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Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his fa-
mous memoir on prime numbers. Its explicit formulation was given by Cahen
(1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate discus-
sion of the Mellin transform and its inversion formula.
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368 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F {g(ξ)}=G(k) =
1√
2π

∞∫

−∞
e−ikξg(ξ)dξ, (8.2.1)

F −1{G(k)}= g(ξ) =
1√
2π

∞∫

−∞
eikξG(k)dk. (8.2.2)

Making the changes of variables exp(ξ) = x and ik= c− p, where c is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip− ic) =
1√
2π

∞∫

0

xp−c−1g(log x)dx, (8.2.3)

g(log x) =
1√
2π

c+i∞∫

c−i∞
xc−pG(ip− ic)dp. (8.2.4)

We now write
1√
2π

x−cg(log x)≡ f(x) and G(ip− ic)≡ f̃(p) to define the

Mellin transform of f(x) and the inverse Mellin transform as

M {f(x)}= f̃(p) =

∞∫

0

xp−1f(x)dx, (8.2.5)

M −1{f̃(p)}= f(x) =
1

2πi

c+i∞∫

c−i∞
x−pf̃(p)dp, (8.2.6)

where f(x) is a real valued function defined on (0,∞) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f̃(p) =M [f(x), p]. Obviously, M and M −1 are linear
integral operators.

Example 8.2.1 (a) If f(x) = e−nx, where n> 0, then

M {e−nx}= f̃(p) =

∞∫

0

xp−1e−nxdx,
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which is, by putting nx= t,

=
1

np

∞∫

0

tp−1e−tdt=
Γ(p)

np
. (8.2.7)

(b) If f(x) =
1

1 + x
, then

M

{
1

1 + x

}
= f̃(p) =

∞∫

0

xp−1 · dx

1 + x
,

which is, by substituting x=
t

1− t
or t=

x

1 + x
,

=

1∫

0

tp−1(1− t)(1−p)−1dt=B(p, 1− p)= Γ(p)Γ(1− p),

which is, by a well-known result for the gamma function,

= π cosec(pπ), 0<Re(p)< 1. (8.2.8)

(c) If f(x) = (ex − 1)−1, then

M

{
1

ex − 1

}
= f̃(p) =

∞∫

0

xp−1 1

ex − 1
dx,

which is, by using

∞∑
n=0

e−nx=
1

1− e−x
and hence,

∞∑
n=1

e−nx =
1

ex − 1
,

=
∞∑
n=1

∞∫

0

xp−1e−nxdx=
∞∑
n=1

Γ(p)

np
=Γ(p)ζ(p), (8.2.9)

where ζ(p) =

∞∑
n=1

1

np
, (Re p> 1) is the famous Riemann zeta function.

(d) If f(x) =
2

e2x − 1
, then

M

{
2

e2x − 1

}
= f̃(p) = 2

∞∫

0

xp−1 dx

e2x − 1
= 2

∞∑
n=1

∞∫

0

xp−1e−2nxdx

= 2

∞∑
n=1

Γ(p)

(2n)p
=21−p Γ(p)

∞∑
n=1

1

np
=21−p Γ(p)ζ(p). (8.2.10)
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(e) If f(x) =
1

ex + 1
, then

M

{
1

ex + 1

}
=(1− 21−p)Γ(p) ζ(p). (8.2.11)

This follows from the result[
1

ex − 1
− 1

ex + 1

]
=

2

e2x − 1

combined with (8.2.9) and (8.2.10).

(f) If f(x) =
1

(1 + x)n
, then

M

{
1

(1 + x)n

}
=

∞∫

0

xp−1(1 + x)−ndx,

which is, by putting x=
t

1− t
or t=

x

1 + x
,

=

1∫

0

tp−1(1− t)n−p−1dt

= B(p, n− p) =
Γ(p)Γ(n− p)

Γ(n)
, (8.2.12)

where B(p, q) is the standard beta function.
Hence,

M −1{Γ(p)Γ(n− p)}= Γ(n)

(1 + x)n
.

(g) Find the Mellin transform of cos kx and sin kx.
It follows from Example 8.2.1(a) that

M [e−ikx] =
Γ(p)

(ik)p
=

Γ(p)

kp

(
cos

pπ

2
− i sin

pπ

2

)
.

Separating real and imaginary parts, we find

M [cos kx] = k−p Γ(p) cos
(πp

2

)
, (8.2.13)

M [sin kx] = k−p Γ(p) sin
(πp

2

)
. (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of xp−1. Result (8.2.13) can be written as

∞∫

0

xp−1 cos kx dx=
Γ(p)

kp
cos

(πp
2

)
.
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Or, equivalently,

Fc

{√
π

2
xp−1

}
=

Γ(p)

kp
cos

(πp
2

)
.

Or,

Fc {xp−1}=
√

2

π

Γ(p)

kp
cos

(πp
2

)
. (8.2.15)

Similarly,

Fs {xp−1}=
√

2

π

Γ(p)

kp
sin

(πp
2

)
. (8.2.16)

8.3 Basic Operational Properties of Mellin Transforms

If M {f(x)}= f̃(p), then the following operational properties hold:

(a) (Scaling Property).

M {f(ax)}= a−pf̃(p), a> 0. (8.3.1)

PROOF By definition, we have,

M {f(ax)}=
∞∫

0

xp−1f(ax)dx,

which is, by substituting ax= t,

=
1

ap

∞∫

0

tp−1f(t)dt=
f̃(p)

ap
.

