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Chapter one  

The real numbers 

Section 1.1 the algebraic properties of real numbers  

Definition: A function 𝑔 ∶ 𝐴 × 𝐴 ⟶ 𝐴  is said to be a binary operation of  . 

1.1.1 Algebraic properties of real numbers  

     On the set of real numbers ( )there are two binary operations, denoted 

by  and   and called addition and multiplication, respectively. These 

operations satisfy the following properties: 

(A1)    for all  (commutative property of addition)   

(A2)   for all  (ossociative property of 

addition) 

(A3) there exists an element  in  such that   for all  

(existence of 0 element). 

(A4) for each  there exists an element  such that 

 (existence of negative element). 

From this conditions we get that (R,+) is commutative group. 

(M1)   for all  (commutative property of 

multiplication) 
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(M2)  for all  (ossociative property of 

multiplication) 

(M3) there exists an element 1distinct from  in  such that   

for all  (existence of unit element). 

(M4) for each  there exists an element  such that 

 (existence of reciprocals). 

From this conditions we get that (R-{0},.) is commutative group. 

(D)   and   for all 

 (distribution property of multiplication over addition).  

Hence (R,+,.) is a field. 

Theorem 1.1.2   

(a) if  and  are elements of  such that , then . 

(b) if  and  are elements of  such that , then . 

Proof. (a) 

. 

 (b) 

. 
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Theorem 1.1.3  

(a) if  and  are elements of  such that , then . 

(b) if  and  are elements of  such that , then 

.  

Proof. (a)  

Since                                            , 

then                                 ,  

and hence                                        . 

          (b)  

Since                                                 , 

then                                      ,  

and hence                                        . 

                                                                                                                                                                                                 ⃞ 

 

Theorem 1.1.4  let  be arbitrary elements of . Then: 

(a) the equation  has the unique solution . 

(b) the equation  has the unique solution . 

Proof. (H.W.) 

(a) 

Since                                             

If        satisfy the above equation, then we get what we want 

Note that      
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To show that it is the only solution, suppose that  is any solution of this 

equation, then 

. 

If we add  to both sides, we get 

 

By using (A3), (A4) and (A2) we get 

 

Hence  

 

(b) 

Since                                             

If        satisfy the above equation, then we get what we want 

Note that      

To show that it is the only solution, suppose that  is any solution of this 

equation, then 

. 

If we multiplying both sides by , we get 

 

By using (M3), (M4) and (M2) we get 

 

Hence  
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   In this three theorems established so far we have considered the 

properties of addition and multiplication separately. To examine the 

interplay between the two operations we must employ the distributive 

property (D). this is illustrated in the next theorem. 

 

 

 

Theorem 1.1.5  If a is any element of  then:  

(a)    

(b)    

(c)     

(d)   

Proof. (a) 

From (M3) we know that  then (D) and (A3) give 

 

Since 0 element is unique, by theorem 1.1.2(a) we conclude that  

(b) we can use (D)with (M3), (A4), and part (a) above to obtain 

 

Thus from theorem 1.1.3(a) we conclude that  

(c) since  according to Thus from theorem 1.1.3(a) we get  
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(d) in part (b) above put . Then  

 

And from (c) the assertion follows with . 

                                                                                                                                    

 

Theorem 1.1.6 Let   then: 

(a) If  then  and . 

(b) If  and then  

(c) If  then either   or . 

Proof. 

(a) Let   and suppose  then  

 

This contrary assertion to (M3). Thus   

Now since  by using theorem 1.1.3(b) we get that 

 

(b) If we multiply both sides of equation by  and used 

(M2), we get 

 

Thus   is the same as  

(c) assume that  and since  we apply part (b) above 

to get that 
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The rest is as the same (H.M.) 

                                                                                                                               

 

 

Rational numbers  

Definition. Any element of  can be written in the form  where 

 and   are called rational number which is denoted by .   

i.e.  

 

Theorem.1.1.7 There does not exist a rational number  such that  . 

Proof. Suppose that  is rational, then there exist an integer elements 

 such that  , we assumed that  have no common integer 

factors other than 1, then   , we see that  

even this implies that  is also even ( if not then  is odd, then 

 is also odd ). There for  must be an odd integer, 

however   for some integer  because  is even, and hence 

it follows that  is even and hence  is also   

even integer, and we arrived at a contradiction to the fact that no integer is 

both even and odd so   is not rational number. 

 

 

 Section 1.2  The order properties of  
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1.2.1The order properties of  

There is a non empty subset  of   called the set of strictly positive real 

numbers, that satisfies the following properties: 

(1) If  then . 

(2)  If  then . 

(3) If  then exactly one of the following holds: 

 

 

Definition. If  we say that  is strictly positive real number and write 

. If  or is 0 we say that  is positive real number and write 

. If  we say that  is strictly negative real number and write 

. If   or is 0 we say that  is negative real number and write 

.  

Definition. Let  

(1) If  we write  or  .  

(2) If  we write  or  .   

