z ~ q 

(q,bl , ... ,br-I;q)n (q,br;q)k n= 0 k= 0 

= ff (al, ... ,ar;q)n(q-m;qh zn(_l)kqmn+k-nk+(~) 
(bl, ... ,br-I;q)n(q;q)n-k(q,br;q)k n= 0 k= 0 

~ (q-m,al, ... ,ar;qh( m)k _(k) 
= ~ -zq q 2 

k=O (q,bl, ... ,br;q)k 

[ alqk, ... ,arqk m-k] 
X r¢r-I b k b k;q,zq , Iq , ... , r-Iq Izl < 1. 

(1.9.4) 

This expansion formula is a q-analogue of a formula in Fox [1927, (1.11)] and 
independently derived by Minton [1970, (4)]. 

When r = 2, formulas (1.9.4), (1.5.1) and (1.5.3) yield 

¢ [a,b,b1qm. -I I-m] _ (q,bq/a;q)oo ¢ ( -m b'b' ) 
3 2 bq,bl ,q,a q - (bq,q/a;q)oo 2 1 q "I,q,q 

= (q,bq/a;q)oo(bl/b;q)mbm ( ) 
( / ) ( ) , 1.9.5 
bq, q a; q 00 bl ; q m 

provided that la-1ql-ml < 1. By induction it follows from (1.9.4) and (1.9.5) 
that if ml,"" mr are nonnegative integers and la-1ql-(m1+ ... + mr) I < 1, then 

'" [a,b,blqml, ... ,brqmr. -I 1-(m1+ ... +mr )] 
r+ 2 'l-'r+ 1 b b b ' q, a q q, 1,···, r 

= (q, bq/a; q)oo (bl /b; q)ml ... (br/b; q)mr bm1+ ... + mr 

(bq, q/a; q)oo (bl ; q)ml ... (br ; q)mr 
(1.9.6) 
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which is a q-analogue of (1.9.1). Formula (1.9.1) can be derived from (1.9.6) by 
replacing a, b, bl , ... , br by qa, qb, qb1 , ... , qbr , respectively, and letting q ----7 1. 

Setting br = b, mr = 1 and then replacing r by r + 1 in (1.9.6) gives 

'" [a,blqml, ... ,brqmr. -I -cm1+ ... +mr)] _ 0 I -I -Cm1+···+mr)1 1 
r+ I '/'r b b ' q, a q - , a q < , 

I, ... , r 

(1.9.7) 
while letting b ----700 in the case a = q-Cml+ ... + m r ) of (1.9.6) gives 

[q -Cm1+ ... +mr) b qml b qmr ] 
'" ' I , ... , r 1 

r+I'/'r b b ;q, 
I, ... , r 

(_I)ml+···+mr(. ) = ( ) q(q m)+"'+mrq-cml+"'+mrHml+"'+mr+I)/2, (1.9.8) 
bl ; q ml ... br ; q mr 

which are q-analogues of (1.9.2) and (1.9.3). Another q-analogue of (1.9.3) can 
be derived by letting b ----7 0 in (1.9.6) to obtain 

(1.9.9) 

when la-Iql-Cm1+···+mr)1 < 1. 

In addition, if a = q-n and n is a nonnegative integer then we can reverse 
the order of summation of the series in (1.9.6), (1.9.7) and (1.9.9) to obtain 

n 2 ml + ... + mn (1.9.10) 

[ 
-n b ml b mr ] '" q , I q , ... , rq. - 0 

r+ I '/'r b b ' q, q - , 
I, ... , r 

(1.9.11) 

and the following generalization of (1.9.8) 

'" [q-n,blqml, ... ,brqmr. 1] _ (_I)n(q;q)nq-nCn+I)/2 
r+ I '/'r b b ' q, - (b) (b) , I,···, r I;qml'" r;qmr 

(1.9.12) 

where n 2 ml + ... + mn which also follows by letting b ----7 00 in (1.9.10). 
Note that the b ----7 0 limit case of (1.9.10) is (1.9.11) when n > ml + ... + mn 
and it is the a = q-Cml+ ... + m r ) special case of (1.9.9) when n = ml + ... +mr . 

1.10 The q-gamma and q-beta functions 

The q-gamma function 

r ( ) = (q; q)oo (1 - )I-x 0 < < 1 
q x (x.) q , q , q , q 00 

(1.10.1) 
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was introduced by Thomae [1869] and later by Jackson [1904e]. Heine [1847] 
gave an equivalent definition, but without the factor (l-q)l-x. When x = n+ 1 
with n a nonnegative integer, this definition reduces to 

(1.10.2) 

which clearly approaches n! as q ---+ 1-. Hence f q (n + 1) tends to f( n + 1) = n! 
as q ---+ 1 -. The definition of f q (x) can be extended to I q I < 1 by using the 
principal values of qX and (1 - q)l-x in (1.10.1). 

To show that 
lim fq(x) = f(x) 

q---+I -
(1.10.3) 

we shall give a simple, formal proof due to Gosper; see Andrews [1986]. From 
(1.10.1), 

Hence 

00 (+I)X lim fq(x + 1) = II _n_ _n_ 
q---+I- n+x n 

n= I 

= xr(x) = r(x + 1) 

by Euler's product formula (see Whittaker and Watson [1965, §12.11]) and the 
well-known functional equation for the gamma function 

r(x + 1) = xr(x), r(1) = 1. (1.10.4) 

For a rigorous justification of the above steps see Koornwinder [1990]. From 
(1.10.1) it is easily seen that, analogous to (1.10.4), fq(x) satisfies the func­
tional equation 

1- qX 
f(x + 1) = -1- f (x), f(l) = 1. 

