
CHAPTER 6 

BASICS OF SET-CONSTRAINED AND 
UNCONSTRAINED OPTIMIZATION 

6.1 Introduction 

In this chapter we consider the optimization problem 

minimize f(x) 

subject to x G Ω. 

The function / : Rn —► R that we wish to minimize is a real-valued function 
called the objective function or cost function. The vector x is an n-vector of 
independent variables: x = [xi, #2, · · ·, #n]T £ Rn · The variables X i , . . . , xn 

are often referred to as decision variables. The set Ω is a subset of Rn called 
the constraint set or feasible set. 

The optimization problem above can be viewed as a decision problem that 
involves finding the "best" vector x of the decision variables over all possible 
vectors in Ω. By the "best" vector we mean the one that results in the-smallest 
value of the objective function. This vector is called the minimizer of / over 
Ω. It is possible that there may be many minimizers. In this case, finding any 
of the minimizers will suffice. 

An Introduction to Optimization, Fourth Edition. 81 
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc. 



8 2 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION 

There are also optimization problems that require maximization of the 
objective function, in which case we seek maximizers. Minimizers and maxi-
mizers are also called extremizers. Maximization problems, however, can be 
represented equivalently in the minimization form above because maximizing 
/ is equivalent to minimizing —/. Therefore, we can confine our attention to 
minimization problems without loss of generality. 

The problem above is a general form of a constrained optimization prob-
lem, because the decision variables are constrained to be in the constraint 
set Ω. If Ω = Rn , then we refer to the problem as an unconstrained opti-
mization problem. In this chapter we discuss basic properties of the general 
optimization problem above, which includes the unconstrained case. In the 
remaining chapters of this part, we deal with iterative algorithms for solving 
unconstrained optimization problems. 

The constraint "x G Ω" is called a set constraint Often, the constraint 
set Ω takes the form Ω = {x : h(x) = 0, g(x) < 0}, where h and g are 
given functions. We refer to such constraints as functional constraints. The 
remainder of this chapter deals with general set constraints, including the 
special case where Ω = Rn . The case where Ω = Rn is called the unconstrained 
case. In Parts III and IV we consider constrained optimization problems with 
functional constraints. 

In considering the general optimization problem above, we distinguish be-
tween two kinds of minimizers, as specified by the following definitions. 

Definition 6.1 Suppose that / : Rn —► R is a real-valued function defined 
on some set Ω C Rn . A point x* G Ω is a local minimizer of / over Ω if there 
exists ε > 0 such that f(x) > f(x*) for all x G Ω \ {x*} and \\x — x*\\ < ε. 
A point sc* G Ω is a global minimizer of / over Ω if f(x) > f(x*) for all 
i c e f i \ { a i * } . ■ 

If in the definitions above we replace ">" with ">," then we have a strict 
local minimizer and a strict global minimizer, respectively. In Figure 6.1, we 
illustrate the definitions for n = 1. 

If x* is a global minimizer of / over Ω, we write f(x*) = πύη^Ω / ( # ) and 
x* = argminxGQ f(x). If the minimization is unconstrained, we simply write 
x* = argminjp f(x) or x* = arg min/(cc). In other words, given a real-valued 
function / , the notation arg min f(x) denotes the argument that minimizes the 
function / (a point in the domain of / ) , assuming that such a point is unique 
(if there is more than one such point, we pick one arbitrarily). For example, if 
/ : R —> R is given by f(x) = (x + l ) 2 + 3, then argmin/(x) = —1. If we write 
a rgmin^^ , then we treat ux G Ω" to be a constraint for the minimization. 
For example, for the function / above, argmina.>0 f(x) = 0. 

Strictly speaking, an optimization problem is solved only when a global 
minimizer is found. However, global minimizers are, in general, difficult to 
find. Therefore, in practice, we often have to be satisfied with finding local 
minimizers. 
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Figure 6.1 Examples of minimizers: X\: strict global minimizer; X2'. strict local 
minimizer; X3: local (not strict) minimizer. 

6.2 Conditions for Local Minimizers 

In this section we derive conditions for a point x* to be a local minimizer. We 
use derivatives of a function / : Rn —► R. Recall that the first-order derivative 
of / , denoted Df, is 

Df 
dj_ df_ df_ 
dxi' dx2' ' dxn 

Note that the gradient V / is just the transpose of £>/; that is, V / = (Df)T. 
The second derivative of / : Rn —► R (also called the Hessian of / ) is 

r £f(*) 
F{x) = £>'/(*) = 

d2f 
dx„dx\ (x) 

a2/ 
L dx\dx7 

(x) Sw 
Example 6.1 Let f(xi,x2) = 5#i + 8x2 + ^1^2 — x\ — 2^2· Then, 

Df(x) = (Vf(x))T 

and 

F(x) = D2f(x) = 

df , Λ df . ■ 
^ ( X ) ' ^ ( X ) [5 + X2 — 2xi, 8 + x\ - 4x2] 

« 2 1 
a x 2 ö x i ( x ) 

dX!dx2(
X' Έχ\(Χ> 

- 2 1 
1 - 4 

Given an optimization problem with constraint set Ω, a minimizer may lie 
either in the interior or on the boundary of Ω. To study the case where it lies 
on the boundary, we need the notion of feasible directions. 
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ocdi 

Figure 6.2 Two-dimensional illustration of feasible directions; d\ is a feasible 
direction, d2 is not a feasible direction. 

Definition 6.2 A vector d G Rn , d ^ 0, is a feasible direction at x G Ω if 
there exists ctQ > 0 such that x + ad G Ω for all a G [0, ao]. I 

Figure 6.2 illustrates the notion of feasible directions. 
Let / : Rn —► R be a real-valued function and let d be a feasible direction 

at x G Ω. The directional derivative of f in the direction d, denoted df/dd, 
is the real-valued function defined by 

Άχ) = lim / ( * + a d ) - / ( a ; ) . 
od a->o a 

If ||d|| = 1, then df/dd is the rate of increase of / at x in the direction d. 
To compute the directional derivative above, suppose that x and d are given. 
Then, f(x + ad) is a function of a, and 

a=0 

Applying the chain rule yields 

g(.) _!-/(, +a* Vf{xYd = <V/(s),<i) = rfTV/(x). 
a=0 

In summary, if d is a unit vector (||d|| = 1), then (V/(x) , d) is the rate of 
increase of / at the point x in the direction d. 

Example 6.2 Define / : by f(x) = #i#2#3> and let 
T 

d = 
L2'2 '72j 

The directional derivative of / in the direction d is 

— (x) = V/(a?)Td = [x2x3,xiX3,XiX2] 
1/2 
1/2 

1/V2 

X2^3 + Ζι:τ3 + \/2a;iX2 
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Note that because ||d|| = 1, the above is also the rate of increase of / at x in 
the direction d. I 

We are now ready to state and prove the following theorem. 

