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Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his fa-
mous memoir on prime numbers. Its explicit formulation was given by Cahen
(1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate discus-
sion of the Mellin transform and its inversion formula.
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368 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F O} =0 = o= [ gl (8:2.1)
yfl{c(k)}zg(g):\/%_ﬁ / G (k) (8.2.2)

Making the changes of variables exp(§) =z and ik=c — p, where ¢ is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip —ic) = % /xpfcflg(log x)dz, (8.2.3)
0
1 c+100
g(logz) = Wir / 2" PG(ip — ic)dp. (8.2.4)

1
We now write —— x~ °g(logz) = f(z) and G(ip —ic)= f(p) to define the
V2T

Mellin transform of f(x) and the inverse Mellin transform as

A {f(@)} = F(p) = / 77 f (), (8.2.5)
’ 1 c+ioco
M)} = () =5~ / 277 f(p)dp, (8.2.6)

where f(z) is a real valued function defined on (0, c0) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f(p)=.# [f(z),p]. Obviously, .# and .# ~! are linear
integral operators.

Example 8.2.1 (a) If f(x) =e ", where n > 0, then

oo

MY = F(p) = / e,

0
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which is, by putting nx =t,

oo

1 r
= 1 *fdt—ﬁ. (8.2.7)
T e npP
0

(b) If f(z)= _'1_ then

1 ~ 7 _ dx
%{1+x}:f(p):/xp 1'1+x’
0

t
which is, by substituting = = 1 ort= ,

1
=/t”_1(1—U“‘”"ldt:B(p,l—p)=F(p)F(1—p),
0

which is, by a well-known result for the gamma function,
= cosec(pm), 0<Re(p) < 1. (8.2.8)

(c) If f(z)=(e* —1)7L, then

o0

1 ~ — 1
///{ez_l}Zf(P):/ﬂf 1em—_1d$7

0

() 1 jo%s) 1
which is, by using ngoe_m === and hence, ; e "= pray

— r — —nx - F p

=3 [erteran= Y- B o rg)c) (5.29)
n=17 n=1 n
=1

where ((p Z n_ (Rep>1) is the famous Riemann zeta function.
(d) If f(z) T then

xp71672nxdx
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_ QZ L'(p) =271 (p) Z L =21"PT(p)¢(p). (8.2.10)
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(e) If f(z) = - :_ s then

1 -
a{ =02 e o (5.2.11)

This follows from the result

1 1] 2
e —1 er41]| e2o—1
combined with (8.2.9) and (8.2.10).

1
M {;}Z/xp_l(l—l—a:)_"da:
(L+a)" ’
0
which is, by putting a::L or t= x ,
1—1t 1+

1
/tp‘l(l — )" Pt
0

L(p)L'(n—p)
=B —p)= 8.2.12
(p;n—p) Ty ( )
where B(p, q) is the standard beta function.
Hence,
- I'(n)
HT(p)T(n — =—"
A AT (P)C(n—p)} D
(g) Find the Mellin transform of cos kz and sin kz.
It follows from Example 8.2.1(a) that
i I'(p) _T(p) pr . opm
ikx) _ r- _ -
M e ] = e ke (cos 5 —isinTg )
Separating real and imaginary parts, we find
A [coskz] = k7P T'(p) cos (%p) , (8.2.13)
A [sinkz] = k7P T'(p) sin (%p) . (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of #P~1. Result (8.2.13) can be written as

o0

- L'(p) mp
p—1 _

/x coskx dx = o cos( 2).
0
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7. {@}zy(g)

Or, equivalently,

Or,
_ 2 T'(p) ™
T p—1y _
F 2P} = — cos( 5 ) . (8.2.15)
Similarly,
_ 2 I'(p) . (mp
p—11
Fs{aP7 ) = i sm( 5 ) . (8.2.16)
1

8.3 Basic Operational Properties of Mellin Transforms
If #{f(x)}= f (p), then the following operational properties hold:
(a) (Scaling Property).