-q 
(1.10.5) 

Askey [1978] derived analogues of many of the well-known properties of the 
gamma function, including its log-convexity (see the exercises at the end of 
this chapter), which show that (1.10.1) is a natural q-analogue of f(x). 

It is obvious from (1.10.1) that fq(x) has poles at x = 0, -1, -2, .... The 
residue at x = -n is 

(1 _q)n+1 x+n 
lim (x + n) f (x) = --;--------:-----:----'---:--'----,-----------,----:-:- lim 

x---+-n q (1 - q-n)(1 - ql-n) ... (1 - q-I) x---+-n 1 _ qX+ n 

(1 _ q)n+ I 
(1.10.6) 
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The q-gamma function has no zeros, so its reciprocal is an entire function with 
zeros at x = 0, -1, -2, .... Since 

1 00 1- qn+ x 
r (x) = (1- q)x-l II 1 _ qn+ 1 ' 

q n= 0 

(1.10.7) 

the function 1 /r q (x) has zeros at x = -n ± 27rik / log q, where k and n are 
nonnegative integers. 

A q-analogue of Legendre's duplication formula 

r(2x)r (~) = 22x- 1r(x)r (x +~) (1.10.8) 

can be easily derived by observing that 

rq2(X)rq2(X+t) (q,q2;q2)00 (1_ q2)1-2x 
r q2 (t) (q2x , q2x+ 1 ; q2 ) 00 

= (q; q)oo (1 _ q2)1-2x = (1 + q)I-2xr (2x) 
(q2x;q)00 q 

and hence 

(1.10.9) 

Similarly, it can be shown that the Gauss multiplication formula 

r(nx)(27r)(n-l)/2 = nnx-!r(x)r (x + ~) ... r (x + n: 1 ) (1.10.10) 

has a q-analogue of the form 

rq(nx)rr (~) rr (~) ... rr (n: 1) 

= (1 + q + ... + qn-l tx-1rr(x)rr (x + ~) ... rr (x + n: 1) (1.10.11) 

with r = qn; see Jackson [1904e, 1905d]. The q-gamma function for q > 1 is 
considered in Exercise 1.23. For other interesting properties of the q-gamma 
function see Askey [1978] and Moak [1980a,b] and Ismail, Lorch and Muldoon 
[1986]. 

Since the beta function is defined by 

B( ) = r(x)r(y) 
X,y r(x+y)' (1.10.12) 

it is natural to define the q-beta function by 

(1.10.13) 



1.11 The q-integral 

which tends to B(x, y) as q ----+ 1-. By (1.10.1) and (1.3.2), 

B (x, y) = (1 _ q) (q, qX+ Y; q)oo 
q (qX,qY;q)oo 

= (1 - q) (q; q)oo f (qY; q)n qnx 
(qY;q)oo n=O (q;q)n 
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00 ( n+ 1 ) 

= (1 - q) L (q n+ Y: q) 00 qnx, 
n=O q ,qoo 

Re x, Re y > O. (1.10.14) 

This series expansion will be used in the next section to derive a q-integral 
representation for Bq(x, y). 

1.11 The q-integral 

Thomae [1869, 1870] and Jackson [1910c, 1951] introduced the q-integral 

11 f(t) dqt = (1 - q) ~ f(qn)qn 

and Jackson gave the more general definition 

lb f(t) dqt = 1b f(t) dqt - 1a f(t) dqt, 

where 

Jackson also defined an integral on (0, (0) by 

The bilateral q-integral is defined by 

100 f(t) dqt = (1 - q) f [f(qn) + f( _qn)] qn. 
-00 n= -00 

If f is continuous on [0, a], then it is easily seen that 

lim r f(t) dqt = fa f(t) dt 
q---+l io io 

(1.11.1) 

(1.11.2) 

(1.11.3) 

(1.11.4) 

(1.11.5) 

(1.11.6) 

and that a similar limit holds for (1.11.4) and (1.11.5) when f is suitably 
restricted. By (1.11.1), it follows from (1.10.14) that 

B ( ) 11 x-I (tq; q)oo d R 0 --I- 0 1 2 (1117) q x, y = t ( ) qt, ex> , y r ,- ,- , ... , .. 
o tqY;qoo 

which clearly approaches the beta function integral 

B(x, y) = 11 t x - 1 (1 - t)y-l dt, Re x, Re y > 0, (1.11.8) 
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as q ----+ 1-. Thomae [1869] rewrote Heine's formula (1.4.1) in the q-integral 
form 

( a b. c. ) _ fq(c) t b-I (tzqa,tq;q)cx; 
2¢1 q ,q ,q ,q,z - fq(b)fq(c-b) io t (tz,tqc-b;q)cx; dqt, (1.11.9) 

which is a q-analogue of Euler's integral representation 

2FI (a, b; c; z) = f(b)~~~ _ b) 11 tb- I (1 - W- b- I (1 - tz)-a dt, (1.11.10) 

where I arg(l- z)1 < 7r and Re c> Re b > O. 
The q-integral notation is, as we shall see later, quite useful in simplifying 

and manipulating various formulas involving sums of series. 