(b) (Shifting Property).

M [xa f(x)] = f̃(p+ a). (8.3.2)

Its proof follows from the definition.

(c) M {f(xa)}= 1

a
f̃
(p
a

)
, (8.3.3)
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M

{
1

x
f

(
1

x

)}
= f̃(1− p), (8.3.4)

M {(log x)n f(x)}= dn

dpn
f̃(p), n=1, 2, 3, . . . . (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d

dp
xp−1 = (log x)xp−1. (8.3.6)

(d) (Mellin Transforms of Derivatives).

M [f ′(x)] =−(p− 1)f̃(p− 1), (8.3.7)

provided [xp−1f(x)] vanishes as x→ 0 and as x→∞.

M [f ′′(x)] = (p− 1)(p− 2)f̃(p− 2). (8.3.8)

More generally,

M [f (n)(x)] = (−1)n
Γ(p)

Γ(p− n)
f̃(p− n)

= (−1)n
Γ(p)

Γ(p− n)
M [f(x), p− n], (8.3.9)

provided xp−r−1f (r)(x) = 0 as x→ 0 for r=0, 1, 2, . . . , (n− 1).

PROOF We have, by definition,

M [f ′(x)] =

∞∫

0

xp−1f ′(x) dx,

which is, integrating by parts,

= [xp−1f(x)]∞0 − (p− 1)

∞∫

0

xp−2f(x) dx

= −(p− 1)f̃(p− 1).

The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.

(e) If M {f(x)}= f̃(p), then

M {xf ′(x)}=−pf̃(p), (8.3.10)
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provided xpf(x) vanishes at x=0 and as x→∞.

M {x2f ′′(x)}= (−1)2p(p+ 1)f̃(p). (8.3.11)

More generally,

M {xnf (n)(x)}=(−1)n
Γ(p+ n)

Γ(p)
f̃(p). (8.3.12)

PROOF We have, by definition,

M {xf ′(x)}=
∞∫

0

xpf ′(x)dx,

which is, integrating by parts,

= [xpf(x)]∞0 − p

∞∫

0

xp−1f(x)dx=−pf̃(p).

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If M {f(x)}= f̃(p), then

M

[(
x
d

dx

)2

f(x)

]
=M [x2f ′′(x) + xf ′(x)] = (−1)2 p2f̃(p), (8.3.13)

and more generally,

M

[(
x
d

dx

)n
f(x)

]
=(−1)npnf̃(p). (8.3.14)

PROOF We have, by definition,

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + x f ′(x)]

= M [x2f ′′(x)] + M [x f ′(x)]
= −pf̃(p) + p(p+ 1)f̃(p) by (8.3.10) and (8.3.11)

= (−1)2 p2 f̃(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

M

⎧⎨
⎩

x∫

0

f(t)dt

⎫⎬
⎭=−1

p
f̃(p+ 1). (8.3.15)

In general,

M {In f(x)}=M

⎧⎨
⎩

x∫

0

In−1f(t)dt

⎫⎬
⎭= (−1)n

Γ(p)

Γ(p+ n)
f̃(p+ n), (8.3.16)

where In f(x) is the nth repeated integral of f(x) defined by

Inf(x) =

x∫

0

In−1f(t)dt. (8.3.17)

PROOF We write

F (x) =

x∫

0

f(t)dt

so that F ′(x) = f(x) with F (0)= 0. Application of (8.3.7) with F (x) as defined
gives

M {f(x) =F ′(x), p}=−(p− 1)M

⎧⎨
⎩

x∫

0

f(t)dt, p− 1

⎫⎬
⎭ ,

which is, replacing p by p+ 1,

M

⎧⎨
⎩

x∫

0

f(t) dt, p

⎫⎬
⎭=−1

p
M {f(x), p+ 1}=−1

p
f̃(p+ 1).

An argument similar to this can be used to prove (8.3.16).

(h) (Convolution Type Theorems).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x) ∗ g(x)] =M

⎡
⎣

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

⎤
⎦= f̃(p)g̃(p), (8.3.18)

M [f(x) ◦ g(x)] =M

⎡
⎣

∞∫

0

f(xξ) g(ξ)dξ

⎤
⎦= f̃(p)g̃(1− p). (8.3.19)
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PROOF We have, by definition,

M [f(x) ∗ g(x)] = M

⎡
⎣

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

⎤
⎦

=

∞∫

0

xp−1dx

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

=

∞∫

0

f(ξ)
dξ

ξ

∞∫

0

xp−1g

(
x

ξ

)
dx,

(
x

ξ
= η

)
,

=

∞∫

0

f(ξ)
dξ

ξ

∞∫

0

(ξη)p−1g(η) ξ dη

=

∞∫

0

ξp−1f(ξ)dξ

∞∫

0

ηp−1g(η)dη= f̃(p)g̃(p).

Similarly, we have

M [f(x) ◦ g(x)] = M

⎡
⎣

∞∫

0

f(xξ) g(ξ)dξ

⎤
⎦

=

∞∫

0

xp−1dx

∞∫

0

f(xξ) g(ξ)dξ, (xξ= η),

=

∞∫

0

g(ξ)dξ

∞∫

0

ηp−1ξ1−pf(η)
dη

ξ

=

∞∫

0

ξ1−p−1g(ξ)dξ

∞∫

0

ηp−1f(η)dη= g̃(1− p)f̃(p).

