
CHAPTER 28

Series Solutions
Near a Regular
Singular Point

REGULAR SINGULAR POINTS

The point x0 is a regular singular point of the second-order homogeneous linear differential equation

if XQ is not an ordinary point (see Chapter 27) but both (x — x0)P(x) and (x — x0)
2Q(x) are analytic at XQ. We only

consider regular singular points at XQ = 0; if this is not the case, then the change of variables t = x — XQ will translate
XQ to the origin.

METHOD OF FROBENIUS

Theorem 28.1. If x = 0 is a regular singular point of (28.1), then the equation has at least one solution of
the form

where A, and an (« = 0, 1, 2, ...) are constants. This solution is valid in an interval
0 < x < R for some real number R.

To evaluate the coefficients an and A, in Theorem 28.1, one proceeds as in the power series method of
Chapter 27. The infinite series

with its derivatives

275

Copyright © 2006, 1994, 1973 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



276 SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

and

are substituted into Eq. (28.1). Terms with like powers of x are collected together and set equal to zero. When
this is done for x" the resulting equation is a recurrence formula. A quadratic equation in A,, called the indicial
equation, arises when the coefficient of x° is set to zero and a0 is left arbitrary.

The two roots of the indicial equation can be real or complex. If complex they will occur in a conjugate
pair and the complex solutions that they produce can be combined (by using Euler's relations and the identity
xa± ib _ xag ± ib in ̂  to form reaj solutions. In this book we shall, for simplicity, suppose that both roots of the
indicial equation are real. Then, if A, is taken as the larger indicial root, A = Ax > A2, the method of Frobenius
always yields a solution

to Eq. (28.1). [We have written an(k]) to indicate the coefficients produced by the method when A = Ax.]
If P(x) and Q(x) are quotients of polynomials, it is usually easier first to multiply (28.1) by their lowest

common denominator and then to apply the method of Frobenius to the resulting equation.

GENERAL SOLUTION

The method of Frobenius always yields one solution to (28.1) of the form (28.5). The general solution (see
Theorem 8.2) has the form y = c^y^x) + C2y2(x) where c1 and c2 are arbitrary constants and y2(x) is a second
solution of (28.1) that is linearly independent from yi(x). The method for obtaining this second solution depends
on the relationship between the two roots of the indicial equation.

Case 1. If A! - A2 is not an integer, then

where y2(x) is obtained in an identical manner as y\(x) by the method of Frobenius, using A^ m place of Ax.

Case 2. If Ax = A2, then

To generate this solution, keep the recurrence formula in terms of A and use it to find the coefficients
an (n > 1) in terms of both A and a0, where the coefficient a0 remains arbitrary. Substitute these an into
Eq. (28.2) to obtain a function y(k, x) which depends on the variables A and x. Then

Case 3. If Ax - A2 = N, a positive integer, then

To generate this solution, first try the method of Frobenius. with A2. If it yields a second solution, then
this solution is y2(x), having the form of (28.9) with d^ = 0. Otherwise, proceed as in Case 2 to generate
y(k, x), whence
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Solved Problems

28.1. Determine whether x = 0 is a regular singular point of the differential equation

As shown in Problem 27.1, x = 0 is an ordinary pont of this differential equation, so it cannot be a regular
singular point.

28.2. Determine whether x = 0 is a regular singular point of the differential equation

Dividing by 2x2, we have

As shown in Problem 27.7, x = 0 is a singular point. Furthermore, both

are analytic everywhere: the first is a polynomial and the second a constant. Hence, both are analytic at x = 0, and
this point is a regular singular point.

28.3. Determine whether x = 0 is a regular singular point of the differential equation

Dividing by x3, we have

Neither of these functions is defined at x = 0, so this point is a singular point. Here,

The first of these terms is analytic everywhere, but the second is undefined at x = 0 and not analytic there. Therefore,
x = 0 is not a regular singular point for the given differential equation.