Exercises 

1.1 Verify the identities (1.2.30)-(1.2.40), and show that 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(aq-n; q)n = (qja; q)n ( _~) n q-G), 

( -k-n. ) = (qja;q)n+k (_~)n -nk-(~) 
aq ,q n (j) q , q a; q k q 

(qa!, -qa!; q)n 1 - aq2n 

(a!, -a!; q)n 1 - a ' 

(a;q)zn = (a!,-a!,(aq)!,-(aq)!;q)n' 

(a; q)n(qja; q)-n = (-atq(~), 
(q, -q, _q2; q2)cx; = 1. 

1.2 The q-binomial coefficient is defined by 

[n] (q;q)n 
k q - (q; q)k(q; q)n-k 

for k = 0,1, ... , n, and by 

(q!3+ I, q<>-!3+ I; q)cx; 

(q, q<>+ I; q)cx; 

for complex a and f3 when Iql < 1. Verify that 

(i) 

(ii) 

(iii) 
(q<>+ I; q)k 

(q;q)k ' 
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(iv) [ -kG L [ G + ~ - 1 L (_q-a)kq-(~), 
(v) [G: 1 L = [~L qk + [k ~ lL = [~L + [k ~ lL q<>+ I-k, 

n k 

(vi) (Z;q)n=2::[~] (-z)k q(2), 
k= 0 q 

when k and n are nonnegative integers. 

1.3 (i) Show that the binomial theorem 

(a+bt = t (~)akbn-k 
k= 0 

where n = 0,1, ... , has a q-analogue of the form 

(ab; q)n = t [~] bk(a; q)k(b; q)n-k 
k= 0 q 

= t [~] an-k(a; qh(b; q)n-k. 
k= 0 q 

(ii) Extend the above formula to the q-multinomial theorem 

(ala2 ... am+ I; q)n 

2:: [ n ] a~l a~l + k2 ... a~: ~2+ ... + krn 
k l , ... ,km 

0:Sklo···,O::;km, q 
kl +···+krn:Sn 

x (al; q)k1 (a2; q)k2 ... (am; q)krn (am+ I; q)n-(k1+ ... + krn ), 

where m = 1,2, ... , n = 0,1, ... , and 

is the q-multinomial coefficient. 

1.4 (i) Prove the inversion formula 

r¢s [al ' ... ' ar ; q, z] 
bl , ... ,bs 

(Xl (-I -I -I) = '"""' aI' ... ,ar ; q n 
~ ( -I b- I b- I -I ) n=oq 'I,···,s;q n 

(ii) By reversing the order of summation, show that 

A. [al' ... ' an q-n . ] 
r+I'Ps b b ,q,z 

1, ... , s 

25 
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when n = 0,1, .... 

(iii) Show that 

" [a1' ... ' ar+ 1 . z] 
r+ 1 'Pr b b' q, q 

1, ... , r 

(al, ... , ar+ 1; q)oo t z-1 (qt, b1 t, ... , brt; q)oo d 
= (l-q)(q,b1 , •.• ,br;q)00}o t (al t , ... ,ar+l t ;q)oo qt, 

when ° < q < 1, Re z > 0, and the series on the left side does not 
terminate. 

1.5 Show that 

(e,bqn;q)rn _ (b/e;q)n ~ (q-n,e;q)kqk ( k. ) 
() - ( ) ~ ( 1 / ) cq, q rn· b; q rn b; q n k= 0 q, eq -n b; q k 

1.6 Prove the summation formulas 

(i) 2¢I(q-n,ql-n;qb2;q2,q2) = (~:;.q2inq-(~), 
,q n 

( .. ) " ( /) (e/a; q)oo 
11 1 'PI a; e; q, e a = ( ) , 

e; q 00 

(iii) 2¢o(a, q-n; -; q, qn fa) = a-n, 

00 n 2 -n 2 

(iv) L -(q )2 = ( ) , 
n= 0 q; q n q; q 00 

(zp-l ;p-l)oo -1 
(v) l¢o(a;-;p,z) = ( -1 -1) , Ipl > 1, lazp 1<1, 

azp ;p 00 

( .) ( ) (a/e, b/e;p-l )00 I I 
VI 2¢1 a, b; e;p,p = (1/ b/. -1) , p > 1. e, a e,p 00 

1.7 Show that, for Izl < 1, 

( 2 ) ( ) (a2qz; q)oo 
2¢1 a ,aq;a;q,z = l+az ( ) . 

z;q 00 

1.8 Show that, when lal < 1 and Ibq/a2
1 < 1, 

2¢1 (a2, a2 /b; b; l, bq/a2) 

= (a2,q;f)~ [(b/~;q)oo + (-b/~;q)oo] . 
2(b, bq/ a ,q)oo (a, q)oo (-a, q)oo 

(Andrews and Askey [1977]) 

1.9 Let ¢(a, b, c) denote the series 2¢1 (a, b; e; q, z). Verify Heine's [1847] 
q-contiguous relations: 

. -I (l-a)(I-b) 
(1) ¢(a, b, eq ) - ¢(a, b, c) = ez ( )( ) ¢(aq, bq, cq), q-e l-e 

(ii) ¢(aq, b, c) - ¢(a, b, c) = az ~ = ~ ¢(aq, bq, eq), 
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... (l-b)(l-c/a) 2 
(m) ¢(aq, b, cq) - ¢(a, b, c) = az ( )( ) ¢(aq, bq, cq ), 

1-c 1-cq 
. 1 (1- b/aq) 

(IV) ¢(aq, bq- ,c) - ¢(a, b, c) = az 1 _ c ¢(aq, b, cq). 