Note that, in this case, the operation ◦ is not commutative.
Clearly, putting x= s,

M −1{f̃(1− p)g̃(p)}=
∞∫

0

g(st)f(t)dt.

Putting g(t) = e−t and g̃(p) =Γ(p), we obtain the Laplace transform of f(t)

M −1 {f̃(1− p)Γ(p)}=
∞∫

0

e−stf(t)dt=L {f(t)}= f̄(s). (8.3.20)
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(i) (Parseval’s Type Property).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x)g(x)] =
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds. (8.3.21)

Or, equivalently,

∞∫

0

xp−1f(x)g(x)dx=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds. (8.3.22)

In particular, when p=1, we obtain the Parseval formula for the Mellin trans-
form,

∞∫

0

f(x)g(x)dx=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(1− s)ds. (8.3.23)

PROOF By definition, we have

M [f(x)g(x)] =

∞∫

0

xp−1f(x)g(x)dx

=
1

2πi

∞∫

0

xp−1g(x)dx

c+i∞∫

c−i∞
x−sf̃(s)ds

=
1

2πi

c+i∞∫

c−i∞
f̃(s)ds

∞∫

0

xp−s−1g(x)dx

=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds.

When p=1, the above result becomes (8.3.23).
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8.4 Applications of Mellin Transforms

Example 8.4.1 Obtain the solution of the boundary value problem

x2uxx + xux + uyy =0, 0≤ x<∞, 0<y < 1 (8.4.1)

u(x, 0)= 0, u(x, 1)=

⎧⎨
⎩
A, 0≤ x≤ 1

0, x > 1

⎫⎬
⎭ , (8.4.2)

where A is a constant.

We apply the Mellin transform of u(x, y) with respect to x defined by

ũ(p, y) =

∞∫

0

xp−1u(x, y) dx

to reduce the given system into the form

ũyy + p2ũ=0, 0<y < 1

ũ(p, 0)= 0, ũ(p, 1)=A

1∫

0

xp−1dx=
A

p
.

The solution of the transformed problem is

ũ(p, y) =
A

p

sin py

sin p
, 0< Re p< 1.

The inverse Mellin transform gives

u(x, y) =
A

2πi

c+i∞∫

c−i∞

x−p

p

sin py

sin p
dp, (8.4.3)

where ũ(p, y) is analytic in the vertical strip 0<Re (p) = c <π. The integrand
of (8.4.3) has simple poles at p=nπ, n=1, 2, 3, . . . which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues
gives the solution for x> 1 as

u(x, y) =
A

π

∞∑
n=1

1

n
(−1)n x−nπ sin nπy. (8.4.4)
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Example 8.4.2 (Potential in an Infinite Wedge).
Find the potential φ(r, θ) that satisfies the Laplace equation

r2φrr + rφr + φθθ =0 (8.4.5)

in an infinite wedge 0<r <∞, −α< θ <α as shown in Figure 8.1 with the
boundary conditions

φ(r, α) = f(r), φ(r, −α) = g(r) 0≤ r <∞, (8.4.6ab)

φ(r, θ)→ 0 as r→∞ for all θ in − α< θ <α. (8.4.7)

0 x

y

-

=

= -

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential φ(r, θ) defined by

M [φ(r, θ)] = φ̃(p, θ) =

∞∫

0

rp−1φ(r, θ) dr

to the differential system (8.4.5)–(8.4.7) to obtain

d2φ̃

dθ2
+ p2φ̃=0, (8.4.8)

φ̃(p, α) = f̃(p), φ̃(p, −α) = g̃(p). (8.4.9ab)

The general solution of the transformed equation is

φ̃(p, θ) =A cos pθ+B sin pθ, (8.4.10)
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where A and B are functions of p and α. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pα+B sin pα = f̃(p),

A cos pα−B sin pα = g̃(p).

These give A=
f̃(p) + g̃(p)

2 cospα
, B =

f̃(p)− g̃(p)

2 sin pα
.

Thus, solution (8.4.10) becomes

φ̃(p, θ) = f̃(p).
sin p(α+ θ)

sin(2 pα)
+ g̃(p)

sin p(α− θ)

sin(2 pα)

= f̃(p)h̃(p, α+ θ) + g̃(p)h̃(p, α− θ), (8.4.11)

where

h̃(p, θ) =
sin pθ

sin(2 pα)
.

Or, equivalently,

h(r, θ) =M −1

{
sin pθ

sin 2 pα

}
=

(
1

2α

)
rn sinnθ

(1 + 2 rn cosnθ+ r2n)
, (8.4.12)

where
n=

π

2α
or, 2α=

π

n
.

Application of the inverse Mellin transform to (8.4.11) gives

φ(r, θ) =M −1
{
f̃(p)h̃(p, α+ θ)

}
+M −1

{
g̃(p)h̃(p, α− θ)

}
,

which is, by the convolution property (8.3.18),

φ(r, θ) =
rn cosnθ

2α

⎡
⎣

∞∫

0

ξn−1f(ξ)dξ

ξ2n − 2(rξ)n sinnθ+ r2n

+

∞∫

0

ξn−1g(ξ)dξ

ξ2n + 2(rξ)n sinnθ+ r2n

⎤
⎦ , |α|< π

2n
. (8.4.13)

This is the formal solution of the problem.