M { f(az)} =a " f(p), a>0. (8.3.1)

PROOF By definition, we have,

o0

(o)) = / 27 f(az)de,

0

which is, by substituting ax =t,

= a—lp ootff’—lf(t)dt: fif).
0
i
(b) (Shifting Property).
M [z f(2)] = f(p+a). (8.3.2)

Its proof follows from the definition.

(© a i ==7(2), (333)
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M {%f <%)}:f~(1—p), (8.3.4)
M {(log x)”f(a:)}:d%f(p), n=1,2,3,.... (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d
— p_lz 1 p—l. 9.
dpx (log x)x (8.3.6)

(d) (Mellin Transforms of Derivatives).

A (@) == -1Dfp-1), (8:3.7)
provided [zP~! f(z)] vanishes as z — 0 and as = — oo.
M (@) =(p =D —2)f(p-2). (8.3.8)
More generally,
A @) = (1 s o)
_ . L) o) m
) s A @l (839)

provided 2P~ 1 f(")(z) =0 as 2 — 0 for r=0,1,2,...,(n —1).

PROOF  We have, by definition,

o0

()] = / 7 (@) de,

0
which is, integrating by parts,

oo

— @ @) — (p— 1) / P2 f () de

0

=—(p-Dflp-1).
|
The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.
() If 4 {f(2)} = f(p), then
M {zf ()} =—pf(p), (8.3.10)
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provided P f(x) vanishes at © =0 and as  — oo.
M ()} = (=1)’p(p+ 1) f(p). (8.3.11)
More generally,

T(p+n)

o (8.3.12)

M " [ (@)} = (-1)"

PROOF We have, by definition,

o0

M {af ()} = / o f'(z)de,

0
which is, integrating by parts,

o0

= WP @) —p / L f(2)dz = —pf(p).

0

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If A {f(x)} = f(p), then

Vs [(di) f(fr)] — AP @) + o @) = (-1 f), (3313)
and more generally,
d " n._n
| (s52) 1) =i 8310

PROOF  We have, by definition,

2
¥ [(x%) f(:v)] = ) b f @)

=AM [ "(2)] + A |2 f' ()]
= —pf(p) +p(p+1)f(p) by (83.10) and (8.3.11)
= (=1)*p” f(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

{/f }:——fp+1) (8.3.15)

In general,

ML f(2)} = A {/In_lf(t)dt} :(—1)"F(£(fz)n)f(p+n), (8.3.16)
0

where I,, f(x) is the nth repeated integral of f(z) defined by

x

If(z)= / L 1 f(t)dt. (8.3.17)

0

PROOF We write

F ;v):/f(t)dt
0

so that F'(z) = f(x) with F(0) = 0. Application of (8.3.7) with F'(z) as defined

gives
MAf(x)=F'(z),p} =—(p—1)A {/f(t)dt,p—l},
0

which is, replacing p by p+ 1,
[ 1 1,
0

An argument similar to this can be used to prove (8.3.16). 1

(h) (Convolution Type Theorems).
If A {f(x)}=f(p) and #{g(x)} =G(p), then

A [f () * g(2)] = A

A [f(x) 0 g(x)] = A
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PROOF We have, by definition,

= f(&)% (&n)P~tg(n) Edn
0

- / 1 (€)de / P g(n)dn = Fp)a(p)
0 0

\8 0\8

xPdx flz §)dg, (z§=n),
!
o€ dé/ iep gy

/51 g df/ P f(n)dn = 51 — p) f(p).