Theorem 6.1 First-Order Necessary Condition (FONC). Let Ω be a 
subset ofW1 and f G C1 a real-valued function on Ω. Ifx* is a local minimizer 
of f over Ω, then for any feasible direction d at x*, we have 

d T V/(x*) > 0. 

D 

Proof. Define 
x(a) = x* + ad G Ω. 

Note that a?(0) = x*. Define the composite function 

φ(α) = f(x(a)). 

Then, by Taylor's theorem, 

f(x* + ad) - f(x*) = φ{α) - 0(0) = φ'{0)α + o(a) = adTVf(x(0)) + o(a), 

where a > 0 [recall the definition of o(a) ("little-oh of a") in Part I]. Thus, 
if φ(α) > 0(0), that is, f(x* + ad) > f(x*) for sufficiently small values of 
a > 0 (a?* is a local minimizer), then we have to have d Vf(x*) > 0 (see 
Exercise 5.8). I 

Theorem 6.1 is illustrated in Figure 6.3. 
An alternative way to express the FONC is 

for all feasible directions d. In other words, if x* is a local minimizer, then 
the rate of increase of / at x* in any feasible direction d in Ω is nonnegative. 
Using directional derivatives, an alternative proof of Theorem 6.1 is as follows. 
Suppose that x* is a local minimizer. Then, for any feasible direction d, there 
exists ä > 0 such that for all a G (0, ä) , 

/ ( « * ) < / ( « * + a d ) · 

Hence, for all a G (0, ä) , we have 

/ ( * * + a d ) - / ( * * ) 
a 

Taking the limit as a —> 0, we conclude that 

g(x-)>o. 

>0 . 
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Figure 6.3 Illustration of the FONC for a constrained case; X\ does not satisfy the 
FONC, whereas x2 satisfies the FONC. 

A special case of interest is when x* is an interior point of Ω (see Sec-
tion 4.4). In this case, any direction is feasible, and we have the following 
result. 

Corollary 6.1 Interior Case. Let Ω be a subset o /R n and f G C1 a real-
valued function on Ω. If x* is a local minimizer of f over Ω and if x* is an 
interior point of Ω, then 

V/(**) = 0. 

D 

Proof. Suppose that / has a local minimizer as* that is an interior point of 
Ω. Because x* is an interior point of Ω, the set of feasible directions at x* is 
the whole of Rn. Thus, for any d G Rn , dTV/(cc*) > 0 and - d T V / ( x * ) > 0. 
Hence, dTV/(a;*) - 0 for all d G Rn , which implies that V/(«*) = 0. I 

Example 6.3 Consider the problem 

minimize x\ + 0.5x2 + 3#2 + 4.5 
subject to £i,#2 > 0. 

a. Is the first-order necessary condition (FONC) for a local minimizer sat-
isfied at x = [1,3]T? 

b . Is the FONC for a local minimizer satisfied at x = [0,3]T? 

c. Is the FONC for a local minimizer satisfied at x = [1,0]T? 
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Figure 6.4 Level sets of the function in Example 6.3. 

d. Is the FONC for a local minimizer satisfied at x = [0,0]T? 

Solution: First, let / : R2 -► R be defined by f(x) = x\ + 0.5x§ + 3x2 + 4.5, 
where x — \x\, x2]

T. A plot of the level sets of / is shown in Figure 6.4. 

a. At x = [1,3]T, we have Vf(x) = [2xux2 + 3]T = [2,6]T. The point 
x = [1,3]T is an interior point of Ω = {x : x\ > 0,x2 > 0}. Hence, the 
FONC requires that Vf(x) = 0. The point x = [1,3]T does not satisfy 
the FONC for a local minimizer. 

b . At x = [0,3]T, we have V/(a?) = [0,6]T, and hence dTVf(x) = 6d2, 
where d = [di,d2]T. For d to be feasible at as, we need di > 0, and d2 

can take an arbitrary value in R. The point x = [0,3]T does not satisfy 
the FONC for a minimizer because d2 is allowed to be less than zero. For 
example, d = [1, — 1]T is a feasible direction, but d T V / ( x ) = — 6 < 0. 

c. At x = [1,0]T, we have V/ (x ) = [2,3]T, and hence dTVf(x) = 2d1+3d2. 
For d to be feasible, we need d2 > 0, and d\ can take an arbitrary 
value in R. For example, d = [—5,1]T is a feasible direction. But 
dTVf(x) = -7 < 0. Thus, x = [1,0]T does not satisfy the FONC 
for a local minimizer. 

d. At x = [0,0]T, we have V/ (x ) = [0,3]T, and hence dTVf{x) = 3d2. For 
d to be feasible, we need d2 > 0 and d\ > 0. Hence, x — [0,0]T satisfies 
the FONC for a local minimizer. | 

Example 6.4 Figure 6.5 shows a simplified model of a cellular wireless sys-
tem (the distances shown have been scaled down to make the calculations 
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Primary 2 Neighboring 
Base Station H H Base Station 

| *-| Mobile 
x 

Figure 6.5 Simplified cellular wireless system in Example 6.4. 

simpler). A mobile user (also called a mobile) is located at position x (see 
Figure 6.5). 

There are two base station antennas, one for the primary base station 
and another for the neighboring base station. Both antennas are transmitting 
signals to the mobile user, at equal power. However, the power of the received 
signal as measured by the mobile is the reciprocal of the squared distance 
from the associated antenna (primary or neighboring base station). We are 
interested in finding the position of the mobile that maximizes the signal-to-
interference ratio, which is the ratio of the signal power received from the 
primary base station to the signal power received from the neighboring base 
station. 

We use the FONC to solve this problem. The squared distance from the 
mobile to the primary antenna is 1 + x2, while the squared distance from the 
mobile to the neighboring antenna is 1 + (2 — x)2. Therefore, the signal-to-
interference ratio is 

fix) - 1 + (2-*>2 
I[X) 1 + x 2 ' 

We have 

_ -2(2-x)(l + x2)-2x(l + (2-x)2) 
J[ ]~ (1 + * 2 ) 2 

_ 4(x2 - 2x - 1) 
(1 + x2)2 ' 

By the FONC, at the optimal position x* we have / '(#*) = 0. Hence, either 
x* — 1 — y/2 or x* = 1 + y/2. Evaluating the objective function at these two 
candidate points, it easy to see that x* = 1 — y/2 is the optimal position. I 

The next example illustrates that in some problems the FONC is not helpful 
for eliminating candidate local minimizers. However, in such cases, there may 
be a recasting of the problem into an equivalent form that makes the FONC 
useful. 