In particular, when f(r) = g(r), solution (8.4.11) becomes

φ̃(p, θ) = f̃(p)
cos pθ

cos pα
= f̃(p)h̃(p, θ), (8.4.14)

where

h̃(p, θ) =
cos pθ

cos pα
=M {h(r, θ)}.
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

φ(r, θ) =

∞∫

0

f(ξ)h

(
r

ξ
, θ

)
dξ

ξ
, (8.4.15)

where

h(r, θ) =M −1

{
cos pθ

cos pα

}
=

(
rn

α

)
(1 + r2n) cos(nθ)

(1 + 2r2n cos 2nθ+ r2n)
, (8.4.16)

and n=
π

2α
.

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3 Solve the integral equation
∞∫

0

f(ξ) k(xξ)dξ = g(x), x> 0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

f̃(1− p)k̃(p) = g̃(p),

which gives, replacing p by 1− p,

f̃(p) = g̃(1− p)h̃(p),

where

h̃(p) =
1

k̃(1− p)
.

The inverse Mellin transform combined with (8.3.19) leads to the solution

f(x) =M −1
{
g̃(1− p)h̃(p)

}
=

∞∫

0

g(ξ)h(xξ)dξ, (8.4.18)

provided h(x) =M −1
{
h̃(p)

}
exists. Thus, the problem is formally solved.

If, in particular, h̃(p) = k̃(p), then the solution of (8.4.18) becomes

f(x) =

∞∫

0

g(ξ) k(xξ)dξ, (8.4.19)
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provided k̃(p)k̃(1− p) = 1.

Example 8.4.4 Solve the integral equation
∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ
= h(x), (8.4.20)

where f(x) is unknown and g(x) and h(x) are given functions.
Applications of the Mellin transform with respect to x gives

f̃(p) = h̃(p)k̃(p), k̃(p) =
1

g̃(p)
.

Inversion, by the convolution property (8.3.18), gives the solution

f(x) =M −1
{
h̃(p)k̃(p)

}
=

∞∫

0

h(ξ) k

(
x

ξ

)
dξ

ξ
. (8.4.21)

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

W−α[f(x)] =
1

Γ(α)

∞∫

x

(t− x)α−1f(t)dt, 0<Reα< 1, x > 0. (8.5.1)

Often xW
−α
∞ is used instead of W−α to indicate the limits to integration.

Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

W−α[f(t)] =F (x, α) =
1

Γ(α)

∞∫

x

(t− x)α−1f(t)dt. (8.5.2)

We first give some simple examples of the Weyl transform.
If f(t)= exp(−at), Re a> 0, then the Weyl transform of f(t) is given by

W−α[exp(−at)] = 1

Γ(α)

∞∫

x

(t− x)α−1 exp(−at)dt,
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which is, by the change of variable t− x= y,

=
e−ax

Γ(α)

∞∫

0

yα−1 exp(−ay)dy

which is, by letting ay= t,

W−α[f(t)] =
e−ax

aα
1

Γ(α)

∞∫

0

tα−1e−tdt=
e−ax

aα
. (8.5.3)

Similarly, it can be shown that

W−α[t−μ] =
Γ(μ− α)

Γ(μ)
xα−μ, 0<Reα<Reμ. (8.5.4)

Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W−α[sin at] = a−α sin
(
ax+

πα

2

)
, (8.5.5)

W−α[cos at] = a−α cos
(
ax+

πα

2

)
, (8.5.6)

where 0<Reα< 1 and a> 0.
It can be shown that, for any two positive numbers α and β, the Weyl

fractional integral satisfies the laws of exponents

W−α[W−βf(x)] =W−(β+α)[f(x)] =W−β [W−αf(x)]. (8.5.7)

Invoking a change of variable t− x= y in (8.5.1), we obtain

W−α[f(x)] =
1

Γ(α)

∞∫

0

yα−1f(x+ y)dy. (8.5.8)

We next differentiate (8.5.8) to obtain, D=
d

dx
,

D[W−αf(x)] =
1

Γ(α)

∞∫

0

tα−1 ∂

∂x
f(x+ t)dt

=
1

Γ(α)

∞∫

0

tα−1Df(x+ t)dt

= W−α[Df(x)]. (8.5.9)

A similar argument leads to a more general result

Dn[W−αf(x)] =W−α[Dnf(x)], (8.5.10)
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where n is a positive integer.
Or, symbolically,

DnW−α=W−αDn. (8.5.11)

We now calculate the Mellin transform of the Weyl fractional integral by

putting h(t) = tαf(t) and g
(x
t

)
= 1

Γ(α)

(
1− x

t

)α−1
H

(
1− x

t

)
, whereH

(
1− x

t

)
is the Heaviside unit step function so that (8.5.1) becomes

F (x, α) =

∞∫

0

h(t) g
(x
t

) dt
t
, (8.5.12)

which is, by the convolution property (8.3.18),

F̃ (p, α) = h̃(p)g̃(p),

where
h̃(p) =M {xαf(x)}= f̃(p+ α),

and

g̃(p) = M

{
1

Γ(α)
(1− x)α−1H(1− x)

}

=
1

Γ(α)

1∫

0

xp−1(1− x)α−1dx=
B(p, α)

Γ(α)
=

Γ(p)

Γ(p+ α)
.

Consequently,

F̃ (p, α) =M [W−αf(x), p] =
Γ(p)

Γ(p+ α)
f̃(p+ α). (8.5.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If β is a positive number and n is the smallest
integer greater than β such that n− β=α> 0, the Weyl fractional derivative
of a function f(x) is defined by

W β [f(x)] = EnW−(n−β)[f(x)]

=
(−1)n

Γ(n− β)

dn

dxn

∞∫

x

(t− x)n−β−1f(t)dt, (8.5.14)

where E =−D.
Or, symbolically,

W β =EnW−α=EnW−(n−β). (8.5.15)
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It can be shown that, for any β,

W−βW β = I =W βW−β. (8.5.16)

And, for any β and γ, the Weyl fractional derivative satisfies the laws of
exponents

W β [W γf(x)] =W β+γ [f(x)] =W γ [W βf(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.