0

Note that, in this case, the operation o is not commutative.
Clearly, putting = = s,

M- p)ap)} = / g(st)f(1)dt.
Putting g(t) =e ~* and g(p) =I'(p), we obtain the Laplace transform of f(t)

M HF(L=p)L(p)}

/e stftydt=ZL{f ()} = f(s). (8.3.20)
0
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(i) (Parseval’s Type Property).
If . {f(2)} = F(p) and 4 {g(z)} = §(p), then

c+io0o
M @)g(a)] = 5 / F(s (8.3.21)
Or, equivalently,
[e'e) c+io0o
/xpflf(x) 2m / f(s (8.3.22)
0 c—1i00

In particular, when p =1, we obtain the Parseval formula for the Mellin trans-
form,

[e'e) c+io0o
/f(a:)g(a: =5 / f(s)5(1 —s) (8.3.23)
0 c—100

PROOF By definition, we have

oo

~¢U@M@H=/¢”W@M@Mm
0

e’} c+ioco

:% 2P g(x)dx / x5 f(s)ds
- c—ico

:27”/]” ds/xp51()d
Ccﬁl

- 27 / f

When p =1, the above result becomes (8.3.23). |
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8.4 Applications of Mellin Transforms

Example 8.4.1 Obtain the solution of the boundary value problem

TP Upe + TUp + Uy =0, 0<z<00, 0<y<l

A, 0<z<1
u(z,0)=0, wu(z,1)= ,
0, z>1

where A is a constant.

(8.4.1)

(8.4.2)

We apply the Mellin transform of u(z, y) with respect to = defined by

o0
0

to reduce the given system into the form

Uy, +p*0=0, 0<y<l

A
u(p,0) =0, ﬂ(p,l)zA/xp_ldeE.

The solution of the transformed problem is

A sin
ﬂ’(pvy):_,—pyv O<Rep<1'
p sin p

The inverse Mellin transform gives

c+ioco
(2,y) = A x~ P sin py
u(z, —
Y 2m p sinp

c—1i00

dp,

(8.4.3)

where 4(p, y) is analytic in the vertical strip 0 < Re (p) = ¢ < 7. The integrand
of (8.4.3) has simple poles at p=nm, n=1,2,3,... which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues

gives the solution for x > 1 as

=l|h>
3|»~

RS

" sin ny.

(8.4.4)
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Example 8.4.2 (Potential in an Infinite Wedge).
Find the potential ¢(r, 6) that satisfies the Laplace equation

r2¢rr +7¢r + g9 =0 (845)

in an infinite wedge 0 <7 <00, —a <0 <« as shown in Figure 8.1 with the
boundary conditions

¢(T7 CY) = f(r)v (]5(7’, —Oé) = 9(7’) 0 S r< oQ, (846&]:))
¢(r,0) >0 as r—oo forall 0 in —a<f<o. (8.4.7)
AY
0=
& a .
0 y -0 > X
0=-o

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential ¢(r, 8) defined by

o0

A [8(r,0)] = 3(p, 0) = / 1 (r, 0) dr

0

to the differential system (8.4.5)—(8.4.7) to obtain

2 it ~
% +p2G=0, (8.4.8)
o(p,a)=f(p),  bp, —a)=3(p). (8.4.9ab)

The general solution of the transformed equation is

qNS(p, 0) = Acos pd + B sin pb, (8.4.10)
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where A and B are functions of p and «. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pa+ B sin pa = f(p)7

A cos pa — B sin pa = §(p).

A {0 +iw) o ) i)

These give ,
2 cos pa 2 sin pa
Thus, solution (8.4.10) becomes
~ R smp(a +6) _, . sinp(la—10)
f( Vi(p, o+ 0) + §(p)h(p, o — 6), (8.4.11)
where -
= sinp
hp,0) = ————.
(p.6) sin(2 pa)

Or, equivalently,

h(r,0) =4~ { sin pf }: (i) ( rsinnf . (84.12)

sin 2 pa 2a ) (14 27" cosnf +r27)
where
0 ™
=— or, 2a=-—
2« n’
Application of the inverse Mellin transform to (8.4.11) gives
6(r,0) = " {FD)h(p.a+0)} +.4 7 {ap)hp.a—0)},

which is, by the convolution property (8.3.18),

sy oS 7 £ f(€)de

20 &2 — 2(r&)m sinnf + r2n

£ g(€)de ™
—. (8.4.1
52” +2(ré)m 51nn9—|—7“2" » lal< 2n ( 3)
This is the formal solution of the problem.
In particular, when f(r)=g(r), solution (8.4.11) becomes
~ ~ . cospl L -
= = 4.14
¢(p,0) = f(p) cospor f(p)h(p,0), (8.4.14)
where 0
cos
hp.0)= = = {h(r.0)}
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

o(r,0)= [ f(& ( ) (8.4.15)
- Jran(z0) %
where

h(r,@)://ll{M}:(g> (L+rcosmh) (g 416

COS poy (14 2r27 cos2nf + r2n)