28.4. Determine whether x = 0 is a regular singular point of the differential equation

Dividing by &c2, we have

Neither of these functions is defined at x = 0, so this point is a singular point. Furthermore, both

are analytic everywhere: the first is a constant and the second a polynomial. Hence, both are analytic at x = 0, and
this point is a regular singular point.
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28.5. Find a recurrence formula and the indicia! equation for an infinite series solution around x = 0 for the
differential equation given in Problem 28.4.

It follows from Problem 28.4 that x = 0 is a regular singular point of the differential equation, so Theorem 24.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining
coefficients of like powers of x, we obtain

Dividing by x^ and simplifying, we have

Factoring the coefficient of an and equating the coefficient of each power of x to zero, we find

and, for n > 1,

or,

Equation (2) is a recurrence formula for this differential equation.
From (1), either a0 = 0 or

It is convenient to keep a0 arbitrary; therefore, we must choose X to satisfy (3), which is the indicial equation.

28.6. Find the general solution near x = 0 of 8x1y" + lOxy' + (x - l)y = 0.

The roots of the indicial equation given by (3) of Problem 28.5 are Xj = ̂ , and X2 = — j. Since Xj - X2 = |,

the solution is given by Eqs. (28.5) and (28.6). Substituting X = ^ into the recurrence formula (2) of Problem 28.5
and simplifying, we obtain

Thus,

and

Substituting X = -y into recurrence formula (2) of Problem 28.5 and simplifying, we obtain

Thus,

and



CHAP. 28] SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT 279

The general solution is

where ki = Cia0 and k2 = C2a0.

28.7. Find a recurrence formula and the indicia! equation for an infinite series solution around x = 0 for the
differential equation

It follows from Problem 28.2 that x = 0 is a regular singular point of the differential equation, so Theorem 28.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining
coefficients of like powers of x, we obtain

Dividing by x^" and simplifying, we have

Factoring the coefficient of an and equating each coefficient to zero, we find

and, for n > 1,

or,

Equation (2) is a recurrence formula for this differential equation.
From (_/), either a0 = 0 or

It is convenient to keep a0 arbitrary; therefore, We require A, to satisfy the indicial equation (3).

28.8. Find the general solution near x = 0 of 2x2y" + 7x(x + I)/ - 3y = 0.

The roots of the indicial equation given by (3) of Problem 28.7 are A,j = -| and A,2 = -3. Since A,j — A,2 = |, the

solution is given by Eqs. (28.5) and (28.6). Substituting A, = £ into (2) of Problem 28.7 and simplifying,

we obtain

Thus,

and
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Substituting X = -3 into (2) of Problem 28.7 and simplifying, we obtain

Thus,

and, since a4 = 0, an = 0 for n > 4. Thus,

The general solution is

where ki = Cia0 and k2 = c2a0.

28.9. Find the general solution near x = 0 of 3.x2)/' - xy' + y = 0.

Here P(x) = -l/(3x) and Q(x) = l/(3x2); hence, x = 0 is a regular singular point and the method of Frobenius is
applicable. Substituting Eqs. (28.2) through (28.4) into the differential equation and simplifying, we have

jt^SA,2 - 4A, + l]a0 + ̂ 1 + 1[3X2 + 2X]a1 + ••• +^ + "[3(X + n)2 -4(X + n) + l]an + ••• = 0

Dividing by x and equating all coefficients to zero, we find

and

From (1), we conclude that the indicial equation is 3A,2 — 4A, + 1 = 0, which has roots A,j = 1 and A,2 = i.

Since A,j — A,2 = |, the solution is given by Eqs. (28.5) and (28.6). Note that for either value of A,, (2) is satisfied by
simply choosing an = 0, n > 1. Thus,

and the general solution is

where k± = c^ and k2 = c2aQ.

28.10. Use the method of Frobenius to find one solution near x = 0 of xzy" + xy' + x2y = 0.

Here P(x) = 1/x and Q(x) = 1, so x = 0 is a regular singular point and the method of Frobenius is applicable.
Substituting Eqs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining
coefficients of like powers of x, we obtain

Thus,

and, for n > 2, (X, + n)2an + an _ 2 = 0, or,
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The stipulation n > 2 is required in (3) because an _ 2 is not defined for n = 0 or n = 1. From (1), the indicial equation
is X2 = 0, which has roots, A,j = A^ = 0. Thus, we will obtain only one solution of the form of (28.5); the second solution,
y2(x), will have the form of (28.7).