Note that we write   to mean that both   and  are 

satisfied. Similarly,  and  we shall write . Also, if   

 and  are satisfied, we shall write  . 

 

We shall now establish some of  the basic properties of the order relation 

on . These are the familiar “rules of inequalities”     
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Theorem 1.2.1 Let  

(a) If  and b  , then . 

(b) Exactly one of the following holds:  , , .     

(c) If   and , then . 

Proof. (a) 

Since  and, , then    and  and from order 

property of  (1) we get  

 

Then  

(b) By order property of   (3) we get 

 

And hence 

 

(c) If , then , so from part (b) above we get either  

  or   

And hence that is either , or  

In either case one of the hypotheses is contradicted. Therefore we must 

have  . 

                                                                                                                                

 

Theorem 1.2.2  
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(a) If  and  then  . 

(b)  . 

(c)  If , then . 

Proof.  (a) 

By the order property of  (3) if , then either   or  . 

If  then by the order property of  (2), we have 

. 

Similarly, if , then  , we have from theorem 1.1.5 

that  

 

(b) since , part (a) implies that  . 

(c) we use the induction for the natural number . If  is just part (b). if 

we suppose the assertion is true for the natural number  . 

then , we then have  by the order property (1). Hence the 

assertion is true for all natural numbers. 

                                                                                                                                   

Theorem 1.2.3 Let  

(a) If , then . 

(b) If  and  , then  , 

(c) If , and , then . 

           If  and , then   

(d) If , then  

If , then . 
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Proof. 

(a) Since , then ,The conclude follows from the fact that  

 

Then  

(b) Since , , then   

 

Hence  

 

(c) Since , , then   

 

Hence  

 

On the other hand, if  so that  

 

Hence  

 

(d) If , then   by the order property, so that , If , 

then from part (c) with  implies that , 

contradicting theorem 1.2.2(b)therefore, we have    

Similarly if , then we assume that , and we have 

contradicting where , hence  
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Theorem 1.2.4 If   and are in  and   then . 

Proof. 

Since  it follows from theorem 1.2.3(a) that  and 

also that , therefore we have  

 

By theorem 1.2.2(c), we have , therefore it follows , then we 

can get  

 

Hence  

 

                                                                                                                                

Corollary 1.2.1  and , then . 

Proof. Take  in theorem 1.2.4 

                                                                                                                                

Theorem 1.2.5 If  is such that  for every strictly positive 

, then  . 

Proof. 

Suppose that for contrary that  . Then it follows from 

corollary 1.2.1 that . If we take . Then we obtain 

, so that it is contradiction with , for every . Since 

the supposition that , leads to a contradiction, we conclude    
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Theorem 1.2.6 If  then either 

(1) , and . 

(2) , and . 

Proof. Note that  implies that  and (since if either  or  

is 0 then the product would be 0). Then either  or . If , 

then , and therefore 

 

Then    

Similarly, if  , then , so that 

 

Then   

                                                                                                                                

Corollary 1.2.2   If  then either 

(1) , and . 

(2) , and . 

Proof. (H.W.) 

                                                                                                                                   

1.3 Absolute value  

Definition: If  the absolute value of  denoted by  is defined by 
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Note that  for all , moreover, if  , then . 

 

Theorem 1.3.1 

(a)   

(b) . 

(c) If  , then  

(d)  

(e)  

(f)  

(g)   

Proof:  

(a) If , then If , then   so that 

 If , then  so that  

(b) If either  or  is , then both and . If  and 

, then  so that . If  and , then 

 so that . The case  and  is  

similarly. Finally if  and  , then  

(c) suppose , then we have both  and , since the latter 

inequality is equivalent to , we have  conversely if 

 then we have both  and , so that . 

(d) take  in part (c) above. 
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(e) since we know that  and , then 

. Hence we have  

(f) from , we obtain . 

Similarly, from , we obtain 

. Combining these two inequalities we get 

 

(g) if we put  in staid of  in (e) we get what we want. 

                                                                                                                         

Note that the inequality in (e) is called triangle inequality. The distance 

from  to the origin is , and the distance from  to  is . 

 

 

Neighborhood  

Definition: Let , then 

(i) for , the -neighborhood of  is the set 

. 

(ii) A neighborhood of  is any set that contains an -neighborhood of  for 

some . 

Example: give the 2- neighborhood of -1. 

Solution:   
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Theorem 1.3.2 Let . If  is such that  belongs to every 

neighborhood of , then . 

Proof: since  belongs to  for every , then  for 

every  so that  for every  and since  

for every , then from Theorem 1.2.5 we have  and hence 

 

                                                                                                                                 

Examples. (a) Let . If , then ; hence, if  

is the smaller of the two numbers  and , we see that  is an -

neighborhood of  contained in . Thus is a neighborhood of each of its 

points. But if , then  is not neighborhood of 0 and 1 

because for any  there exists a number  satisfying  and 

  (therefore ) i.e. there is no -neighborhood of 0 and 1 

contained in . 

(b) prove that if  and , then . 