™
dn=_—.
ana n 2% I:l

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3 Solve the integral equation

/f k(x€)d = g(x), x>0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

where 1
h(p) ==
(p)=~ a7
The inverse Mellin transform combined with (8.3.19) leads to the solution
f@ =t o -pho)} = [gOhods.  (413)
0

provided h(z)=.# ! {B(p)} exists. Thus, the problem is formally solved.
If, in particular, 2(p) = k(p), then the solution of (8.4.18) becomes

oo

fa)= / 9(E) k(€ )de, (3.4.19)

0
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provided k(p)k(1 —p)=1. I

Example 8.4.4 Solve the integral equation

7f(€)g (g) % = h(x), (8.4.20)
0

where f(z) is unknown and g(z) and h(x) are given functions.
Applications of the Mellin transform with respect to = gives

fp)=hkp), kp)=-——

R A LT B IGTY Y E S CRE
0

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

1)/(t—x)o‘_1f(t)dt, 0<Rea<l, z>0. (85.1)

W=[f(z)] = (o)

x

Often ;W * is used instead of W~% to indicate the limits to integration.
Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

oo

W= f®)]=F(z,a)= %a) /(t —x)* L f(t)dt. (8.5.2)

x

We first give some simple examples of the Weyl transform.
If f(t)=exp(—at), Re a >0, then the Weyl transform of f(t) is given by

W ~%exp(— /t—a‘ Lexp(—at)dt,
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which is, by the change of variable t — z =y,

/ exp ay)dy
0

which is, by letting ay =t,

e—am 1 x —axr
W=elf(t)] = —— [t et 8.5.3
0= — (353)
0
Similarly, it can be shown that
T(u —
W=t = Llp—a) T, 0<Rea <Rep. (8.5.4)

L'(p)
Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W~%[sinat] = a~%sin (ax + %) , (8.5.5)
W~%cosat] = a~% cos (ax + %) , (8.5.6)

where 0 <Rea <1 and a > 0.
It can be shown that, for any two positive numbers a and 3, the Weyl
fractional integral satisfies the laws of exponents

W WP f ()] = W[ f ()] = WP [W 2 f ()] (8.5.7)

Invoking a change of variable t — x =y in (8.5.1), we obtain

o0

Wl f(z)] = / Y + y)dy. (3.5.8)

0

d
We next differentiate (8.5.8) to obtain, D = e

o0

DW= f(x flx+t)dt
i
0 e
—F(Q)O/t Df(x +t)dt
— WD (). (8.5.9)

A similar argument leads to a more general result

DW= f(x)] =W [D" f ()], (8.5.10)
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where n is a positive integer.
Or, symbolically,
D"W e =W~eD", (8.5.11)
We now calculate the Mellin transform of the Weyl fractional integral by
. o T zya—1 . x
putting h(t) =t*f(t) and g <?):ﬁ (1-2) H (1—%), where H (1 - ?)
is the Heaviside unit step function so that (8.5.1) becomes

F(x,a):/h(t)g(%) %, (8.5.12)
0
which is, by the convolution property (8.3.18),
F(p, @) =h(p)3(p),
where ~ 3
h(p) = A{z" f(z)} = f(p+ a),
and
i) =t {1 =2 H (=)}
L oy ey Ba)_ T()
T / U TR (R0
Consequently,
n _ —a _ F(p) r
F(p.0) =4 W2 f(2).0) = 0 0+ (55.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If 8 is a positive number and n is the smallest
integer greater than B such that n — f=a >0, the Weyl fractional derivative
of a function f(x) is defined by