1.10 Denoting 2¢1 (a, b; c; q, z), 2¢1 (aq±l, b; c, q, z), 2¢1 (a, bq±l; c; q, z) 
and 2¢1 (a, b; cq±l; q, z) by ¢, ¢(aq±I), ¢(bq±l) and ¢(cq±I), respectively, 
show that 

(i) b(l - a)¢(aq) - a(l - b)¢(bq) = (b - a)¢, 
(ii) a(l - b/c)¢(bq-l) - b(l - a/c)¢(aq-l) = (a - b)(l - abz/cq)¢, 

(iii) q(l - a/c)¢(aq-l) + (1 - a)(l - abz/c)¢(aq) 
= [1 + q - a - aq/c + a2 z(l - b/a)/c]¢, 

(iv) (1 - c)(q - c) (abz - c)¢(cq-l) + (c - a)(c - b)z¢(cq) 
= (c - l)[c(q - c) + (ca + cb - ab - abq)z]¢. 

(Heine [1847]) 

1.11 Let g(e;A,/-l,v) = (AeiO,/-lV;q)oo 2¢1(/-le- iO ,ve-iO ;/-lv;q, AeiO ). Prove that 
g(e; A, /-l, v) is symmetric in A, /-l, v and is even in e. 

1.12 Let Vq be the q-derivative operator defined for fixed q by 

V J(z) = J(z) - J(qz) 
q (1 - q)z ' 

and let V~u = Vq(D~-IU) for n = 1,2, .... Show that 

(i) lim VqJ(z) = dd J(z) if J is differentiable at z, 
q---+l z 

( .. ) 'T"In rI-. (b ) (a, b; q)n rI-. ( n b n n ) 
11 Vq 2'/-'1 a, ;c;q,z = ( ) ( ) 2 '/-'1 aq , q ;cq ;q,z , c; q n 1 - q n 

( ... ) 'T"In { (z; q)oo rI-. (b )} 
m Vq (abz/c;q)oo 2'/-'1 a, ;c;q,z 

_ (c/a,c/b;q)n (ab)n (zqn;q)oo ¢ ( b' n. n) 
- (c; q)n(1- q)n C (abz/c; q)oo 2 1 a, ,cq ,q, zq . 

(iv) Prove the q-Leibniz formula 

V;[J(z)g(z)] = ~ [~] q V;-k J(zqk)V;g(z). 

1.13 Show that u(z) = 2¢1 (a, b; c; q, z) satisfies (for Izl < 1 and in the formal 
power series sense) the second order q-differential equation 

z(c _ abqz)V2 u + [1 - c + (1 - a)(l - b) - (1 - abq) z] V u 
q 1-q 1-q q 

(l-a)(l-b) 
- (1 _ q)2 u = 0, 

where Vq is defined as in Ex. 1.12. By replacing a, b, c, respectively, by 
qa, qb, qC and then letting q ----+ 1- show that the above equation tends to 
the second order differential equation 

z(l - z)v" + [c - (a + b + l)z]v' - abv = 0 



28 Basic hypergeometric series 

for the hypergeometric function v(z) = 2F1 (a, b; c; z), where Izl < 1. 
(Heine [1847]) 

1.14 Let Ixl < 1 and let eq(x) and Eq(x) be as defined in §1.3. Define 

. eq(ix) - eq( -ix) 00 (_I)nx2n+ 1 

Slllq (x) = 2 . = L (. ) , 
~ n= 0 q, q 2n+ 1 

( ) _ eq(ix) +eq(-ix) _ ~ (_I)nx2n 
COSq x - 2 - ~ (.) . 

n= 0 q, q 2n 

Also define 

S. () Eq(ix) - Eq( -ix) 
lllq x = 2i ' 

Show that 

(i) 

(ii) 

(iii) 

(iv) 

eq(ix) = cosq(x) + i sinq(x), 

Eq(ix) = Cosq(x) + iSinq(x), 

sinq(x)Sinq(x) + cosq(x)Cosq(x) = 1, 

sinq(x)Cosq(x) - Sinq(x) cosq(x) = 0. 

For these identities and other identities involving q-analogues of sin x and 
cosx, see Jackson [1904a] and Hahn [1949c]. 

1.15 Prove the transformation formulas 

(i) A. [q-n,b. ] _ (bzq-n/c;q)oo A. [q-n,c/b,o. ] 
2'/'1 C' q, Z - (bz/c; q)oo 3 '/'2 c, cq/bz ,q, q , 

(ii) A. [q-n,b. ] _ (c/b;q)nbn A. [q-n,b,q/z. /] 
2'/'1 C ,q,z - (C;q)n 3'/'1 bq1-n/C ,q,z C , 

(iii) [q-n,b. ] _ (c/b;q)n [q-n,b,bzq-n/C. ] 
21;1 ,q,z - (.) 31;2 b 1-n/ ° ,q,q . 