Interference 
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Example 6.5 Consider the set-constrained problem 

minimize f(x) 

subject to x G Ω, 

where Ω = {[xi,#2]T · x\ + %\ = 1}· 

a. Consider a point x* G Ω. Specify all feasible directions at x*. 

b . Which points in Ω satisfy the FONC for this set-constrained problem? 

c. Based on part b, is the FONC for this set-constrained problem useful for 
eliminating local-minimizer candidates? 

d. Suppose that we use polar coordinates to parameterize points x G Ω in 
terms of a single parameter Θ: 

X i = c o s 0 #2 = sin0. 

Now use the FONC for unconstrained problems (with respect to Θ) to 
derive a necessary condition of this sort: If x* G Ω is a local minimizer, 
then d T V/(x*) = 0 for all d satisfying a "certain condition." Specify 
what this certain condition is. 

Solution: 

a. There are no feasible directions at any x*. 

b . Because of part a, all points in Ω satisfy the FONC for this set-
constrained problem. 

c. No, the FONC for this set-constrained problem is not useful for eliminat-
ing local-minimizer candidates. 

d. Write h{ß) = /(#(#)), where g : R —► R2 is given by the equations relating 
Θ to x = [χι,Χ2]Τ· Note that Dg{9) = [— sin0,cos0]T . Hence, by the 
chain rule, 

h\ff) = Df{g{e))Dg{9) = Dg(e)TVf(g(e)). 

Notice that Dg{6) is tangent to Ω at x = g(0). Alternatively, we could 
say that Dg(9) is orthogonal to x = g(0). 

Suppose that x* G Ω is a local minimizer. Write x* = g{0*). Then 
Θ* is an unconstrained minimizer of h. By the FONC for unconstrained 
problems, h'(6*) = 0, which implies that d T V/(x*) = 0 for all d tangent 
to Ω at x* (or, alternatively, for all d orthogonal to x*). | 

We now derive a second-order necessary condition that is satisfied by a 
local minimizer. 
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Theorem 6.2 Second-Order Necessary Condition (SONC). Let Ω c 
Rn , f G C2 a function on Ω, x* a local minimizer of f over Ω, and d a feasible 
direction at x*. If dTWf(x*) = 0, then 

dTF(x*)d > 0, 

where F is the Hessian of f. Q 

Proof We prove the result by contradiction. Suppose that there is a feasible 
direction d at x* such that dTVf(x*) = 0 and dTF(x*)d < 0. Let x{a) = 
x* + ad and define the composite function φ(α) = f(x* + ad) = f(x(a)). 
Then, by Taylor's theorem, 

φ(α) = 0(0) + ^ " ( 0 ) ^ + ο ( α 2 ) , 

where by assumption, <//(0) = d T V/(x*) = 0 and φ"{ϋ) = dTF(x*)d < 0. 
For sufficiently small a, 

φ(α)-φ(0) = φ"(0)^+ο(α2)<0, 

that is, 
/ (x* + a d ) < / ( x * ) , 

which contradicts the assumption that x* is a local minimizer. Thus, 

φ"(0) = dTF(x*)d > 0. 

■ 
Corollary 6.2 Interior Case. Let x* be an interior point o / ! l c l " . / / 
x* is a local minimizer of f : Ω —> ]R, / G C2, i/ien 

V/(**) = 0, 

and F(x*) is positive semidefinite (F{x*) > 0); that is, for all d G W1, 

dTF(x*)d > 0. 

G 

Proof If x* is an interior point, then all directions are feasible. The result 
then follows from Corollary 6.1 and Theorem 6.2. I 

In the examples below, we show that the necessary conditions are not 
sufficient. 

Example 6.6 Consider a function of one variable f(x) = x3, / : R —► R. 
Because / '(0) = 0, and /"(0) = 0, the point x = 0 satisfies both the FONC 
and SONC. However, x = 0 is not a minimizer (see Figure 6.6). I 
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AW 
' f(x)=x3 

Figure 6.6 The point 0 satisfies the FONC and SONC but is not a minimizer. 

Example 6.7 Consider a function / : R2 —► R, where f(x) = x\ - x\. The 
FONC requires that Vf{x) = [2x1,-2x2]

T = 0. Thus, x = [0,0]T satisfies 
the FONC. The Hessian matrix of / is 

F(x) 
2 0 

0 - 2 

The Hessian matrix is indefinite; that is, for some d\ G R2 we have dx Fd\ > 0 
(e.g., di = [1,0]T) and for some d2 we have d jFd 2 < 0 (e.g., d2 = [0,1]T). 
Thus, x = [0,0]T does not satisfy the SONC, and hence it is not a minimizer. 
The graph of f(x) — x\ x"o is shown in Figure 6.7. I 

Figure 6.7 Graph of f(x) 
SONC; this point is not a minimizer. 

xl xl The point 0 satisfies the FONC but not 
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We now derive sufficient conditions that imply that x* is a local minimizer. 

Theorem 6.3 Second-Order Sufficient Condition (SOSC), Interior 
Case. Let f E C2 be defined on a region in which x* is an interior point. 
Suppose that 

1. V/(x*) = 0. 

2. F(x*) > 0. 

Then, x* is a strict local minimizer of f. G 

Proof. Because / G C2, we have F(x*) = FT(as*). Using assumption 2 and 
Rayleigh's inequality it follows that if d φ 0, then 0 < Amin(F(ic*))||d||2 < 
d F(x*)d. By Taylor's theorem and assumption 1, 

/ ( * · + d) - /(**) = \dTF(x*)d + o(\\df) > Λ " " ° ^ ( 8 * ) ) μ | | 2 + 0(!|rf||2). 

Hence, for all d such that ||d|| is sufficiently small, 

f{x* + d)> f(x*), 

which completes the proof. I 

Example 6.8 Let f{x) = x\ + x\. We have Vf(x) = [2xl,2x2)
T = 0 if and 

only if x = [0,0]T. For all x G R2, we have 

F(x) = 
2 0 

0 2 
>0 . 

The point x = [0,0]T satisfies the FONC, SONC, and SOSC. It is a strict 
local minimizer. Actually, x = [0,0]T is a strict global minimizer. Figure 6.8 
shows the graph of f(x) = x\ + x\. I 

In this chapter we presented a theoretical basis for the solution of non-
linear unconstrained problems. In the following chapters we are concerned 
with iterative methods of solving such problems. Such methods are of great 
importance in practice. Indeed, suppose that one is confronted with a highly 
nonlinear function of 20 variables. Then, the FONC requires the solution of 
20 nonlinear simultaneous equations for 20 variables. These equations, being 
nonlinear, will normally have multiple solutions. In addition, we would have 
to compute 210 second derivatives (provided that / G C2) to use the SONC 
or SOSC. We begin our discussion of iterative methods in the next chapter 
with search methods for functions of one variable. 
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Figure 6.8 Graph of f(x) = x\ + x\. 

