المقرر ر ۱۰۲

 $\pi: r = 1 + \cos(\theta)$ وخارج المنحني $r = 3\cos(\theta)$ جن جد مساحة المنطقة الواقعة داخل (ح) وخارج المنحني (د) جد مساحة المنطقة المشتركة بين

$$2\pi-4:$$
 $r=4\sin(\theta)$, $r=4\cos(\theta)$ (1)

$$6\pi-16:$$
 . $r=2(1-\sin(\theta))$, $r=2(1+\sin(\theta))$ (Y)

$$\frac{5}{4} \pi : \tau = 3\cos(\theta)$$
 , $r = 2\cos^2(\frac{\theta}{2})$ (r)

$$2\left(\frac{4}{3}\pi-\sqrt{3}\right):$$
 . $r=2$ ($r=4\sin(\theta)$ (1)

(ذ) جد مساحة المنطقة المشتركة الواقعة في الربع الأول والرابع للمنحنيين $3\pi - 4\sqrt{2} + 3$: $r = 2(1 - \sin(\theta))$ ، $r = 2(1 + \cos(\theta))$

()

. $r=2+\cos(\theta)$ وخارج $r=5\cos(\theta)$ وخارج (۱) جد مساحة المنطقة الواقعة داخل $\frac{8}{3}\pi+\sqrt{3}$: ج

. $r=2+\cos(\theta)$ وداخل $r=5\cos(\theta)$ وداخل النطقة الواقعة خارج جد مساحة المنطقة الواقعة خارج جد مساحة المنطقة الواقعة خارج

 $\frac{43}{12}\pi - \sqrt{3}$: جد مساحة المنطقة المشتركة بين $r = 2 + \cos(\theta)$ ، $r = 5\cos(\theta)$ بين (۳)

 π : ج د مساحة المنطقة الواقعة داخل $r=3\sin(heta)$ وخارج $r=1+\sin(heta)$

 $rac{\pi}{4}:$ جد مساحة المنطقة الواقعة خارج $r=3\sin(heta)$ وداخل $r=1+\sin(heta)$

 $rac{5}{4}\pi$: جد مساحة المنطقة المشتركة بين $r=3\sin(heta)$ ، $r=3\sin(heta)$

. $heta= heta_2$ الى $heta= heta_1$ المنحنيات القطبية التالية من $heta= heta_1$ الم

$$\sqrt{2}+\ln(\sqrt{2}+1):$$
 ج $\theta=\frac{\pi}{2}$ الی $\theta=0$ من $r=\frac{2}{1+\cos(\theta)}$ (ا)

$$:$$
 : $heta=rac{\pi}{2}$ الى $heta=0$ ن ، $r heta=1$ (ب)

$$:$$
 ج $:$ $\theta=1$ الی $\theta=rac{1}{2}$ ، من $r=\theta\sin(heta)$

$$4a: r = a(1 + \cos(\theta))$$
 ج $: r = a(1 + \cos(\theta))$

$$\frac{\pi}{8}-\frac{3}{8}:$$
 ج $\theta=\frac{\pi}{4}$ الى $\theta=0$ من $r=\cos^3(\frac{\theta}{3})$ (ج)

$$2\pi$$
 : $\theta=\sqrt{2}\,\pi$ الى $\theta=0$ الى $r=\sqrt{1+\sin(2 heta)}$ (ح)

$$-rac{5}{3}\sqrt{2}+rac{8}{3}$$
: ج $heta=0$ الی $heta=0$ رخ) ($r=\sin^4(rac{ heta}{4})$

ا. د. حسام لوتي سعد المقرر ر ۱۰۲

١٢- جد مساحة السطح الناتج من دوران قوس من كل منحني من المنحنيات القطبية التالية من الى $\theta = \theta_2$ حول آلمحور المبين فى كل منها.

$$\frac{32}{5}a^2\pi$$
: ج $=a(1+\cos(\theta))$ النصف العلوي من المنحنى (ا)

$$2\pi a^2(1-rac{1}{\sqrt{2}}):$$
 ج $=a\sqrt{\cos(2 heta)}$ (ب) المحور $=a\sqrt{\cos(2 heta)}$ الم

$$2a^2\pi: \tau$$
 . y المحور $a>0$ ، $r=2a\cos(\theta)$ (ت)

، $heta= heta_1$ والشعاعين r=f(heta) والشعاعين المساحة المحددة بالمنحني r=f(heta)حول المحور القطمى. $heta= heta_2$

$$rac{4}{3}\pi$$
 : $heta=rac{\pi}{2}$ ، $heta=0$ الشعاعين ، $r=2\cos(heta)$ (

$$2\pi^2$$
 : $\theta=\pi$ ، $\theta=0$ الشعاعين ، $r=2\sin(\theta)$ (ب)

$$\frac{4}{21}\pi$$
: ج $\theta=\pi$ ، $\theta=0$ الشعاعين ، $r=\cos^2(\theta)$ (ت)

(°)

$$\frac{2}{3}\pi(\frac{15}{16}\pi+3)$$
: ج $\theta=\frac{\pi}{2}$ ، $\theta=0$ الشعاعين ، $r=1+\sin(\theta)$ (ج)

١٤ _ اختبر تقارب المتتابعات التالية.