WS (x)] = E" W=D [f ()]

1 @
[(n—p) dz™

/(t — )" P f(t)dt, (8.5.14)

x

where E=—D.
Or, symbolically,

Wh =E W= = Erw—(n=h), (8.5.15)
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It can be shown that, for any g3,
WAWE =1=wPWw-~. (8.5.16)

And, for any 5 and ~, the Weyl fractional derivative satisfies the laws of
exponents

WEW? f(a)] = WO [f ()] = W WP f(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.
If f(z) =exp(—azx), a >0, then the definition (8.5.14) gives

Whe—ae = pr[W—(n=Be=az), (8.5.18)
Writing n — 8=« >0 and using (8.5.3) yields

Wﬂe—az _ En[W—ae—az] _ En[a—ae—am]

=a %(a"e ) =ale ", (8.5.19)

Replacing 8 by —a in (8.5.19) leads to result (8.5.3) as expected.
Similarly, we obtain

B,.— _F(ﬁ‘FN) —(B+p)
WP #_71“(@ x P, (8.5.20)

It is easy to see that
Wh(cos ax) = E[W =19 cos ax],

which is, by (8.5.6),

=a” cos (ax — %ﬂ'ﬁ) . (8.5.21)

Similarly,
1
W (sinaz) = a” sin (ax - 57TB> , (8.5.22)

provided « and g lie between 0 and 1.

If 8 is replaced by —a, results (8.5.20)—(8.5.22) reduce to (8.5.4)—(8.5.6),
respectively.

Finally, we calculate the Mellin transform of the Weyl fractional derivative
with the help of (8.3.9) and find

M WP f(2)] = A [E"W P f(a)] = (-1)" [D"W =P f(2)]
__Tw ~=8) £(2). p—n
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which is, by result (8.5.13),

“To-n To-p PP

— o A0~ 5]

_ ) &

=t (08 (8.5.23)

Example 8.5.1 (The Fourier Transform of the Weyl Fractional Integral).
F{W = f(x)} =exp (—%) k= F{f(z)}. (8.5.24)

We have, by definition,

oo oo

LL efik$ T —r a—1
e ] e e

:E/f(t)dt-ﬁ /exp(—ikx)(t—x)o‘_ldx.

FAW = f(2)} =

— 00 x

- f{f(m)}%a)//z{eikf}

In the limit as a— 0
lim Z{W™f(2)} = F{f(2)}.
a—
This implies that
WO{f(x)} = f(a).
We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D™, and the Weyl fractional integral

operator W=, It follows from the definition (6.2.1) that D=%f(t) can be
expressed as the convolution

D= f(z) = ga(t) * £(2), (8.5.25)
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where )
ga(t) = ma t>0
Similarly, W~ f(z) can also be written in terms of the convolution
W= f(x) = ga(—2)xf (). (8.5.26)
Then, under suitable conditions,
_ Frl—a-p) :
MDD f(x)] = ——-— + a), 8.5.27
(D7 @) = oo fr +a) (35.27)
- I'p)
w— = _— . 8.5.28
MW @) = s ) (5.5.25)

Finally, a formal computation gives

i —a _L r z)dz T — a—1
O/{D faa(e)de = s / g(x)d 0/( 0 (et

which is, using the inner product notation,

(D™f, g)=({f, W™ g). (8.5.29)

This show that D™ and W~ behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988). 0

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).