E X E R C I S E S 

6.1 Consider the problem 

minimize / ( x ) 
subject to x G Ω, 

where / G C2. For each of the following specifications for Ω, x*, and / , de-
termine if the given point x* is: (i) definitely a local minimizer; (ii) definitely 
not a local minimizer; or (iii) possibly a local minimizer. 

a. / : R2 -» R, Ω = {x = [xi ,x2]T : x\ > 1}, x* = [1,2]T, and gradient 
V/(x*) = [ l , l ] T . 

b . / : R2 -> R, Ω = {x = [a?i,x2]T : x\ > 1,^2 > 2}, x* = [1,2]T, and 
gradient V/(x*) = [l ,0]T . 

c. / : R2 -+ R, Ω = {x = [xi ,x2]T : »l > 0,x2 > 0}, x* = [1,2]T, gradient 
V/(x*) = [0,0]T, and Hessian F(x*) = I (identity matrix). 

d. / : R2 -► R, Ω = {x = [xi ,x2]T : X\ > l,x2 > 2}, x* = [1,2]T, gradient 
V/(x*) = [1,0]T, and Hessian 

F(x* 1 0 
0 - 1 

6.2 Find minimizers and maximizers of the function 

/ (x i ,x 2 ) = -x\ - 4 x i + -x\ - 16x2. 
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6.3 Show that if x* is a global minimizer of / over Ω, and #* G Ω' C Ω, then 
x* is a global minimizer of / over Ω'. 

6.4 Suppose that x* is a local minimizer of / over Ω, and i l c f f . Show 
that if x* is an interior point of Ω, then x* is a local minimizer of / over Ω'. 
Show that the same conclusion cannot be made if a?* is not an interior point 
of Ω. 

6.5 Consider the problem of minimizing / : R —> R, / G C3, over the 
constraint set Ω. Suppose that 0 is an interior point of Ω. 

a. Suppose that 0 is a local minimizer. By the FONC we know that / ' (0) = 
0 (where / ' is the first derivative of / ) . By the SONC we know that 
/"(0) > 0 (where / " is the second derivative of / ) . State and prove a 
third-order necessary condition (TONC) involving the third derivative at 

o, r(o). 
b . Give an example of / such that the FONC, SONC, and TONC (in part 

a) hold at the interior point 0, but 0 is not a local minimizer of / over 
Ω. (Show that your example is correct.) 

c. Suppose that / is a third-order polynomial. If 0 satisfies the FONC, 
SONC, and TONC (in part a), then is this sufficient for 0 to be a local 
minimizer? 

6.6 Consider the problem of minimizing / : R —> R, / G C3, over the 
constraint set Ω = [0,1]. Suppose that x* — 0 is a local minimizer. 

a. By the FONC we know that /'(O) > 0 (where / ' is the first derivative 
of / ) . By the SONC we know that if / ' (0) = 0, then /"(0) > 0 (where 
/ " is the second derivative of / ) . State and prove a third-order necessary 
condition involving the third derivative at 0, /'"(O). 

b . Give an example of / such that the FONC, SONC, and TONC (in part 
a) hold at the point 0, but 0 is not a local minimizer of / over Ω = [0,1]. 

6.7 Let / : Rn -> R, x0 G Rn , and Ω c Rn . Show that 

x0 + arg min / (x ) = arg min / (y ) , 
χβΩ yeQ' 

where Ω' = {y : y — XQ G Ω}. 

6.8 Consider the following function / : R2 —> R: 

"l 2~ 
4 7 

x + xT "3" 
5 
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a. Find the gradient and Hessian of / at the point [1,1]T. 

b . Find the directional derivative of / a t [1,1]T with respect to a unit vector 
in the direction of maximal rate of increase. 

c. Find a point that satisfies the FONC (interior case) for / . Does this 
point satisfy the SONC (for a minimizer)? 

6.9 Consider the following function: 

f(x\,X2) = x\x2 +#2 χ 1· 

a. In what direction does the function / decrease most rapidly at the point 
χ(°) = [2,1]τ? 

b . What is the rate of increase of / at the point x^ in the direction of 
maximum decrease of / ? 

c. Find the rate of increase of / at the point x^ in the direction d — [3,4]T. 

6.10 Consider the following function / : R2 -+ R: 

" 2 5 
- 1 1 

x + xT 3 
4 

a. Find the directional derivative of / at [0,1]T in the direction [1,0]T. 

b . Find all points that satisfy the first-order necessary condition for / . 
Does / have a minimizer? If it does, then find all minimizer(s); otherwise, 
explain why it does not. 

6.11 Consider the problem 

minimize — x\ 

subject to |#21 < x\ 

x\ > 0 , 

where £i,#2 £ ^ · 

a. Does the point [#i,£2]T = 0 satisfy the first-order necessary condition 
for a minimizer? That is, if / is the objective function, is it true that 
d T V / ( 0 ) > 0 for all feasible directions d at 0? 

b . Is the point [#i,£2]T = 0 a local minimizer, a strict local minimizer, a 
local maximizer, a strict local maximizer, or none of the above? 
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6.12 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where / : R2 —> R is given by f(x) = 5^2 with x = [xi,x2]T
? and Ω = {x = 

[xi ,x2]T : x\ + X2 > 1}. 

a. Does the point x* = [0,1]T satisfy the first-order necessary condition? 

b . Does the point x* = [0,1]T satisfy the second-order necessary condition? 

c. Is the point x* = [0,1]T a local minimizer? 

6.13 Consider the problem 

minimize f(x) 

subject to x G i ] , 

where / : R2 —> R is given by f(x) = —3x\ with x = [xi, X2]T? a n d Ω = {x = 
[xi,X2]T · x\ + x\ < 2}. Answer each of the following questions, showing 
complete justification. 

a. Does the point x* = [2,0]T satisfy the first-order necessary condition? 

b . Does the point x* = [2,0]T satisfy the second-order necessary condition? 

c. Is the point x* = [2,0]T a local minimizer? 

6.14 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where Ω = {x G R2 : x\ + x\ > 1} and f(x) = x2. 

a. Find all point (s) satisfying the FONC. 

b . Which of the point(s) in part a satisfy the SONC? 

c. Which of the point(s) in part a are local minimizers? 

6.15 Consider the problem 

minimize f(x) 

subject to x G Ω 
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where / : R2 —> R is given by f(x) = 3x\ with x = [xi,X2]T, and Ω = {x = 
[xi,X2]T · X\ + x\ > 2}. Answer each of the following questions, showing 
complete justification. 

a. Does the point x* = [2,0]T satisfy the first-order necessary condition? 

b . Does the point x* = [2,0]T satisfy the second-order necessary condition? 

c. Is the point x* = [2,0]T a local minimizer? 
Hint: Draw a picture with the constraint set and level sets of / . 