Substituting X = 0 into (2) and (3), we find that aj = 0 and an = -(l/w2)an_2- Since «i = 0, it follows that
Q = a3 = a5 = a7= •••. Furthermore,

and, in general, , (k= 1, 2,3, ...). Thus,

28.11. Find the general solution near x = 0 to the differential equation given in Problem 28.10.

One solution is given by (4) in Problem 28.10. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (3) of Problem 28.10, augmented by (2)
of Problem 28.10 for the special case n = 1. From (2), aj = 0, which implies that 0 = a3 = as = a7 = • • •. Then, from (3),

Substituting these values into Eq. (28.2), we have

Recall that In x. (When differentiating with respect to X, x can be thought of as a constant.) Thus,

and

which is the form claimed in Eq. (28.7). The general solution is y = c^^x) + C2y2(x).
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28.12. Use the method of Frobenius to find one solution near x = 0 of xzy" - xy' + y = 0.

Here P(x) = -1/x and Q(x) = l/x2, so x = 0 is a regular singular point and the method of Frobenius is applicable.
Substituting Eqs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining coefficients
of like powers of x, we obtain

Thus,

and, in general,

From (1), the indicial equation is (A - I)2 = 0, which has roots A: = A2 = 1. Substituting X = 1 into (2), we obtain
n2an = 0, which implies that an = 0, n > 1. Thus, yi(x) = a^.

28.13. Find the general solution near x = 0 to the differential equation given in Problem 28.12.

One solution is given in Problem 28.12. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (2) of Problem 28.12. Solving it for
an, in terms of A, we find that an = Q (n> 1), and when these values are substituted into Eq. (28.2), we have
y (A, x) = a0x^. Thus,

and

which is precisely the form of Eq. (28.7), where, for this particular differential equation, bn(ki) = 0(n = 0, 1,2, ...).
The general solution is

where fcj = C^Q, and k2 = C2a0.

28.14. Use the method of Frobenius to find one solution near x = 0 of x^y" + (x2 - 2x)y' + 2y = 0.

Here

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting, Eqs. (28.2) through
(28.4) into the left side of the differential equation, as given, and combining coefficients of like powers of x, we
obtain

Dividing by x^, factoring the coefficient of an, and equating the coefficient of each power of x to zero, we obtain

and, in general, [(A + n) - 2] [(A + n) - l]an + (A + n - l)an _ i = 0, or,

From (_/), the indicial equation is A2 - 3A + 2 = 0, which has roots A: = 2 and A2 = 1. Since A: - A^ = 1, a positive
integer, the solution is given by Eqs. (28.5) and (28.9). Substituting A, = 2 into (2), we have an = —(lln)an_1,
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from which we obtain

and, in general, ak = Thus,

28.15. Find the general solution near x = 0 to the differential equation given in Problem 28.14.

One solution is given by (3) in Problem 28.14 for the indicial. root A,j = 2. If we try the method of Frobenius
with the indicial root X2 = 1, recurrence formula (2) of Problem 28.14 becomes

which leaves a1; undefined because the denominator is zero when n=\. Instead, we must use (28.10) to generate a
second linearly independent solution. Using the recurrence formula (2) of Problem 28.14 to solve sequentially for
an (n = 1, 2, 3, ...) in terms of X, we find

Substituting these values into Eq. (28.2) we obtain

and, since X - X2 = X - 1,

Then

and

This is the form claimed in Eq. (28.9), with d_i = -l, d0 = aQ, di = 0, d3 =|a0,.... The general solution is
y = crf^x) + C2y2(x).
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28.16. Use the method of Frobenius to find one solution near x = 0 of Jt2/' + xy' + (x2 - \)y = 0.