C C, q n q C, 

(See Jackson [1905a, 1927]) 

1.16 Show that 

1.17 Show that 

t (a, b; q)k (_ab)n-kq(n-k)(n+ k-1)/2 
k=O (q;q)k 

n (-b)kq(~) 
= (a; q)n+ 1 ~ (q; qh(q; q)n-k(1 _ aqn-k)· (Carlitz [1974]) 
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1.18 Show that 

(i) 

(ii) 

(iii) 

(c;q)oo 1¢I(a;c;q,z) = (z;q)oo 1¢I(az/c;z;q,c), 
and deduce that 1¢1(-bq;O;q,-q) = (-bq2;q2)00/(q;q2)00, 

(z;q)oo 2¢I(a,0;c;q,z) = (az;q)oo 1¢2(a;c,az;q,cz), 

f ((a;2~)n) qG)(at/z)n 2¢I(q-n,a;ql-n/a;q, qz2/a) 
n= 0 q, a ,q n 

= (-zt;q)oo 2¢I(a,a/z2;a2;q,-zt), Iztl < 1. 

1.19 Using (1.5.4) show that 

(i) A.. [a, q/a. -b] = (ab, bq/a; q2)00 
2'1-'2 -q, b ,q, (b; q)oo ' 

(ii) [ a2,b2 ] (a2q,b2q;q2)00 
2¢2 b 1 b 1 ; q, -q = . a q2,-a q2 (q,a2b2q;q2)00 

(Andrews [1973]) 

1.20 Prove that if Re x > 0 and 0 < q < 1, then 

(i) 

(ii) 

1.21 For 0 < q < 1 and x > 0, show that 

d2 2 00 qn+ x 
dx2 logfq(x) = (logq) ~ (1- qn+ x)2' 

which proves that log f q (x) is convex for x > 0 when 0 < q < 1. 

29 

1.22 Conversely, prove that if f(x) is a positive function defined on (0, oo)which 
satisfies 

1- qX 
f(x + 1) = --f(x) for some q, 0 < q < 1, 

l-q 

f(l) = 1, 

and logf(x) is convex for x > 0, then f(x) = fq(x). This is Askey's 
[1978] q-analogue of the Bohr-Mollerup [1922] theorem for r(x). For two 
extensions to the q > 1 case (with f q (x) defined as in the next exercise), 
see Moak [1980b]. 

1.23 For q > 1 the q-gamma function is defined by 

f ()= (q-I;q-I)oo( _1)I-X x(x-I)/2 
q X (q-x;q-I)oo qq. 
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Show that this function also satisfies the functional equation (1.10.5) and 
that rq(x) ----t r(x) as q ----t 1+. Show that for q > 1 the residue of rq(x) 
at x = -n is 

(n+ 1) (q _ l)n+ 1q 2 

(q; q)n logq 

1.24 Jackson [1905a,b,el gave the following q-analogues of Bessel functions: 

(qv+ 1. q) 
J~l) (x; q) = ( ') 00 (x/2)V 2¢1 (0, 0; qV+ 1; q, -x2/4), 

q;q 00 
(qv+ 1. q) ( x2qv+ 1) 

J~2) (x; q) = (q; ;)0000 (x/2t 0¢1 -; qV+ 1; q, --4- , 

(qv+ 1. q) 
J~3)(x;q) = ( \ 00 (x/2t 1¢1(0;qv+1;q,qx2/4), 

q;q 00 

where 0 < q < 1. The above notations for the q-Bessel functions are due 
to Ismail [1981, 1982, 2003cl. 
Show that 

J~2)(x;q) = (-x2/4;q)ooJ~1)(x;q), Ixl < 2, (Hahn [1949c]) 

and 
lim J~k)(x(l- q);q) = Jv(x), 
q--+1 k = 1,2,3. 

1.25 For the q-Bessel functions defined as in Exercise 1.24 prove that 

(i) qV ik) (x· q) = 2(1 - qV) fk) (x· q) _ ik) (x· q) k = 1 2· 
v+ 1 , X v' v-I" , , 

(ii) J~l) (xq!; q) = qv/2 (J~l) (x; q) + ~J~~ 1 (x; q)) ; 

(iii) J~l)(xq!;q) = q-v/2 (J~l)(x;q) - ~J~~l(X;q)). 

(iv) qV+ 1 J~~ 1 (xq1/2; q) = 2(1 - qV) J~3) (x; q) - J~~l (x; q). 
X 

1.26 (i) Following Ismail [1982]' let 

fv(x) = J~l) (x; q)J£12 (xq!; q) - J£12 (x; q)J~l) (xq!; q). 

Show that 

and deduce that, for non-integral v, 

fv(x) = q-v/2(qv, q1-v; q)oo/(q, q, _x2 /4; q)oo. 

(ii) Show that 

9v(qX) + (x2 /4 - qV - q-v)9v(X) + 9v(xq-1) = 0 
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with gl/(x) = J~3)(xql//2;q2) and deduce that 

( 21/ 1-21/. 2) 
() ( -1 ) () ( -1) _ q , q ,q 00 1/( 1/-1) 

gl/ X g-I/ xq - g-I/ X gl/ xq - (2 2. 2) q . 
q ,q ,q 00 

(Ismail [2003c]) 

1.27 Show that 
00 

n= -CX) 

00 

Both of these are q-analogues of the generating function 

00 

L t n In(x) = ex(t-C 1 )/2. 

n= -CX) 
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1.28 The continuous q-Hermite polynomials are defined in Askey and Ismail 
[1983] by 

H ( I ) - ~ (q; q)n i(n-2k)IJ 
nxq-L..J( )( ) e , 

k= 0 q; q k q; q n-k 

where x = cos B; see Szego [1926]' Carlitz [1955, 1957a, 1958, 1960] and 
Rogers [1894, 1917]. Derive the generating function 

~ Hn(xlq) n 1 f:'o (q; q)n t = (teiIJ, te-iIJ; q)oo' It I < 1. (Rogers [1894]) 

1.29 The continuous q-ultraspherical polynomials are defined in Askey and Is­
mail [1983] by 

C ( . (31 ) - ~ ((3; q)k((3; q)n-k i(n-2k)IJ 
n x, q - L..J ( ) ( ) e , 

k= 0 q; q k q; q n-k 

and 

00 n ((3te iIJ , (3te- iIJ ; q)oo 
'" Cn(x; (3lq)t = ( ·IJ -"IJ) ,It I < 1. (Rogers [1895]) 
L..J te' te ' . q n=O ' ,00 
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1.30 Show that if ml , ... ,mr are nonnegative integers, then 

1.31 Let ~b denote the q-difference operator defined for a fixed q by 

~bJ(Z) = bJ(qz) - J(z). 