6.16 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where x = [£ι,£2]Τ, / : R2 —> R is given by f(x) = 4x2 — x\, and Ω = {x : 
x\ + 2#i - x2 > 0, x\ > 0, x2 > 0}. 

a. Does the point x* = 0 = [0,0]T satisfy the first-order necessary condi-
tion? 

b . Does the point x* = 0 satisfy the second-order necessary condition? 

c. Is the point x * = 0 a local minimizer of the given problem? 

6.17 Consider the problem 

maximize f(x) 

subject to x G Ω, 

where Ω c {x G R2 : x\ > 0,^2 > 0} and / : Ω —► R is given by 
f(x) = log(xi) + log(#2) with x = [xi ,x2]T , where "log" represents natu-
ral logarithm. Suppose that x* is an optimal solution. Answer each of the 
following questions, showing complete justification. 

a. Is it possible that x* is an interior point of Ω? 

b . At what point(s) (if any) is the second-order necessary condition satisfied? 

6.18 Suppose that we are given n real numbers, # i , . . . , xn. Find the number 
x G R such that the sum of the squared difference between x and the numbers 
above is minimized (assuming that the solution x exists). 

6.19 An art collector stands at a distance of x feet from the wall, where a 
piece of art (picture) of height a feet is hung, b feet above his eyes, as shown in 
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Picture 

Eye Λ: 

a 

Figure 6.9 Art collector's eye position in Exercise 6.19. 

ϋϋϋΒέφ 

tiil^iiiiii!;!;!! 
: · : · : · : · : · * ■ : · : ■ : · : ■ 

:;:;:;2!:;i;i;:;i!:ii;iii;!;i!i;Mi^fffitfSi; 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : ? ? [:: t ji^iäU':£:: 

H Sensor 

Figure 6.10 Simplified fetal heart monitoring system for Exercise 6.20. 

Figure 6.9. Find the distance from the wall for which the angle 0 subtended 
by the eye to the picture is maximized. 
Hint: (1) Maximizing 0 is equivalent to maximizing tan(0). 
(2) If 0 = 02 - 0i, then tan(0) = (tan(02) - tan(0i))/(l + tan(02) tan(0i)). 

6.20 Figure 6.10 shows a simplified model of a fetal heart monitoring system 
(the distances shown have been scaled down to make the calculations simpler). 
A heartbeat sensor is located at position x (see Figure 6.10). 

The energy of the heartbeat signal measured by the sensor is the reciprocal 
of the squared distance from the source (baby's heart or mother's heart). 
Find the position of the sensor that maximizes the signal-to-interference ratio, 
which is the ratio of the signal energy from the baby's heart to the signal 
energy from the mother's heart. 

6.21 An amphibian vehicle needs to travel from point A (on land) to point 
B (in water), as illustrated in Figure 6.11. The speeds at which the vehicle 
travels on land and water are v\ and t>2, respectively. 
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Figure 6.11 Path of amphibian vehicle in Exercise 6.21. 

a. Suppose that the vehicle traverses a path that minimizes the total time 
taken to travel from A to B. Use the first-order necessary condition to 
show that for the optimal path above, the angles θ\ and θ2 in Figure 6.11 
satisfy Snell's law: 

sin θι vi 
sin 02 v2' 

b . Does the minimizer for the problem in part a satisfy the second-order 
sufficient condition? 

6.22 Suppose that you have a piece of land to sell and you have two buyers. 
If the first buyer receives a fraction x\ of the piece of land, the buyer will pay 
you Ό\(χ\) dollars. Similarly, the second buyer will pay you U2{x2) dollars 
for a fraction of x2 of the land. Your goal is to sell parts of your land to the 
two buyers so that you maximize the total dollars you receive. (Other than 
the constraint that you can only sell whatever land you own, there are no 
restrictions on how much land you can sell to each buyer.) 

a. Formulate the problem as an optimization problem of the kind 

maximize f(x) 

subject to x £ Ω 

by specifying / and Ω. Draw a picture of the constraint set. 
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b . Suppose that Ui(xi) = a ^ , i = 1,2, where a\ and a2 are given positive 
constants such that a\ > a2. Find all feasible points that satisfy the 
first-order necessary condition, giving full justification. 

c. Among those points in the answer of part b, find all that also satisfy the 
second-order necessary condition. 

6.23 Let / : R2 -► R be defined by 

f(x) = {xi - x2)
4 + x\ - x\ - 2xi + 2x2 + 1, 

where x = [xi,X2]T. Suppose that we wish to minimize / over R2. Find all 
points satisfying the FONC. Do these points satisfy the SONC? 

6.24 Show that if d is a feasible direction at a point x G Ω, then for all 
ß > 0, the vector ßd is also a feasible direction at x. 

6.25 Let Ω = {x G Rn : Ax = b}. Show that d G Rn is a feasible direction 
at x G Ω if and only if Ad = 0. 

6.26 Let / : R2 -> R. Consider the problem 

minimize f(x) 

subject to x\,X2 > 0, 

where x = [χι,α^]"1". Suppose that V/(0) Φ 0, and 

£<o)so, -g(o)<o. 

Show that 0 cannot be a minimizer for this problem. 

6.27 Let c G Rn, c φ 0, and consider the problem of minimizing the function 
f(x) = cTx over a constraint set Ω C Rn . Show that we cannot have a 
solution lying in the interior of Ω. 

6.28 Consider the problem 

maximize C\X\ + C2X2 

subject to x\ + X2 < 1 
x i ,x 2 > 0, 

where c\ and c2 are constants such that c\ > c2 > 0. This is a linear program-
ming problem (see Part III). Assuming that the problem has an optimal fea-
sible solution, use the first-order necessary condition to show that the unique 
optimal feasible solution x* is [1,0]T. 
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Hint: First show that x* cannot lie in the interior of the constraint set. Then, 
show that x* cannot lie on the line segments L\ = {x : x\ = 0,0 < x2 < 1}, 
L2 = {x : 0 < x\ < 1, x2 = 0}, L3 = {x : 0 < X\ < 1, x2 = 1 - xi}. 

6.29 Line Fitting. Let [#i ,2/ i ]T , . . . , [xn?2/n]T
5 n > 2, be points on the R2 

plane (each Xi,yi G R). We wish to find the straight line of "best fit" through 
these points ("best" in the sense that the average squared error is minimized); 
that is, we wish to find a, b G R to minimize 

1 n 

/ (a , b) = - ^2 (axi + b - yi)2 . 
2 = 1 

a. Let 

— 1 n 

X = - V x i , n f-f 
2 = 1 

1 n 

2 = 1 

1 n 

2 = 1 

1 n 

2 = 1 

I n 

XY = ~ΣχΜ' n *-^ 
2 = 1 

Show that f(a,b) can be written in the form zTQz — 2c T z + d, where 
z = [a, 6]T, Q = Q T G R2^x 2

LcGR2 and d G R, and find expressions for 
Q, c, and d in terms of X, Ϋ, X 2 , Y2, and 1 7 . 

b . Assume that the xz, z = 1 , . . . , n, are not all equal. Find the parameters 
a* and b* for the line of best fit in terms of X, Y, X 2 , Y2, and XY. 
Show that the point [α*, δ*]τ is the only local minimizer of / . 
Hint:JÖ-{Xf = ^Yri^i-X?· 

c. Show that if a* and 6* are the parameters of the line of best fit, then 
Y = a*X + b* (and hence once we have computed a*, we can compute 
6* using the formula b* = Y — a*X). 