If f(x) = exp(−ax), a> 0, then the definition (8.5.14) gives

W βe−ax=En[W−(n−β)e−ax]. (8.5.18)

Writing n− β =α> 0 and using (8.5.3) yields

W βe−ax = En[W−αe−ax] =En[a−αe−ax]
= a−α(ane−ax) = aβe−ax. (8.5.19)

Replacing β by −α in (8.5.19) leads to result (8.5.3) as expected.

Similarly, we obtain

W βx−μ =
Γ(β + μ)

Γ(μ)
x−(β+μ). (8.5.20)

It is easy to see that

W β(cos ax) =E[W−(1−β) cos ax],

which is, by (8.5.6),

= aβ cos

(
ax− 1

2
πβ

)
. (8.5.21)

Similarly,

W β(sin ax) = aβ sin

(
ax− 1

2
πβ

)
, (8.5.22)

provided α and β lie between 0 and 1.

If β is replaced by −α, results (8.5.20)–(8.5.22) reduce to (8.5.4)–(8.5.6),
respectively.

Finally, we calculate the Mellin transform of the Weyl fractional derivative
with the help of (8.3.9) and find

M [W βf(x)] = M [EnW−(n−β)f(x)] = (−1)nM [DnW−(n−β)f(x)]

=
Γ(p)

Γ(p− n)
M [W−(n−β)f(x), p− n],
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which is, by result (8.5.13),

=
Γ(p)

Γ(p− n)
· Γ(p− n)

Γ(p− β)
f̃(p− β)

=
Γ(p)

Γ(p− β)
M [f(x), p− β]

=
Γ(p)

Γ(p− β)
f̃(p− β). (8.5.23)

Example 8.5.1 (The Fourier Transform of the Weyl Fractional Integral).

F{W−αf(x)}= exp

(
−πiα

2

)
k−αF{f(x)}. (8.5.24)

We have, by definition,

F{W−αf(x)} =
1√
2π

1

Γ(α)

∞∫

−∞
e−ikxdx

∞∫

x

(t− x)α−1f(t)dt

=
1√
2π

∞∫

−∞
f(t)dt · 1

Γ(α)

t∫

−∞
exp(−ikx)(t− x)α−1dx.

Thus,

F{W−αf(x)} =
1√
2π

∞∫

−∞
e−iktf(t)dt · 1

Γ(α)

∞∫

0

eikτ τα−1dτ, (t− x= τ)

= F{f(x)} 1

Γ(α)
M {eikτ}

= exp

(
−πiα

2

)
k−αF{f(x)}.

In the limit as α→ 0

lim
α→0

F{W−αf(x)}=F{f(x)}.

This implies that
W 0{f(x)}= f(x).

We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D−α, and the Weyl fractional integral
operator W−α. It follows from the definition (6.2.1) that D−αf(t) can be
expressed as the convolution

D−αf(x) = gα(t) ∗ f(t), (8.5.25)
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where

gα(t) =
tα−1

Γ(α)
, t > 0.

Similarly, W−αf(x) can also be written in terms of the convolution

W−αf(x) = gα(−x)∗f(x). (8.5.26)

Then, under suitable conditions,

M [D−αf(x)] =
Γ(1− α− p)

Γ(1− p)
f̃(p+ α), (8.5.27)

M [W−αf(x)] =
Γ(p)

Γ(α+ p)
f̃(p+ α). (8.5.28)

Finally, a formal computation gives
∞∫

0

{D−αf(x)}g(x)dx =
1

Γ(α)

∞∫

0

g(x)dx

x∫

0

(x− t)α−1f(t)dt

=

∞∫

0

f(t)dt · 1

Γ(α)

∞∫

t

(x− t)α−1g(x)dx

=

∞∫

0

f(t)[W−αg(t)] dt,

which is, using the inner product notation,

〈D−αf, g〉= 〈f, W−αg〉. (8.5.29)

This show that D−α and W−α behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988).

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).

THEOREM 8.6.1 If M {f(x)}= f̃(p), then

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p) ξ(p, a)dp, (8.6.1)
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where ξ(p, a) is the Hurwitz zeta function defined by

ξ(p, a) =

∞∑
n=0

1

(n+ a)p
, 0≤ a≤ 1, Re(p)> 1. (8.6.2)

PROOF If follows from the inverse Mellin transform that

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p)(n+ a)−p dp. (8.6.3)

Summing this over all n gives

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p) ξ(p, a) dp.

This completes the proof.
Similarly, the scaling property (8.3.1) gives

f(nx) =M −1{n−p f̃(p)}= 1

2πi

c+i∞∫

c−i∞
x−p n−pf̃(p)dp.

Thus,

∞∑
n=1

f(nx) =
1

2πi

c+i∞∫

c−i∞
x−pf̃(p) ζ(p)dp=M −1{f̃(p) ζ(p)}, (8.6.4)

where ζ(p) =
∞∑
n=1

n−p is the Riemann zeta function.

When x=1, result (8.6.4) reduces to

∞∑
n=1

f(n)=
1

2πi

c+i∞∫

c−i∞
f̃(p) ζ(p)dp. (8.6.5)

This can be obtained from (8.6.1) when a=0.