Then ~1 is the ~ operator defined in (1.3.20). Show that 

~bXn = (bqn - 1 )xn 

and, if 

() (al,"" ar; q)n (_1)(1+ s-r)nq(l+ s-r)n(n-l)/2 zn, 
vn z = ( ) q,b1 ,···,bs;q n 

then 
(~~bdq~b2/q'" ~bs/q)Vn(z) 

= z(~al ~a2 ... ~aJVn-l (zql+ s-r), n = 1,2, ... 

Use this to show that the basic hypergeometric series 

v(z) = r¢s(al, ... , ar; b1,···, bs; q, z) 

satisfies (in the sense of formal power series) the q-difference equation 

(~~bl/q~b2/q'" ~bs/q)V(z) = Z(~al ... ~ar)v(zql+ s-r). 

This is a q-analogue of the formal differential equation for generalized 
hypergeometric series given, e.g. in Henrici [1974, Theorem (1.5)] and 
Slater [1966, (2.1.2.1)]. Also see Jackson [191Od, (15)]. 

1.32 The little q-Jacobi polynomials are defined by 

Pn(x; a, b; q) = 2¢1 (q-n, abqn+ 1; aq; q, qx). 

Show that these polynomials satisfy the orthogonality relation 

f ~b~; ql j (aq)j Pn (qj; a, b; q)Pm( qj; a, b; q) 
j= 0 q, q J 

{ 
0, 

= (q, bq; q)n(1- abq) (aqt (abl; q)= 
(aq,abq;q)n(l-abq2n+l) (aq;q)= ' 

if m =I- n, 

if m = n. 



Exercises 

(Andrews and Askey [1977 ]) 

1.33 Show for the above little q-Jacobi polynomials that the formula 

holds with 

n 

Pn(x; c, d; q) = L ak,nPk(X; a, b; q) 
k= 0 

33 

__ k (k~l)(q-n,aq,cdqn+l;q)k [qk-n,Cdqn+k+l,aqk+l. ] 
ak,n - ( 1) q ( b k+I.) 3(Pl cqk+1 abq2k+2 ,q,q. q,cq,a q ,q k , 

(Andrews and Askey [1977]) 

1.34 (i) If m, ml, m2, ... , mr are arbitrary nonnegative integers and 
la- Iqm+l-(m1+···+mr)1 < 1, show that 

[
a b b qml b qmr ] A.. ' ,I , ... , r . a-I m+I-(ml+···+mr) 

r+ 2 'f'r+ I b 1+ m b b' q, q q ,I, ... , r 

= (q, bq/a; q)oo(bq; q)m(bl /b; q)ml ... (br/b; q)mr bm1+ ... + mr-m 
(bq, q/a; q)oo(q; q)m(bl ; q)ml ... (br ; q)mr 

[ 
q-m, b, bq/bl , ... ,bq/br ] 

X r+ 2 ¢r+ I b / b I -ml /b b I-mr /b ; q, q ; q a, q I,···, q r 

(ii) if ml, m2, ... , mr are nonnegative integers and la-Iql-(m1+ ... + mr) 1< 
1, Icql < 1, show that 

A.. ' ,I , ... , r . a-II-(m1+···+mr) [
a b b qml b qmr ] 

r+ 2 'f'r+ I b b b ' q, q 
cq, I,···, r 

= (bq/a, cq; q)oo (b l /b; q)ml ... (br/b; q)mr bm1+ ... + mr 
(bcq, q/ a; q)oo (b l ; q)ml ... (br ; q)mr 

[ 
c- I , b, bq/bl , ... ,bq/br ] 

X r+ 2 ¢r+ I b / b I -ml /b b I -m /b ; q, cq . q a, q I , ... , q r r 

(Gasper [1981a]) 

1.35 Use Ex. 1.2(v) to prove that if x and yare indeterminates such that 
xy = qyx, q commutes with x and y, and the associative law holds, then 

(See Cigler [1979], Feinsilver [1982]' Koornwinder [1989], Potter[1950]' 
Schiitzenberger [1953], and Yang [1991]). 

1.36 Verify that if x and yare indeterminates satisfying the conditions in 
Ex. 1.35, then 

(i) eq(y)eq(x) = eq(x + y), eq(x)eq(y) = eq(x + y - yx); 

(ii) Eq(x)Eq(y) = Eq(x + y), Eq(y)Eq(x) = Eq(x + y + yx). 
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(Fairlie and Wu [1997]; Koornwinder [1997], where q-exponentials with 
q-Heisenberg relations and other relations are also considered.) 