THEOREM 8.6.1 If .#{f(z)} = f(p), then
c+ioco

S smta=5 [ F)éan (5.61)

n=0 c—1i00
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where £(p, a) is the Hurwitz zeta function defined by

o0

§(p,a):2%, 0<a<1, Re(p)>

« (n+a)P

PROOF If follows from the inverse Mellin transform that

c+ioco
1 = _
frra) =g [ Fwn a7
)
Summing this over all n gives
c+ioco

nz_%f(njLa):ﬁ / F(p)&(p, a) dp.

c—100

This completes the proof.
Similarly, the scaling property (8.3.1) gives

c+ioo

fnz) =4 —H{n™? f(p)} =

2mi /
Thus,
00 c+i0o
S s =gy [« T b= ) 0
where ((p) = Z n~P is the Riemann zeta function.
n=1

When z =1, result (8.6.4) reduces to

c+100

ij: 27Tl/f

c—100

This can be obtained from (8.6.1) when a =0. |

Example 8.6.1 Show that

S = (1= 21 7) (),

z™ 0" f(p)dp

387

(8.6.2)

(8.6.3)

(8.6.4)

(8.6.5)

(8.6.6)
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Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by t™ as

00 9] 1 o0
Z(_l)n—ln—ptn _ Z( n— 1tn . /(Ep_le_nrdit
n=1 n=1 F(p
- - 0
= L /xp—ldxi(_l)n—ltnze—nz
I'(p) —
0
_ 1 /xpfl te % .
T (p) 1+te®
0
- t
= —/a:p_l dx.
I'(p) ev +1
0

in which result (8.2.11) is used. [

Example 8.6.2 Show that
3 (Sm‘m) —5(m-a), O<a<om (8.6.7)

n=1

The Mellin transform of f(z)

I
7N
&,
]
Q
=
~_
.
<
)
93]

Substituting this result into (8.6.5) gives

i (Sinnan> - _gim- 700% ¢(p) cos (%p) dp. (8.6.8)

n=1
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We next use the well-known functional equation for the zeta function

71'
(277 C(1 = p) =20'(p) S (p) cos () (8.6.9)
in the integrand of (8.6.8) to obtain
oo c+1i00
(sinan) a 1 (27r>p ¢(1—p)
Z =75 5 — dp.
— n 2 27 J a p—1

The integral has two simple poles at p=0 and p = 1 with residues 1 and —7/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

i": <sinnan> _ %(ﬂ _a).

n=1

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a <r < oo is
introduced by the integral

2p
_ _ -1 @
M A{f(r)}=F_(p)= / (rp - Tp+1) f(r)dr. (8.7.1)
The inverse transform is given by

MTHE )} =)= 5 / P E(p)dp, r>a,  (8.7.2)
L

where L is the line Re p=¢, and F(p) is analytic in the strip |Re(p)| = |c| < 7.
By integrating by parts, we can show that
2 0f . Of

M _ |:’f’ W +TE:| =p2 F,(p)+2p0«pf(a)7 (873)
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provided f(r) is appropriately behaved at infinity. More precisely,

lim [(7"” —a® r )y f. —p(r? + a2pr*p)f} =0. (8.7.4)

T—00

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r =a.

On the other hand, if the derivative of f(r) is prescribed at r=a, it is
convenient to define the associated integral transform by

M [f(r)] =F1(p) Z/ <rP—1 + 73:1 ) f(rydr, |Re(p)| <, (8.7.5)

a

and its inverse given by

///J:l[f(]?)] =f(r)= 2%” /T*p Fi(p)dp, r>a. (8.7.6)
L

In this case, we can show by integration by parts that
%Jr |:T'

2
i % +r %] =p*F(p) —2a"" f(a), (8.7.7)

where f/(r) exists at r=a.

THEOREM 8.7.1 (Convolution).
It (1)} = Fy (p), and 4+ {g(r)} = G+ (p), then

A 90} =5 [ PG o) e (878)
L
Or, equivalently,
fo) =t | o [FL©GLp-ga| . 619)
L

PROOF We assume that F(p) and G4 (p) are analytic in some strip
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|[Re(p)| <. Then
2p

MLF() 9(r)} = 7 ( + fpﬂ) F(r)g(r)dr

a

oo oo

:/rp_lf(r)g(r)dr—|—/i—flf(r)g(r)dr (8.7.10)