ج: متقاربة
$$($$
ت $)$ ج $:$ متباعدة $=$ $\left(\frac{n+1}{n-1}\right)^n$ ج $:$ متباعدة $=$ $\sqrt[n]{n}$

$$n an^{-1}(rac{1}{n})$$
 ج: متقاربة (ح) ج: متقاربة (ح) ج: متقاربة (ث)

ج: متقاربة
$$\frac{\sin^2(n)}{2^n}$$
 (خ) ج: متقاربة (د) ج: متقاربة (د) ج: متقاربة (خ)

ج: متقاربة
$$n(1-\cos(\frac{1}{n}))$$
 ج: متقاربة $\frac{e^n-e^{-n}}{e^n+e^{-n}}$ (ر)

١٥ ـ اختبر تقارب او تباعد المتسلسلات التالية.

ج: متقاربة :
$$\sum_{n=1}^{\infty} \frac{(\ln(n))^n}{n^n}$$
 ج: متقاربة : $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$ ج: متقاربة

ت : متباعدة
$$\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n+1}$$
 (ث : متقاربة : $\sum_{n=1}^{\infty} \frac{2^n-1}{2^{n-1}n^2}$ (ت)

ج: متقاربة
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$
 ح: متقاربة $\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$ ح: متقاربة

رخ)
$$\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n)!}$$
 ح: متباعدة $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ ختباعدة (خ)

ا. د. حسام لوتي سعد المقرر ر ۱۰۲

وذ)
$$\sum_{n=0}^{\infty} \frac{1}{n^2+1}$$
 ج: متقاربة $\sum_{n=0}^{\infty} \frac{2^n+5}{3^n}$ ج: متقاربة

ن : متباعدة
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$$
 (س) $\sum_{n=1}^{\infty} n \tan(\frac{1}{n})$ (ز)

$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$
 (ص) ج $\sum_{n=0}^{\infty} \frac{(-1)^n}{2} \left(\frac{1}{3+\sin(x)}\right)^n$ (ش)

$$\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$$
 (ض)

التي تجعل المتسلسلات التالية متقاربة: x جد قيم x التي تجعل المتسلسلات التالية متقاربة:

$$e^{-1} < x < e^1$$
: ج $\sum_{n=0}^{\infty} (\ln(x))^n$ (ب) $-4 < x \leqslant 0$: ج $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n2^n}$ (ب)

$$-1 < x < 1:$$
ج $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$ (ئ) $\mathbb{R}/\{\mp (2n+1)\frac{\pi}{2}\}:$ ج $\sum_{n=0}^{\infty} \sin^n(x)$ (ت)

$$-\frac{2}{3} \leqslant x < 0 : \underbrace{\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}}_{\text{constant}} \text{ (C)} \qquad -1 < x < 1 : \underbrace{\sum_{n=1}^{\infty} (\ln(n)) x^n}_{\text{constant}} \text{ (C)}$$

$$0 < x \le 6 : \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-3)^n}{n3^n}$$
 (\dot{z})

١٧ ـ جد مفكوك متسلسلة ماكلورين للدوال التالية ثم جد فترة تقارب المتسلسلات الناتجة.

.
$$x$$
 ج جميع قيم د $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$ ج ج جميع $f(x)=\cos(x)$ د التسلسلة متقاربة لجميع قيم

.
$$x$$
 ج $\int_{n=1}^{\infty} \frac{(-1)^n 2^{2n-1} x^{2n}}{(2n)!}$: ج $f(x) = \cos^2(x)$ (ب)

رت)
$$\sum_{n=0}^{\infty} \frac{p(p-1)\cdots(p-(n-1))}{n!} x^n$$
 : ج $f(x) = (1+x)^p$ (ت)

$$1 < x < 1$$
 متقاربة عندما ، $\sum_{n=0}^{\infty} x^n$: ج $f(x) = \frac{1}{1-x}$ (ث)

.
$$x$$
 متقاربة لجميع قيم بيد $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$: $f(x) = \frac{e^x - e^{-x}}{2}$ (ج)

.
$$x$$
 متقاربة لجميع قيم ، $\sum_{n=0}^{\infty} \frac{(2x)^{2n}}{(2n)!}$: $f(x) = \frac{e^{2x} + e^{-2x}}{2}$ (ح)

المقرر ر ۱۰۲

$$1 - \frac{1}{2} < x < \frac{1}{2}$$
 عندما و التسلسلة متقاربة عندما ي $2 \sum_{n=0}^{\infty} \frac{(2x)^{2n+1}}{2n+1} : f(x) = \ln\left(\frac{1+2x}{1-2x}\right)$ جن

$$1 < x < 1$$
 د $1 < x < 1$ د $1 < 1$ د $1 < x < 1$ د $1 <$

م جد مفكوك متسلسلة تايلر للدوال التالية حول النقطة x=a ثم جد فترة تقارب المتسلسلات الناتحة.

.
$$x$$
 متقاربة لجميع قيم متقاربة $\sum_{n=0}^{\infty} \frac{(\ln(2))^n}{n!} (x-1)^n$: $a=1 \; , \; f(x)=2^x$ (ا)

رب)
$$\ln(5) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n5^n} (x-5)^n$$
 : ج $a=5$, $f(x)=\ln(x)$ رب)