Example 8.6.1 Show that
∞∑
n=1

(−1)n−1n−p=(1− 21−p) ζ(p). (8.6.6)
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Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by tn as

∞∑
n=1

(−1)n−1n−ptn =

∞∑
n=1

(−1)n−1tn · 1

Γ(p)

∞∫

0

xp−1e−nxdx

=
1

Γ(p)

∞∫

0

xp−1dx

∞∑
n=1

(−1)n−1tnxe−nx

=
1

Γ(p)

∞∫

0

xp−1 · te−x

1 + te−x
· dx

=
1

Γ(p)

∞∫

0

xp−1 · t

ex + t
dx.

In the limit as t→ 1, the above result gives

∞∑
n=1

(−1)n−1n−p =
1

Γ(p)

∞∫

0

xp−1 1

ex + 1
dx

=
1

Γ(p)
M

{
1

ex + 1

}
= (1− 21−p) ζ(p),

in which result (8.2.11) is used.

Example 8.6.2 Show that
∞∑
n=1

(
sinan

n

)
=

1

2
(π − a), 0<a< 2π. (8.6.7)

The Mellin transform of f(x) =

(
sinax

x

)
gives

M

[
sin ax

x

]
=

∞∫

0

xp−2 sinax dx

= Fs

{√
π

2
xp−2

}

= −Γ(p− 1)

ap−1
cos

(πp
2

)
.

Substituting this result into (8.6.5) gives

∞∑
n=1

(
sin an

n

)
=− 1

2πi

c+i∞∫

c−i∞

Γ(p− 1)

ap−1
ζ(p) cos

(πp
2

)
dp. (8.6.8)
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We next use the well-known functional equation for the zeta function

(2π)p ζ(1− p)= 2Γ(p) ζ(p) cos
(πp

2

)
(8.6.9)

in the integrand of (8.6.8) to obtain

∞∑
n=1

(
sin an

n

)
=−a

2
· 1

2πi

c+i∞∫

c−i∞

(
2π

a

)p
ζ(1− p)

p− 1
dp.

The integral has two simple poles at p=0 and p=1 with residues 1 and −π/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

∞∑
n=1

(
sinan

n

)
=

1

2
(π − a).

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a< r <∞ is
introduced by the integral

M−{f(r)}=F−(p) =

∞∫

a

(
rp−1 − a2p

rp+1

)
f(r) dr. (8.7.1)

The inverse transform is given by

M −1
− {F−(p)}= f(r) =

1

2πi

∫

L

r−p F (p) dp, r > a, (8.7.2)

where L is the line Re p= c, and F (p) is analytic in the strip |Re(p)|= |c|<γ.
By integrating by parts, we can show that

M−

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2 F−(p) + 2 p apf(a), (8.7.3)
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provided f(r) is appropriately behaved at infinity. More precisely,

lim
r→∞

[
(rp − a2p r−p)rfr − p(rp + a2pr−p)f

]
=0. (8.7.4)

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r= a.

On the other hand, if the derivative of f(r) is prescribed at r= a, it is
convenient to define the associated integral transform by

M+[f(r)] =F+(p) =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r) dr, |Re(p)|<r, (8.7.5)

and its inverse given by

M −1
+ [f(p)] = f(r) =

1

2πi

∫

L

r−p F+(p)dp, r > a. (8.7.6)

In this case, we can show by integration by parts that

M+

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2F+(p)− 2 ap+1f ′(a), (8.7.7)

where f ′(r) exists at r= a.

THEOREM 8.7.1 (Convolution).

If M+{f(r)}=F+(p), and M+{g(r)}=G+(p), then

M+{f(r) g(r)}= 1

2πi

∫

L

F+(ξ)G+(p− ξ) dξ. (8.7.8)

Or, equivalently,

f(r)g(r) =M −1
+

⎡
⎣ 1

2πi

∫

L

F+(ξ)G+(p− ξ)dξ

⎤
⎦ . (8.7.9)

PROOF We assume that F+(p) and G+(p) are analytic in some strip
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|Re(p)|<γ. Then

M+{f(r) g(r)} =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫

a

rp−1f(r)g(r)dr +

∞∫

a

a2p

rp+1
f(r)g(r)dr (8.7.10)

=
1

2πi

∫

L

F+(ξ)dξ

∞∫

a

rp−ξ−1g(r)dr

+
1

2π

∞∫

a

a2p

rp+1
g(r)dr

∫

L

r−ξF+(ξ) dξ. (8.7.11)

Replacing ξ by −ξ in the first integral term and using F+(ξ) = a2ξF+(−ξ),
which follows from the definition (8.7.5), we obtain

∫

L

r−ξ F+(ξ)dξ =

∫

L

rξ a−2ξ F+(ξ)dξ. (8.7.12)

The path of integration L, Re(ξ) = c, becomes Re(ξ) =−c, but these paths
can be reconciled if F (ξ) tends to zero for large Im(ξ).

In view of (8.7.11), we have rewritten

∞∫

a

a2p

rp+1
f(r) g(r)dr =

1

2πi

∫

L

F+(ξ)dξ

∞∫

a

a2p−2ξ

rp−ξ+1
g(r) dr. (8.7.13)

This result is used to rewrite (8.7.10) as

M+{f(r)g(r)} =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫

a

rp−1f(r) g(r) dr +

∞∫

a

a2p

rp+1
f(r) g(r) dr

=
1

2πi

∫

L

F+(ξ) dξ

∞∫

a

rp−ξ−1g(r) dr

+
1

2πi

∫

L

F+(ξ)dξ

∞∫

a

a2p−2ξ

rp−ξ+1
g(r) dr

=
1

2πi

∫

L

F+(ξ)G+(p− ξ) dξ.