= /F+ dg/rpfl
2mi

2
+% %g(mdr/r*fm(@dg. (8.7.11)
L

a

Replacing ¢ by —¢ in the first integral term and using F (£) =a?* F, (=¢),
which follows from the definition (8.7.5), we obtain

/ S FL(&)dE = / 2L (6)de. (8.7.12)

The path of integration L, Re(§) =c¢, becomes Re(£) = —c, but these paths
can be reconciled if F(§) tends to zero for large Im(¢§).
In view of (8.7.11), we have rewritten

o0

a2P 1 a2r—2¢
/mf(r)g(r)ch‘:%/F / e 9 (8.7.13)
L

a

This result is used to rewrite (8.7.10) as

2p

MA@} = ]O( + ) Fgtr)ar

o0 o0

a®?
= /rp’lf(r) g(r) dT+/rT’+1 f(r)g(r)dr

a

e ARGl / gy dr
L
2p 2&
—|——/F+ S/ p—E+1 g(r

— o [ FOG -0 e
L
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This completes the proof. |

If the range of integration is finite, then we define the generalized finite
Mellin transform by

a’?

///f{f(r)}:F‘i(p):/a (r”_l - rp+1) f(r)dr, (8.7.14)
0

where Rep <.
The corresponding inverse transform is given by

1 T\ .
f(T)———%_Z. (;) F*(p)dp, 0<r<a,
j

which is, by replacing p by —p and using F® (—p) = —a~2P F (p),

1
=— [ r"PF%(p)dp, 0<r<a, (8.7.15)
2m
L
where the path L is Re p= —c with |¢| <.

It is easy to verify the result

a’?

M [+ 10} = / (Tp_l - rp+1) {r? frr + 1 fr }dr
0

=p? F*(p) —2paP f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

%1U0H=Fﬂm=]<ﬁlﬁvfi>ﬂﬂwa (8.7.07)

1) = () [P0 =5 [ R (878)

L

where |Rep| <7.
For this finite transform, we can also prove

w1 = [ (7 ) (e 2
0

=p’F%(p)+2a""" f'(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x)= H(a—a:) a>0, (b) f(x)=2™e ™, m,n>0
(©) f(2) = 55, (@) fa)=J3),

o om0

() f@)—exp (~as?), a>0, ) TO=E):

(k) f(z)=_Ci(x), (G) f(z)=erfe(z),

(m) f(z)=(1+z)"", D) flz)=(1+2)""

where the exponential integral is defined by

o0

Ei(x)z/t’le’t dt:/{l e s de.
1

x

2. Derive the Mellin transform-pairs from the bilateral Laplace transform

and its inverse given by

() c+ioco
. 1 _
ato)= [ e gttrat, o)== [ o

3. Show that .
M| — | =T'(p) L
[e”ew} (p) L(p),
here L(p) = 1 1 1 is the Dirichlet L ti
where (p)—ﬁ—¥+5—p—---1s e Dirichlet L-function.
4. Show that ) P )
p)L\n—p
M = .
{ (1+ax)” } aPT'(n)
5. Show that

MA{xT" Tp(ax)} =

6. Show that
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@ 4 [eos (B f1-p] =25 10},
o) in (B) v fa-p] =7 5 0}

7. If I f(x) denotes the nth repeated integral of f(z) defined by

oo

/I;f’_lf(t)dt

x

12 f(x)

show that

[/f t)dt, p]—]% flp+1),

(0) 132 F(@)) = 5 P Fot )

8. Show that the integral equation

has the formal solution

c+ioco

=5 [

c—100

9. Find the solution of the Laplace integral equation

oo

|GG

0

1
(I+a)"

10. Show that the integral equation

x>+7f<s>g(§) -
0

has the formal solution

c+100 ~
__L [ 2h(p)
“2mi ) 1-3g(p)
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11. Show that the solution of the integral equation

e | % ag

f)=c +O/e o(-5) 105
is ‘

1 c+100 B I‘(p)
f0=5m [ o {2
12. Assuming (see Harrington, 1967)
M [f(reie)} =/rp_1f(rei9) dr, pis real,