6.30 Suppose that we are given a set of vectors {x^\ . . . , x ^ } , a:W G Rn , 
2 = 1 , . . . ,p. Find the vector x G Rn such that the average squared distance 
(norm) between x and x^\ . . . , χ(ρ\ 

1 P 
ωιι2 

PUi 
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is minimized. Use the SOSC to prove that the vector x found above is a strict 
local minimizer. How is x related to the centroid (or center of gravity) of the 
given set of points { x ^ \ . . . , x^}? 

6.31 Consider a function / : Ω —► R, where Ω C Rn is a convex set and 
/ eC1. Given x* G Ω, suppose that there exists c > 0 such that d T V/(x*) > 
c||d|| for all feasible directions d at x*. Show that x* is a strict local minimizer 
of / over Ω. 

6.32 Prove the following generalization of the second-order sufficient condi-
tion: 
Theorem: Let Ω be a convex subset of Rn , / G C2 a real-valued function on 

Ω, and x* a point in Ω. Suppose that there exists c G R, c > 0, such that 
for all feasible directions d at x* (d φ 0), the following hold: 

1. d T V/(x*) > 0. 
2. dTF(x*)d > c||d||2. 

Then, x* is a strict local minimizer of / . 

6.33 Consider the quadratic function / : Rn —> R given by 

/ ( x ) = -xTQx - x T 6 , 

where Q = QT > 0. Show that x* minimizes / if and only if x* satisfies the 
FONC. 

6.34 Consider the linear system Xk+i = Q<Xk + biik+i, k > 0, where X{ G R, 
ui G R, and the initial condition is xo = 0. Find the values of the control 
inputs u\,..., un to minimize 

n 

-qxn + r^uh 
2 = 1 

where </, r > 0 are given constants. This can be interpreted as desiring to 
make xn as large as possible but at the same time desiring to make the total 
input energy Σ™=1 u

2 as small as possible. The constants q and r reflect the 
relative weights of these two objectives. 





PART IV 

NONLINEAR CONSTRAINED 
OPTIMIZATION 





CHAPTER 20 

PROBLEMS WITH EQUALITY 
CONSTRAINTS 

20.1 Introduction 

In this part we discuss methods for solving a class of nonlinear constrained 
optimization problems that can be formulated as 

minimize f(x) 

subject to hi(x) = 0, i = 1 , . . . , m 

9j(x) < 0 , j = l , . . . , p , 

where x e Rn, / : Rn -> R, ft» : Rn -> R, ga : Rn -> R, and m < n. 
In vector notation, the problem above can be represented in the following 
standard form: 

minimize f(x) 

subject to h(x) = 0 
9(x) < 0, 

where h : Rn -> Rm and g : Rn -> W. As usual, we adopt the following 
terminology. 

An Introduction to Optimization, Fourth Edition. 453 
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc. 
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Definition 20.1 Any point satisfying the constraints is called a feasible point 
The set of all feasible points, 

{x e Rn : h(x) = 0, g(x) < 0}, 

is called a feasible set I 

Optimization problems of the above form are not new to us. Indeed, linear 
programming problems of the form 

minimize cTx 

subject to Ax — b 

x > 0, 

which we studied in Part III, are of this type. 
As we remarked in Part II, there is no loss of generality by considering only 

minimization problems. For if we are confronted with a maximization prob-
lem, it can easily be transformed into the minimization problem by observing 
that 

maximize/(x) = minimize—/(x). 

We illustrate the problems we study in this part by considering the following 
simple numerical example. 

Example 20.1 Consider the following optimization problem: 

minimize {x\ — l ) 2 + #2 — 2 
subject to X2 — x\ = 1, 

Xi + %2 < 2. 

This problem is already in the standard form given earlier, with f(xi,X2) = 
(xi - l ) 2 + X2 - 2, h(xi,x2) = #2 — #i - 1, and g(xi,X2) = #i + #2 -
2. This problem turns out to be simple enough to be solved graphically 
(see Figure 20.1). In the figure the set of points that satisfy the constraints 
(the feasible set) is marked by the heavy solid line. The inverted parabolas 
represent level sets of the objective function /—the lower the level set, the 
smaller the objective function value. Therefore, the solution can be obtained 
by finding the lowest-level set that intersects the feasible set. In this case, the 
minimizer lies on the level set with / = —1/4. The minimizer of the objective 
function is x* = [1/2,3/2]T . I 

In the remainder of this chapter we discuss constrained optimization prob-
lems with only equality constraints. The general constrained optimization 
problem is discussed in the chapters to follow. 
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Figure 20.1 Graphical solution to the problem in Example 20.1. 

20.2 Problem Formulation 

The class of optimization problems we analyze in this chapter is 

minimize f(x) 

subject to h(x) = 0, 

where x G Rn , / : Rn -► R, h : Rn -» Rm , h = [hu · ·, ^m]T , and m < n. 
We assume that the function h is continuously differentiable, that is, h G C1. 

We introduce the following definition. 

Definition 20.2 A point x* satisfying the constraints fti(x*) = 
0 , . . . , hm(x*) = 0 is said to be a regular point of the constraints if the gradient 
vectors Vfti(a5*),..., Vftm(a;*) are linearly independent. I 

Let Dh(x*) be the Jacobian matrix of h = [/ii,..., hm]T at £C*, given by 

|"Dfti(x·)" 

\Dhm(x*)m 

-

"v/ii(aj*)T1 

yhm{x*)T\ 

Then, x* is regular if and only if rank Dh(x*) = m (i.e., the Jacobian matrix 
is of full rank). 

The set of equality constraints h\(x) = 0 , . . . ,hm(x) = 0, hi : Rn —► R, 
describes a surface 

5 = {x G Rn : fti(x) = 0 , . . . , hm(x) - 0}. 
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x1 

^ x3 

X2 

S=K[x1lx2fX3]T:x2-^=0} 

Figure 20.2 Two-dimensional surface in R3. 

Assuming that the points in S are regular, the dimension of the surface S is 
n — m. 

Example 20.2 Let n = 3 and m = 1 (i.e., we are operating in R3). Assuming 
that all points in S are regular, the set 5 is a two-dimensional surface. For 
example, let 

hi(x) = X2 — x\ = 0. 