392 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

This completes the proof.

If the range of integration is finite, then we define the generalized finite
Mellin transform by

M a
−{f(r)}=F a−(p) =

a∫

0

(
rp−1 − a2p

rp+1

)
f(r)dr, (8.7.14)

where Re p< γ.
The corresponding inverse transform is given by

f(r) =− 1

2πi

∫

L

( r

a2

)p
F a−(p)dp, 0<r <a,

which is, by replacing p by −p and using F a−(−p) =−a−2p F a−(p),

=
1

2πi

∫

L

r−p F a−(p)dp, 0< r<a, (8.7.15)

where the path L is Re p=−c with |c|<γ.
It is easy to verify the result

M a
−{r2frr + rf−r} =

a∫

0

(
rp−1 − a2p

rp+1

)
{r2frr + rfr}dr

= p2 F a−(p)− 2 p ap f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

M a
+{f(r)}=F a+(p) =

a∫

0

(
rp−1 +

a2p

rp+1

)
f(r) dr, (8.7.17)

f(r) =
(
M a

+

)−1 [
F a+(p)

]
=

1

2πi

∫

L

r−pF a+(p) dp, (8.7.18)

where |Re p|<γ.
For this finite transform, we can also prove

M a
+

[
r2frr + r fr

]
=

a∫

0

(
rp−1 +

a2p

rp+1

)(
r2frr + r fr

)
dr

= p2F a+(p) + 2 ap−1 f ′(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x) =H(a− x), a> 0,

(c) f(x) = 1
1+x2 ,

(e) f(x) = xzH(x− x0),

(g) f(x) =Ei(x),

(i) f(x) = exp
(−ax2) , a > 0,

(k) f(x) =Ci(x),

(m) f(x) = (1 + x)−1,

(b) f(x) = xme−nx, m,n> 0,

(d) f(x) = J2
0 (x),

(f) f(x) = [H(x− x0)−H(x)]xz ,

(h) f(x) = exEi(x),

(j) f(x) = erfc(x),

(l) f(x) = (1 + xa)
−b

,

where the exponential integral is defined by

Ei(x) =

∞∫

x

t−1 e−t dt=

∞∫

1

ξ−1 e−ξ x dξ.

2. Derive the Mellin transform-pairs from the bilateral Laplace transform
and its inverse given by

ḡ(p) =

∞∫

−∞
e−ptg(t)dt, g(t) =

1

2πi

c+i∞∫

c−i∞
ept ḡ(p)dp.

3. Show that

M

[
1

ex + e−x

]
=Γ(p)L(p),

where L(p)=
1

1p
− 1

3p
+

1

5p
− · · · is the Dirichlet L-function.

4. Show that

M

{
1

(1 + ax)n

}
=

Γ(p)Γ(n− p)

ap Γ(n)
.

5. Show that

M {x−nJn(ax)}= 1

2

(a
2

)n−p Γ
(p
2

)

Γ
(
n− p

2
+ 1

) , a > 0, n >−1

2
.

6. Show that
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(a) M −1
[
cos

(πp
2

)
Γ(p) f̃(1− p)

]
=Fc

{√
π

2
f(x)

}
,

(b) M −1
[
sin

(πp
2

)
Γ(p) f̃(1− p)

]
=Fs

{√
π

2
f(x)

}
.

7. If I∞n f(x) denotes the nth repeated integral of f(x) defined by

I∞n f(x) =

∞∫

x

I∞n−1f(t)dt,

show that

(a) M

⎡
⎣

∞∫

x

f(t)dt, p

⎤
⎦=

1

p
f̃(p+ 1),

(b) M [I∞n f(x)] =
Γ(p)

Γ(p+ n)
f̃(p+ n).

8. Show that the integral equation

f(x) = h(x) +

∞∫

0

g(xξ) f(ξ) dξ

has the formal solution

f(x) =
1

2πi

c+i∞∫

c−i∞

[
h̃(p) + g̃(p) h̃(1− p)

1− g̃(p) g̃(1− p)

]
x−p dp.

9. Find the solution of the Laplace integral equation

∞∫

0

e−xξ f(ξ) dξ=
1

(1 + x)n
.

10. Show that the integral equation

f(x) = h(x) +

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

has the formal solution

f(x) =
1

2πi

c+i∞∫

c−i∞

x−p h̃(p)
1− g̃(p)

dp.
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11. Show that the solution of the integral equation

f(x) = e−ax +

∞∫

0

exp

(
−x
ξ

)
f(ξ)

dξ

ξ

is

f(x) =
1

2πi

c+i∞∫

c−i∞
(ax)−p

{
Γ(p)

1− Γ(p)

}
dp.

12. Assuming (see Harrington, 1967)

M
[
f(reiθ)

]
=

∞∫

0

rp−1f(reiθ) dr, p is real,

and putting reiθ = ξ, M {f(ξ)}=F (p) show that

(a) M [f(reiθ); r→ p] = exp(−ipθ)F (p).
Hence, deduce

(b) M −1 {F (p) cos pθ}=Re[f(reiθ)],

(c) M −1 {F (p) sin pθ}=−Im[f(reiθ)].