0

and putting re® =¢, .4 {f(€)} = F(p) show that
(a) A [f(re); r— p]=exp(—ipd) F(p).
Hence, deduce
(b) .~ {F(p) cos pf} =Re[f(re”)],
(¢) 4 1 {F(p) sin ph} = —Im[f(rew)].
13. (a) If A [exp(—r)] =T(p), show that

M [exp(—rew)} =T(p) el

(b) If A [log(1+ 7)) = ,L, then show that
psinmp

- 0
A [Re log (1 +7e™)] = Teos b7
psin7p

395

14. Use .4 ! { T }: ! = f(z), and Exercises 12(b) and 12(c), re-

sin pr 1+z

spectively, to show that

(a) 1 7 cos pl 1+ rcosf

a —_ =

sin pr 1+ 2rcosf + r2
1 [ msinpld rsin 6

b) 41— ipsrp=--—"--———
(b) { sin pmr P T} 1+ 2rcosf + r?

15. Find the inverse Mellin transforms of

(a) T(p)cospf,  where — g <0< Z, (b) T'(p) sin pé.

2
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) o(r, @) =¢(r, —a) =H(a —r).

(b) Solve equation (8.4.5) in 0 <r < oo, 0< 6 <« with the boundary
conditions ¢(r, 0) =0 and ¢(r, a) = f(r).

17. Show that

>, cos kn k2 nk 7w =1 2
==+ — d b —_ =
N R I Do

18. If f(x)= > ane ™, show that
n=1

M f(@)}=F(p)=T(p) 9(p),

oo
where g(p) = Z an n~ P is the Dirichlet series.

n=1
If a, =1 for all n, derive
Show that

19. Show that

@ 3 T ey,

np

3
Il
-

(b) . {Z(—l)"lf(m)} =(1=2""7)¢(p) f(p)-

n=1

Hence, deduce

20. Find the sum of the following series
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21. Show that the solution of the boundary value problem

12¢pr + 1y + oo =0, 0<r<oo, 0<O<T

¢(r,0) =d(r,m) = f(r),
is
1 e . f(p) cos {p (9— g)} dp
(;5(7",9)—2—71_2_ / r . (%p) )

c—1i00

22. Evaluate
Z coRan _ (a® — 3ma® + 27%a).

23. Prove the following results:

(a) / €”f(x§)g(€)d£] — f(p) (1 +n—p),

(b) /5” () d&] F0) 3o+ n+1).

24. Show that
(a) W—e"]=€e"", a>0,
(b) W2 [ ! exp (—\/5)} _ K x>0,

NE LT
where K (z) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186-187)
/2
1
I(:U):/Jf(xcosﬁ)dﬁ, v>=3,
0

can be written as a Mellin convolution

- / F(x€) g(€) de
0

where

1-€)"2, 0 1
(€)= J2(€) and g<§>={( =) <t }

0, £>1
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(b) Prove that the integration contour in the Parseval identity

c+100

1 -
I(z)=— P f(p)g(l—p) dp, —2v<e<],
2mi )
cannot be shifted to the right beyond the vertical line Re p=2.

26. If f(z)= /exp(—xztz) : %I;t J1(t)dt, show that

0
-

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) A[f(x),p]=2Z[f(e™"),p],
(b) A[f(x);a+iw]=F[f(e e ";w],

where .Z is the two-sided Laplace transform and .% is the Fourier trans-
. 1
form without the factor (27)~ 2.

28. Prove the following properties of convolution:

(a) fxg=g=*f, (b) (f*g)*xh=fx*(g*h),
(c) f(x)xd(x—1)=f(x), (d) 0(z —a)* f(x)=a"'f (§)7

© 5°0- 1 0= (1) "1

o () wo-[(2) oo [(2)]

29. If A {f(r,0)} = f(p.0) and V2f(r,0) = frr + L f, + -5 fop, show that
2

MANf(r,0)} = [%

44p—mﬂf@—2ﬁ»