Here

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

Thus,

and, for n > 2, [(A + nf - l]an + an _ 2 = 0, or,

From (_/), the indicial equation is X2 - 1 = 0, which has roots A^ = 1 and A2 = —1. Since AJ - A^ = 2, a positive integer,
the solution is given by (28.5) and (28.9). Substituting X = 1 into (2) and (3), we obtain aj = 0 and

Since «i = 0, it follows that 0 = a3 = a5 = a7= •••. Furthermore,

and, in general,

Thus,

28.17. Find the general solution near x = 0 to the differential equation given in Problem 28.16.

One solution is given by (4) in Problem 28.16 for the indicial root A: = 1. If we try the method of Frobenius
with the indicial root A2 =—1, recurrence formula (3) of Problem 28.16 becomes

which fails to define a2 because the denominator is zero when n = 2. Instead, we must use Eq. (28.10) to generate
a second linearly independent solution. Using Eqs. (2) and (3) of Problem 28.16 to solve sequentially for
an(n= 1, 2, 3, ...) in terms of A, we find 0 = al = a3 = a5 = ••• and

Thus,

Since A-A 2 = A + 1,
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and

Then

This is in the form of (28.9) with d -^ = da = aa, di = 0, d2 = a0, di = 0, d4 = •a0,....The general solution is
y = c1y1(x) + c2y2(x).

28.18. Use the method of Frobenius to find one solution near x = 0 of x2y" + (x2 + 2x)y' - 2y = 0.

Here

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

Dividing by x^, factoring the coefficient of an, and equating to zero the coefficient of each power of x, we obtain

and, for n > 1,

which is equivalent to

From (_/), the indicial equation is X2 + X - 2 = 0, which has roots Xj = 1 and ̂  = -2. Since Xj - ^ = 3, a positive
integer, the solution is given by Eqs. (28.5) and (28.9). Substituting X = 1 into (2), we obtain an = [-11 (n + 3)]an _ 1;

which in turn yields

and
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and, in general,

Hence,

which can be simplified to

28.19. Find the general solution near x = 0 to the differential equation given in Problem 28.18.

One solution is given by (3) in Problem 28.18 for the indicial root A,j = 1. If we try the method of Frobenius
with the indicial root X2 = -2, recurrence formula (2) of Problem 28.18 becomes

which does define all an(n > 1). Solving sequentially, we obtain

and, in general, ak = (-I)ka0lk\. Therefore,

This is precisely in the form of (28.9), with rf_j = 0 and dn = (-I)"a0/n\. The general solution is

28.20. Find a general expression for the indicial equation of (28.1).

Since x = 0 is a regular singular point; xP(x) and x2Q(x) are analytic near the origin and can be expanded in
Taylor series there. Thus,

Dividing by x and x2, respectively, we have

Substituting these two results with Eqs. (28.2) through (28.4) into (28.1) and combining, we obtain

which can hold only if

Since a0^0 (a0 is an arbitrary constant, hence can be chosen nonzero), the indicial equation is
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28.21. Find the indicial equation of x2y" + xe*y' + (x3 - \)y = 0 if the solution is required near x = 0.

Here

and we have

from which/70 = 1 and qQ = —1. Using (_/) of Problem 28.20, we obtain the indicial equation as X2 - 1 = 0.

28.22. Solve Problem 28.9 by an alternative method.

The given differential equation, 3x2y" — xy' + y = 0, is a special case of Ruler's equation

where bj(j=0, 1, ... , n) is a constant. Euler's equation can always be transformed into a linear differential equation
with constant coefficients by the change of variables

It follows from (2) and from the chain rule and the product rule of differentiation that

Substituting Eqs. (2), (3), and (4) into the given differential equation and simplifying, we obtain

Using the method of Chapter 9 we find that the solution of this last equation is y = c^ + c2e
<1/3)z. Then using (2)

and noting that e(1/3)z = (e1)113, we have as before,

28.23. Solve the differential equation given in Problem 28.12 by an alternative method.

The given differential equation, x2y" — xy' + y = 0, is a special case of Euler's equation, (_/) of Problem 28.22.
Using the transformations (2), (3), and (4) of Problem 28.22, we reduce the given equation to

The solution to this equation is (see Chapter 9) y = c^ + c2zez. Then, using (2) of Problem 28.22, we have for the
solution of the original differential equation

as before.
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28.24. Find the general solution near x = 0 of the hypergeometric equation

where A and B are any real numbers, and C is any real nonintegral number.