1.37 Show that 

(a2;q2)= { [_qe2iO,_qe-2iO 2 2] 
Eq(z;a) = ( 2. 2) 2<P! ;q ,a 

qa ,q = q 

with Z = cose. 

2q!/4 
+ --acose 2<P! 

l-q 

1.38 Extend Jacobi's triple product identity to the transformation formula 

1+ f)-ltq(~)(an+bn) = (q,a,b;q)=f (ab/q;q)znqn. 
n=! n=O (q,a,b,ab;q)n 

Deduce that 

= = (.) n 
1 2 ~ n 2n2 ( ) ( 2) ~ -a, q 2nq + ~ a q = q; q = aq; q = ~ ( . ) ( . 2) . 

n= ! n= 0 q, -aq, q n aq, q n 

(Warnaar [2003a]) 

Notes 

§§1.1 and 1.2 For additional material on hypergeometric series and orthog­
onal polynomials see, e.g., the books by Erdelyi [1953], Rainville [1960], Szego 
[1975], Whittaker and Watson [1965], Agarwal [1963], Carlson [1977], T.S. Chi­
hara [1978], Henrici [1974], Luke [1969], Miller [1968], Nikiforov and Uvarov 
[1988], Vilenkin [1968], and Watson [1952]. Some techniques for using sym­
bolic computer algebraic systems such as Mathematica, Maple, and Macsyma 
to derive formulas containing hypergeometric and basic hypergeometric se­
ries are discussed in Gasper [1990]. Also see Andrews [1984d, 1986, 1987b], 
Andrews, Crippa and Simon [1997], Andrews and Knopfmacher [2001], An­
drews, Knopfmacher, Paule and Zimmermann [2001]' Andrews, Paule and 
Riese [2001a,b], Askey [1989f, 1990], Askey, Koepf and Koornwinder [1999], 
Baing and Koepf [1999], Garoufalidis [2003], Garoufalidis, Le and Zeilberger 
[2003], Garvan [1999], Garvan and Gonnet [1992]' Gosper [2001], Gosper and 
Suslov [2000], Koepf [1998], Koornwinder [1991b, 1993a, 1998], Krattenthaler 
[1995b], Paule and Riese [1997], Petkovsek, Wilf and Zeilberger [1996], Riese 
[2003], Sills [2003c], Wilf and Zeilberger [1990], and Zeilberger [1990b]. 

§§1.3-1.5 The q-binomial theorem was also derived in Jacobi [1846]' 
along with the q-Vandermonde formula. Bijective proofs of the q-binomial 
theorem, Heine's 2<P! transformation and q-analogue of Gauss' summation for­
mula, the q-Saalschiitz formula, and of other formulas are presented in Joichi 
and Stanton [1987]. Rahman and Suslov [1996a] used the method of first or­
der linear difference equations to prove the q-binomial and q-Gauss formulas. 
Bender [1971] used partitions to derive an extension of the q-Vandermonde 



Notes 35 

sum in the form of a generalized q-binomial Vandermonde convolution. The 
even and odd parts of the infinite series on the right side of (1.3.33) appeared 
in Atakishiyev and Suslov [1992a], but without any explicit reference to the 
q-exponential function. Also see Suslov [1998-2003] and the q-convolutions in 
Carnovale [2002], Carnovale and Koornwinder [2000], and Rogov [2000]. 

§1.6 Other proofs of Jacobi's triple product identity and/or applications 
of it are presented in Adiga et al. [1985], Alladi and Berkovich [2003], An­
drews [1965], Cheema [1964], Ewell [1981]' Gustafson [1989], Joichi and Stan­
ton [1989], Kac [1978, 1985], Lepowsky and Milne [1978], Lewis [1984]' Mac­
donald [1972], Menon [1965], Milne [1985a], Sudler [1966], Sylvester [1882]' 
and Wright [1965]. Concerning theta functions, see Adiga et al. [1985], Askey 
[1989c], Bellman [1961]' and Jensen's use of theta functions in P6lya [1927] to 
derive necessary and sufficient conditions for the Riemann hypothesis to hold. 

§1. 7 Some applications of the q-Saalschiitz formula are contained in Car­
litz [1969b] and Wright [1968]. 

§1.9 Formulas (1.9.3) and (1.9.8) were rediscovered by Gustafson [1987a, 
Theorems 3.15 and 3.18] while working on multivariable orthogonal polynomi­
als. 

§1.11 Also see Jackson [1917, 1951] and, for fractional q-integrals and 
q-derivatives, AI-Salam [1966] and Agarwal [1969b]. Toeplitz [1963, pp. 53-55] 
pointed out that around 1650 Fermat used a q-integral type Riemann sum to 
evaluate the integral of xk on the interval [0, b]. AI-Salam and Ismail [1994] 
evaluated a q-beta integral on the unit circle and found corresponding systems 
of biorthogonal rational functions. 