Note that Vhi(x) = [0,1, - 2 x 3 ] T , and hence for any X G R 3 , Vfei(x) φ 0. In 
this case, 

dim S = dim{x : hi (x) — 0} = n — m = 2. 

See Figure 20.2 for a graphical illustration. I 

Example 20.3 Let n = 3 and m — 2. Assuming regularity, the feasible set 
5 is a one-dimensional object (i.e., a curve in R3). For example, let 

hi(x) = xi, 

h2(x) — X2- #!· 

In this case, Vhi(a?) = [1,0,0]T and Vh2(x) = [0, l , - 2 x 3 ] T . Hence, the 
vectors Vfti(x) and V/i2(ic) are linearly independent in R3. Thus, 

d im5 = dim{ic : h\(x) = 0, h2{x) = 0} = n — m = 1. 

See Figure 20.3 for a graphical illustration. I 

20.3 Tangent and Normal Spaces 

In this section we discuss the notion of a tangent space and normal space at 
a point on a surface. We begin by defining a curve on a surface S. 
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Figure 20.3 One-dimensional surface in R3. 

Definition 20.3 A curve C on a surface 5 is a set of points {x(t) G S : t G 
(a, 6)}, continuously parameterized by t G (a, 6); that is, x : (a, b) —» S is a 
continuous function. | 

A graphical illustration of the definition of a curve is given in Figure 20.4. 
The definition of a curve implies that all the points on the curve satisfy the 
equation describing the surface. The curve C passes through a point cc* if 
there exists t* G (a, b) such that x(t*) = x*. 

Intuitively, we can think of a curve C = {x(t) : t £ (a, b)} as the path 
traversed by a point x traveling on the surface S. The position of the point 
at time t is given by x(t). 

Definition 20.4 The curve C = {x(t) : t G (a, b)} is differentiable if 

i i ( f ) l 

Xn(t)\ 

exists for all t G (a, b). 

. , x dx , x 
»(*) = -*(«> = 

Figure 20.4 Curve on a surface. 
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x(b) 

(t) 

x(a) 

Figure 20.5 Geometric interpretation of the differentiability of a curve. 

The curve C = {x{t) : t G (a, b)} is twice differentiable if 

Xn(t)\ 

exists for all t G (a, b). I 

Note that both x(t) and x(t) are n-dimensional vectors. We can think 
of x(t) and x(t) as the velocity and acceleration, respectively, of a point 
traversing the curve C with position x(t) at time t. The vector x{t) points in 
the direction of the instantaneous motion of x(t). Therefore, the vector x(t*) 
is tangent to the curve C at x* (see Figure 20.5). 

We are now ready to introduce the notions of a tangent space. For this 
recall the set 

S = {x G Rn : h(x) = 0}, 

where h € C1. We think of 5 as a surface in W1. 

Definition 20.5 The tangent space at a point x* on the surface S = {x G 
Rn : h(x) = 0} is the set T(x*) = {?/ : Dh(x*)y = 0}. I 

Note that the tangent space T(x*) is the nullspace of the matrix Dh(x*): 

T(x*)=Af(Dh(x*)). 

The tangent space is therefore a subspace of Rn . 
Assuming that x* is regular, the dimension of the tangent space is n — m, 

where m is the number of equality constraints hi(x*) = 0. Note that the 
tangent space passes through the origin. However, it is often convenient to 
picture the tangent space as a plane that passes through the point x*. For 
this, we define the tangent plane at x* to be the set 

TP(x*) = T(x*) + x* = {x + x* : x G T(x*)}. 

"OurveC 

* » = $ < « = 
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Tangent Plane 

Figure 20.6 Tangent plane to the surface S at the point x*. 

Figure 20.6 illustrates the notion of a tangent plane, and Figure 20.7, the 
relationship between the tangent plane and the tangent space. 

Example 20.4 Let 

S = { x G R 3 : fti(sc) = xi = 0, h2(x) = xi - x2 = 0}. 

Then, S is the a^-axis in R3 (see Figure 20.8). We have 

Dh(x) = 
Vfti(»)T" 
Wh2(x)T 

1 0 0 
1 - 1 0 

Because Vfti and Vh2 are linearly independent when evaluated at any x G 5, 
all the points of S are regular. The tangent space at an arbitrary point of S 
is 

T(x) = {y : Vh i (x ) T y - 0, Vh2(x)Ty = 0} 

2/· 
1 
1 

o o" 
- 1 0 

2/i 

2/2 

_2/3_ 

v 

= 0 > 
) 

= {[0,0,α]τ :aeR} 
— the Xß-axis in R3. 

In this example, the tangent space T(x) at any point x G S is a one-
dimensional subspace of R3. I 

Intuitively, we would expect the definition of the tangent space at a point 
on a surface to be the collection of all "tangent vectors" to the surface at that 
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Figure 20.7 Tangent spaces and planes in R2 and M3. 

point. We have seen that the derivative of a curve on a surface at a point is 
a tangent vector to the curve, and hence to the surface. The intuition above 
agrees with our definition whenever x* is regular, as stated in the theorem 
below. 

Theorem 20.1 Suppose that x* e S is a regular point and T(x*) is the 
tangent space at x*. Then, y G T(x*) if and only if there exists a differentiable 
curve in S passing through x* with derivative y at x*. D 

Proof <=: Suppose that there exists a curve {x(t) : t G (a, b)} in S such that 
x(t*) = x* and x(t*) = y for some t* G (a, b). Then, 

h(x(t)) = 0 
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Vh2(x)' 

\ 

1 
1 
1 
1 
1 

^ — \ 

Vh^x) 

AX3 

\ \ \ 

s 
/ 

N 
* T ( x ) 

~7o\ 

h 2 = o \ 

h1=0 ^ 
X 

Figure 20.8 The surface S = {x G R3 : xi = 0, xi - x2 = 0}. 

for all t G (a, 6). If we differentiate the function h(x(t)) with respect to £ 
using the chain rule, we obtain 

d 

at 
h(x(t)) = Dh(x(t))x(t) = 0 

for all t G (a, b). Therefore, at t* we get 

Dh{x*)y = 0, 

and hence y G T(x*). 
=>: To prove this, we need to use the implicit function theorem. We refer 

the reader to [88, p. 325]. I 

We now introduce the notion of a normal space. 

Definition 20.6 The normal space N(x*) at a point x* on the surface S = 
{xeRn : h(x) = 0} is the set N(x*) = {x G Rn : x = Dh(x*)T z, z G R m } . 