Since x = 0 is a regular singular point, the method of Frobenius is applicable. Substituting, Eqs. (28.2) through
(28.4) into the differential equation, simplifying and equating the coefficient of each power of x to zero, we obtain

as the indicial equation and

as the recurrence formula. The roots of (1) are A^ = 0 and A^ = 1 - C; hence, A: - A^ = C - 1. Since C is not an integer,
the solution of the hypergeometric equation is given by Eqs. (28.5) and (28.6).

Substituting A, = 0 into (2), we have

which is equivalent to

Thus

and y>i(x) = aQF(A, B; C; x), where

The series F(A, B; C; x) is known as the hypergeometric series; it can be shown that this series converges for -1 < x < 1.
It is customary to assign the arbitrary constant ag the value 1. Then y\(x) = F(A, B; C; x) and the hypergeometric series
is a solution of the hypergeometric equation.

To find y2(x), we substitute A, = 1 - C into (2) and obtain

or

Solving for an in terms of a0, and again setting a0 = 1, it follows that

The general solution is y = c^^x) + C2y2(x).
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Supplementary Problems

In Problems 28.25 through 28.33, find two linearly independent solutions to the given differential equations.

28.25.

28.27.

28.29.

28.31.

28.33.

2x2y"-xy' + (l-x)y = 0

3x2y" - 2xy' - (2 + x2)y = 0

x2y" + xy'

xy" -(x +

x2y" + (x2

+ x3y = 0

l)y'-y = 0

- 3x)y' -(x-4)y = 0

28. 26. 2x2y" + (x2 - x)y' + y = 0

28.28. xy" + y'-y = 0

28. 30. x2y" + (x-x2)y'-y = 0

28.32. 4x2y" + (4x + 2x2)y' + (3x - l)y = 0

In Problem 28.34 through 28.38, find the general solution to the given equations using the method described in Problem 28.22.

28.34. 4x2y" + 4xy' - y = 0

28. 36. 2x2y" + 1 Ley' + 4y = 0

28.38. x2y"-6xy' = 0

28.35. x2y"-3xy' + 4y = 0

28.37. x2y"-2y = 0



CHAPTER 29

Some Classical
Differential Equations

CLASSICAL DIFFERENTIAL EQUATIONS

Because some special differential equations have been studied for many years, both for the aesthetic beauty
of their solutions and because they lend themselves to many physical applications, they may be considered
classical. We have already seen an example of such an equation, the equation of Legendre, in Problem 27.13.

We will touch upon four classical equations: the Chebyshev differential equation, named in honor of Pafnuty
Chebyshey (1821-1894); the Hermite differential equation, so named because of Charles Hermite (1822-1901);
the Laguerre differential equation, labeled after Edmond Laguerre (1834-1886); and the Legendre differential
equation, so titled because of Adrien Legendre (1752-1833). These equations are given in Table 29-1 below:

Table 29-1
(Note: n = 0, 1,2,3, ...)

Chebyshev Differential Equation

Hermite Differential Equation

Laguerre Differential Equation

Legendre Differential Equation

(1 - x2) y" -xy' + n2y = 0

y" - 2xy' + 2ny = 0

xy" + (1 - *)/ + ny = 0

(1 - x2)y" - 2xy' + n(n + l)y =0

POLYNOMIAL SOLUTIONS AND ASSOCIATED CONCEPTS

One of the most important properties these four equations possess, is the fact that they have polynomial
solutions, naturally called Chebyshev polynomials, Hermite polynomials, etc.

There are many ways to obtain these polynomial solutions. One way is to employ series techniques, as
discussed in Chapters 27 and 28. An alternate way is by the use of Rodrigues formulas, so named in honor of
O. Rodrigues (1794-1851), a French banker. This method makes use of repeated differentiations (see, for example,
Problem 29.1).

These polynomial solutions can also be obtained by the use of generating Junctions. In this approach, infinite
series expansions of the specific function "generates" the desired polynomials (see Problem 29.3). It should be
noted, from a computational perspective, that this approach becomes more time-consuming the further along
we go in the series.
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