Ex.1.2 The q-binomial coefficient [~L' which is also called the Gaus­

sian binomial coefficient, counts the number of k dimensional subspaces of an 
n dimensional vector space over a field GF(q), q a prime power (Goldman and 
Rota [1970]), and it is the generating function, in powers of q, for partitions into 
at most k parts not exceeding n - k (Sylvester [1882]). It arises in such diverse 
fields as analysis, computer programming, geometry, number theory, physics, 
and statistics. See, e.g., Aigner [1979], Andrews [1971a, 1976], M. Baker and 
Coon [1970], Baxter and Pearce [1983], Berman and Fryer [1972], Dowling 
[1973], Dunkl [1981]' Garvan and Stanton [1990], Handa and Mohanty [1980], 
Ihrig and Ismail [1981]' Jimbo [1985, 1986], van Kampen [1961]' Kendall and 
Stuart [1979, §31.25]' Knuth [1971, 1973], P6lya [1970], P6lya and Alexander­
son [1970], Szego [1975, §2.7]' and Zaslavsky [1987]. Sylvester [1878] used the 
invariant theory that he and Cayley developed to prove that the coefficients of 

the Gaussian polynomial [~L = '2;ajqj are unimodal. A constructive proof 

was recently given by O'Hara [1990]. Also see Bressoud [1992] and Zeilberger 

[1989a,b, 1990b]. The unimodality of the sequence ([~] q : k = 0,1, ... ,n) is 

explicitly displayed in Aigner [1979, Proposition 3.13], and Macdonald [1995, 
Example 4 on p. 137]. 

Ex.1.3 Cigler [1979] derived an operator form ofthe q-binomial theorem. 
MacMahon [1916, Arts. 105-107] showed that if a multiset is permuted, then 
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the generating function for inversions is the q-multinomial coefficient. Also see 
Carlitz [1963a], Kadell [1985a], and Knuth [1973, p. 33, Ex. 16]. Gasper derived 
the q-multinomial theorem in part (ii) several years ago by using the q-binomial 
theorem and mathematical induction. Andrews observed in a 1988 letter that it 
can also be derived by using the expansion formula for the q-Lauricella function 
<PD stated in Andrews [1972, (4.1)] and the q-Vandermonde sum. Some sums 
of q-multinomial coefficients are considered in Bressoud [1978, 1981c]. See also 
Agarwal [1953a]. 

Ex.1.8 Jain [1980c] showed that the sum in this exercise is equivalent to 
the sum of a certain 2'I/J2 series, and summed some other 2'I/J2 series. 

Ex. 1.10 Analogous recurrence relations for 1 <PI series are given in Slater 
[1954c]. 

Exercises 1.12 and 1.13 The notations ilq , fJ q , and Dq are also employed 
in the literature for this q-derivative operator. We employed the script 'Dq op­
erator notation to distinguish this q-derivative operator from the q-derivative 
operator defined in (7.7.3) and the q-difference operator defined in Ex. 1.31. 
Additional results involving q-derivatives and q-difference equations are con­
tained in Adams [1931]' Agarwal [1953d], Andrews [1968, 1971a], Bowman 
[2002]' Carmichael [1912]' Di Vizio [2002, 2003], Faddeev and Kashaev [2002]' 
Faddeev, Kashaev and Volkov [2001], Hahn [1949a,c, 1950, 1952, 1953], Is­
mail, Merkes and Styer [1990], Jackson [1905c, 1909a, 1910b,d,e], Miller [1970], 
Mimachi [1989], Sauloy [2003], Starcher [1931]' and Trjitzinsky [1933]. For 
fractional q-derivatives and q-integrals see Agarwal [1969b] and Ai-Salam and 
Verma [1975a,b]. Some "q-Taylor series" are considered in Jackson [1909b,c] 
and Wallisser [1985]. A q-Taylor theorem based on the sequence {<Pn(x)}~o 
with <Pn(x) = (aeiO,aciO;q)n, x = cosO, was obtained by Ismail and Stanton 
[2003a,b] along with some interesting applications. 

Ex.1.14 For q-tangent and q-secant numbers and some of their proper­
ties, see Andrews and Foata [1980] and Foata [1981]. A discussion of 
q-trigonometry is given in Gosper [2001]. See also Bustoz and Suslov [1998] 
and Suslov [2003]. 

Exercises 1.20-1.23 Ismail and Muldoon [1994] studied some inequalities 
and monotonicity properties of the gamma and q-gamma functions. 

Ex. 1.22 Also see Artin [1964, pp. 14-15]. A different characterization of 
fq is presented in Kairies and Muldoon [1982]. 

Exercises 1.24-1.27 Other formulas involving q-Bessel functions are con­
tained in Jackson [1904a-d, 1908], Ismail and Muldoon [1988], Rahman [1987, 
1988c, 1989b,c], and Swarttouw and Meijer [1994]. It was pointed out by Is­
mail in an unpublished preprint in 1999 (rewritten for publication as Ismail 

[2003c]) that J~3) (x; q) was actually introduced by Jackson [1905a], contrary 
to the claim in Swarttouw [1992] that a special case of it was first discovered 
by Hahn [1953] and then in full generality by Exton [1978]. 

Ex.1.28 See the generating functions for the continuous q-Hermite poly­
nomials derived in Carlitz [1963b, 1972] and Bressoud [1980b], and the appli­
cations to modular forms in Bressoud [1986]. An extension of these q-Bessel 
functions to a q-quadratic grid is given in Ismail, Masson and Suslov [1999]. 
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Ex.1.32 Masuda et al. [1991] showed that the matrix elements that arise 
in the representations of certain quantum groups are expressible in terms of 
little q-J acobi polynomials, and that this and a form of the Peter-Weyl theorem 
imply the orthogonality relation for these polynomials. Pade approximants for 
the moment generating function for the little q-Jacobi polynomials are em­
ployed in Andrews, Goulden and D.M. Jackson [1986] to explain and extend 
Shank's method for accelerating the convergence of sequences. Pade approxi­
mations for some q-hypergeometric functions are considered in Ismail, Perline 
and Wimp [1992]. 