13. (a) If M [exp(−r)] =Γ(p), show that

M
[
exp(−reiθ)]=Γ(p) e−i pθ,

(b) If M [log(1 + r)] =
π

p sinπp
, then show that

M
[
Re log (1 + reiθ)

]
=
π cos pθ

p sinπp
.

14. Use M −1

{
π

sin pπ

}
=

1

1 + x
= f(x), and Exercises 12(b) and 12(c), re-

spectively, to show that

(a) M −1

{
π cos pθ

sin pπ
; p→ r

}
=

1+ r cos θ

1 + 2r cos θ+ r2
,

(b) M −1

{
π sin pθ

sin pπ
; p→ r

}
=

r sin θ

1 + 2r cos θ+ r2
.

15. Find the inverse Mellin transforms of

(a) Γ(p) cos pθ, where− π

2
<θ<

π

2
, (b) Γ(p) sin pθ.
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) φ(r, α) =φ(r, −α) =H(a− r).

(b) Solve equation (8.4.5) in 0< r<∞, 0<θ<α with the boundary
conditions φ(r, 0)= 0 and φ(r, α) = f(r).

17. Show that

(a)
∞∑
n=1

cos kn

n2
=

[
k2

4
− πk

2
+
π2

6

]
, and (b)

∞∑
n=1

1

n2
=
π2

6
.

18. If f(x) =
∞∑
n=1

ane
−nx, show that

M {f(x)}= f̃(p) = Γ(p) g(p),

where g(p) =
∞∑
n=1

an n
−p is the Dirichlet series.

If an=1 for all n, derive

f̃(p) =Γ(p) ζ(p).

Show that

M

{
exp(−ax)
1− e−x

}
=Γ(p) ξ(p, a).

19. Show that

(a)

∞∑
n=1

(−1)n−1

np
=(1− 21−p) ζ(p).

(b) M

{ ∞∑
n=1

(−1)n−1f(nx)

}
=(1− 21−p) ζ(p)f̃(p).

Hence, deduce

(c)

∞∑
n=1

(−1)n−1

n2
=
π2

12
, (d)

∞∑
n=1

(−1)n−1

n4
=

(
7

8

)
π4

90
.

20. Find the sum of the following series

(a)

∞∑
n=1

(−1)n−1

n2
cos kn, (b)

∞∑
n=1

(−1)n−1

n
sin kn.
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21. Show that the solution of the boundary value problem

r2φrr + rφr + φθθ =0, 0<r <∞, 0<θ<π

φ(r, 0) =φ(r, π) = f(r),

is

φ(r, θ) =
1

2πi

c+i∞∫

c−i∞
r−p

f̃(p) cos
{
p
(
θ− π

2

)}
dp

cos
(πp

2

) .

22. Evaluate ∞∑
n=1

cos an

n3
=

1

12
(a3 − 3πa2 + 2π2a).

23. Prove the following results:

(a) M

⎡
⎣

∞∫

0

ξnf(xξ) g(ξ)dξ

⎤
⎦= f̃(p) g̃(1 + n− p),

(b) M

⎡
⎣

∞∫

0

ξnf

(
x

ξ

)
g(ξ)dξ

⎤
⎦= f̃(p) g̃(p+ n+ 1).

24. Show that

(a) W−α[e−x] = e−x, α > 0,

(b) W
1
2

[
1√
x

exp
(−√

x
)]

=
K1(

√
x)√

πx
, x> 0,

whereK1(x) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186–187)

I(x) =

π/2∫

0

J2
ν (x cos θ) dθ, ν >−1

2
,

can be written as a Mellin convolution

I(x) =

∞∫

0

f(xξ) g(ξ) dξ,

where

f(ξ) = J2
ν (ξ) and g(ξ) =

{
(1− ξ2)−

1
2 , 0<ξ < 1

0, ξ≥ 1

}
.
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(b) Prove that the integration contour in the Parseval identity

I(x) =
1

2πi

c+i∞∫

c−i∞
x−p f̃(p) g̃(1− p) dp, −2ν < c< 1,

cannot be shifted to the right beyond the vertical line Re p=2.

26. If f(x) =

∞∫

0

exp(−x2t2) · sin t
t2

J1(t)dt, show that

M {f(x)}=
Γ

(
p+

3

2

)
Γ

(
1− p

2

)

pΓ(p+ 3)
.

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) M [f(x), p] =L [f(e−t), p],

(b) M [f(x); a+ iω] =F [f(e−t)e−at;ω],

where L is the two-sided Laplace transform and F is the Fourier trans-
form without the factor (2π)−

1
2 .

28. Prove the following properties of convolution:

(a) f ∗ g= g ∗ f,

(c) f(x) ∗ δ(x− 1)= f(x),

(b) (f ∗ g) ∗ h= f ∗ (g ∗ h),
(d) δ(x− a) ∗ f(x) = a−1f

(x
a

)
,

(e) δ n(n− 1) ∗ f(x) =
(
d

dx

)n
(xnf(x)),

(f)

(
x
d

dx

)n
(f ∗ g) =

[(
x
d

dx

)n
f

]
∗ g= f ∗

[(
x
d

dx

)n
g

]
.

29. If M {f(r, θ)}= f̃(p, θ) and ∇2f(r, θ) = frr +
1
r fr +

1
r2 fθθ, show that

M
{∇2f(r, θ)

}
=

[
d2

dθ2
+ (p− 2)2

]
f̃(p− 2, θ).