Since                              

 

By using the T. inequality we get 

 

Hence  . 

 

Completeness in  

Definition: Let  be a subset of . 

(1) An element , is said to be an upper bound of  if  



18 
 

(2) An element , is said to be a lower bound of  if  

 

Example:(a) Find u. b. and l. b. to the set . 

Since , then  is an u. b. of the set  So that  

, then  is a l. b. of the set  

(b) Find u. b. and l. b. to the set . 

Since , then  is an u. b. of the set 

 So that  , then  is 

a l. b. of the set  

Remark: we say that a subset  of  is bounded above if it has an upper 

bound. Similarly if a set  of  has a lower bound we say it is bounded 

below. if a set  of  has both an upper bound and a lower bound we say it 

is bounded. if a set  of  don’t has either an upper bound or a lower 

bound we say it is unbounded. 

Definition: Let  be a subset of . 

(1) If  is bounded above, then an upper bound is said to be a supremum  

(denoted by Sup(S)) (or a least upper bound) of  if it is less than every 

other upper bound of  

i.e. an upper bound  of , is said to be supremum if for every anther 

upper bound , we have  

(2) If  is bounded below, then a lower bound is said to be a infimum 

(denoted by inf(S)) (or a greatest lower bound) of  if it is greatest than 

every other lower bound of  

i.e. a lower bound  of , is said to be infimum if for every anther 

lower bound , we have  
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Example: Find Sup(S) and inf(S) for the following sets 

(1) S=(-1,5)       (2) S=[0,2)    (3) S={1,2,4,7,8} 

Solution:  

(1) Sup(S)=5,  inf(S)=-1 

(2) Sup(S)=2,  inf(S)=0 

(3)  Sup(S)=8,  inf(S)=1 

 

Remark: If inf(S)  S, then inf(S)=min(S). similarly If Sup(S)  S, then 

Sup(S)=max(S). 

 

Lemma 1.3.1: An upper bound  of a non-empty set  of  is the 

supremum of   if and only if each   there exists  such 

that  

Proof: (H.W.) 

Suppose that   is u. b. of  and each   there exists  such 

that , wanted  , if  is  the only u. b., then 

 . o. w. Let , then either  or 

. If , if we take , hence there exists 

, this contradiction 

since . Hence , then .  

Conversely suppose that . And want each   there exists 

 such that . Directly from definition of supremum. 
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The supremum property of  

Every non-empty set of real numbers that has an upper bound has a 

supremum.  

Note that the analogous property of infima can be readily established. 

Example: Let  which is bounded above. And let a in R, define 

. Prove that  

 

Proof: 

Suppose that , then   

Therefore  is an upper bound for , consequently, we have  

, if  is any upper bound of the set , then  

, then  is an upper 

bound for , and since , then implies that 

, then we have that , but 

, hence  

 

                                                                                                                                                                                                                

Archimedean property 

If  then there exists  such that   
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Proof: If the conclusion fails (i.e.  such that, ). Then   is an 

upper bound of  . Therefore by the supremum property, the non-empty 

set  has a supremum . Since , it is follows from lemma 

1.3.1that there exists   such that . But then , 

and since , this contradicts the assumption that  is an upper 

bound. 

                                                                                                                                 

Corollary 1.3.1 Iet  and   be strictly positive real numbers. Then: 

(a) There exists  such that . 

(b) There exists  such that . 

(c) There exists  such that . 

Proof: (H.W.) 

(a) since , then from Archimedean property there exists 

, such that . 

(b) setting in (a) above gives us , and since 

, hence . 

(c) the Archimedean property assures us that the subset  of 

 is not empty. Let be the least element of this set then we have 

. 

                                                                                                                                

 

Density of rational numbers in . 

The density Theorem. If  and  are real numbers with  then there 

exists a rational number   such that . 
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Proof: suppose that , by the Archimedean property there exists 

 such that . For such an . We have . 

Applying corollary 1.3.1(c) to , we obtain  such that 

, this  also satisfies , (because ). 

Since  and then . 

Thus, we have  , so that , is a 

rational number satisfying . 

                                                                                                                                    

Corollary 1.3.2 If  and  are real numbers with  then there exists an 

irrational number   such that . 

Proof: 

Applying the Density theorem to the real number   and  we get 

that there exists a rational number  such that , then 

 is irrational number satisfying . 

                                                                                                                                    

Section 1.4 Intervals and Cluster Point  

Intervals in  

If , we defined 

1- The open interval  to be the set . 

2- The closed interval  to be the set . 

3- The half open (half closed) interval  to be the set 

 .  and ( . 

4- The open rays  and  to be the sets 
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.   And    

5- The closed rays [  and  to be the sets 

.   And    

6- . 

7-     and    . 

 

 

 

Definition: we say that a sequence of intervals  is nested if the 

following chain of inclusions holds:  

 

 

Example: if , then   for 

each so that the intervals are nested, the element 0 belongs to all 

 and the Archimedean property can be used to prove that 0 is the only 

such element. 

 