We can express the normal space N(x*) as 

N(x*)=U(Dh{x*)T), 

that is, the range of the matrix Dh(x*)T. Note that the normal space N(x*) 
is the subspace of Rn spanned by the vectors V/u(cc*),..., V/im(x*); that is, 

N(x*) = span[Vfti(x*),..., Vftm(a;*)] 
= { x G R n : x = ^iVhi(a;*) + --- + ^mV/im(a;*), zu...,zm G R}. 
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Figure 20.9 Normal space in R3. 

Note that the normal space contains the zero vector. Assuming that x* 
is regular, the dimension of the normal space N(x*) is ra. As in the case of 
the tangent space, it is often convenient to picture the normal space N(x*) 
as passing through the point x* (rather than through the origin of Rn). For 
this, we define the normal plane at x* as the set 

NP(x*) = N(x*) + x* = {x + x* G Rn : x G AT(x*)}. 

Figure 20.9 illustrates the normal space and plane in R3 (i.e., n — 3 and 
m = l) . 

We now show that the tangent space and normal space are orthogonal 
complements of each other (see Section 3.3). 

Lemma 20.1 We have T(x*) = N(x*)± and T(x*)± = N(x*). D 

Proof. By definition of T(x*), we may write 

T(x*) = {yeRn: xTy = 0 for all x G N(x*)}. 

Hence, by definition of N(x*), we have T{x*) = N(x"f)±. By Exercise 3.11 
we also have T{x*)^ = N(x*). I 

By Lemma 20.1, we can write Rn as the direct sum decomposition (see 
Section 3.3): 

Μη = ΛΓ(χ*)ΘΤ(ίΕ*); 
that is, given any vector v G Mn, there are unique vectors w G N(x*) and 
y G T(x*) such that 

v = w + y. 
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20.4 Lagrange Condit ion 

In this section we present a first-order necessary condition for extremum prob-
lems with constraints. The result is the well-known Lagrange's theorem. To 
better understand the idea underlying this theorem, we first consider func-
tions of two variables and only one equality constraint. Let h : R2 —► R be the 
constraint function. Recall that at each point x of the domain, the gradient 
vector Wh(x) is orthogonal to the level set that passes through that point. 
Indeed, let us choose a point ] ' such that h(x*) = 0, and assume 
that Vft(x*) Φ 0. The level set through the point x* is the set {x : h{x) = 0}. 
We then parameterize this level set in a neighborhood of x* by a curve {#(£)}, 
that is, a continuously differentiate vector function x : R —» R2 such that 

x(t) 
xi(t) 

X2{t) 
t G (a, 6), x* = x(**), x(t*) φ 0, t* G (a, 6). 

We can now show that Vft(a?*) is orthogonal to x(t*). Indeed, because h is 
constant on the curve {x(i) : t G (a, 6)}, we have that for all t G (a, 6), 

Hence, for all t G (a, 6), 

h(x(t)) = 0. 

fth(x(t))=0. 
Applying the chain rule, we get 

4-h(x{t)) = Vh{x(t))Tx{t) = 0. 
at 

Therefore, V/i(a?*) is orthogonal to x(t*). 
Now suppose that x* is a minimizer of / : R2 —> R on the set {x : ft(x) = 

0}. We claim that V/(x*) is orthogonal to ώ(ί*). To see this, it is enough to 
observe that the composite function of t given by 

4>{t) = f(x(t)) 

achieves a minimum at t*. Consequently, the first-order necessary condition 
for the unconstrained extremum problem implies that 

Applying the chain rule yields 

0 = ±φ{ΐ) = ν/(χ(ί ')) τχ(ί·) = Vf(x*)Tx(t*). 

Thus, V/(x*) is orthogonal to x(t*). The fact that x(t*) is tangent to the 
curve {x(t)} at x* means that V/(x*) is orthogonal to the curve at x* (see 
Figure 20.10). 
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Figure 20.10 The gradient V/(x*) is orthogonal to the curve {x(t)} at the point 
x* that is a minimizer of / on the curve. 

Recall that Vh(x*) is also orthogonal to x(t*). Therefore, the vectors 
Vh(x*) and V/(x*) are parallel; that is, Vf(x*) is a scalar multiple of 
Vh(x*). The observations above allow us now to formulate Lagrange's theo-
rem for functions of two variables with one constraint. 

Theorem 20.2 Lagrange's Theorem for n = 2, m = 1. Let the point x* 
be a minimizer of f : R2 —> R subject to the constraint h(x) = 0, h : R2 —► R. 
TAen, V/(x*) and Vft(x*) are parallel. That is, ifVh(x*) φ 0, ίΛβη ί/iere 
exists a scalar λ* 5?/c/i that 

V/(x*) + A*V/i(x*) = 0. 

D 

In Theorem 20.2, we refer to λ* as the Lagrange multiplier. Note that 
the theorem also holds for maximizers. Figure 20.11 gives an illustration of 
Lagrange's theorem for the case where x* is a maximizer of / over the set 
{x : h(x) = 0}. 

Lagrange's theorem provides a first-order necessary condition for a point 
to be a local minimizer. This condition, which we call the Lagrange condition, 
consists of two equations: 

ν / ( χ * ) + λ*ν/ι(**) = 0 
h(x*) = 0. 

Note that the Lagrange condition is necessary but not sufficient. In Fig-
ure 20.12 we illustrate a variety of points where the Lagrange condition is 
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z=f(x1,x2) 

yh(x*) 

Figure 20.11 Lagrange's theorem for n — 2, m = 1. 

satisfied, including a case where the point is not an extremizer (neither a 
maximizer nor a minimizer). 

We now generalize Lagrange's theorem for the case when / : Rn —> R and 
h : Rn -► Rm , m < n. 

Theorem 20.3 Lagrange's Theorem. Let x* be a local minimizer (or 
maximizer) of f : Rn -► R, subject to h(x) = 0, h : Rn -► Rm , m < n. 
Assume that x* is a regular point. Then, there exists λ* G Rm 5^c/i that 

D/(x*) + A*TD/i(ai*) = 0 T . 

Proof. We need to prove that 

V/(x*) = -Dh(x*)T\* 

for some λ* G Rm; that is, V/(a?*) G ft(£>ft(x*)T) = AT(x*). But 
by Lemma 20.1, N(x*) — T(x*)±. Therefore, it remains to show that 
V/(**) G T(**) x . 

We proceed as follows. Suppose that 

y e T V ) . 

Then, by Theorem 20.1, there exists a differentiable curve {x(t) : t G (a, b)} 
such that for all t G (a, 6), 

Λ(®(ί)) = 0, 
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y f(x*> 

(a) 

h=0 

(b) 

h=0 

h=0 

(c) 

AVh(x*) 

(d) 

Figure 20.12 Four examples where the Lagrange condition is satisfied: (a) 
maximizer, (b) minimizer, (c) minimizer, (d) not an extremizer. (Adapted from [120].) 

and there exists t* G (a, b) satisfying 

x(t*) = x*, x(t*) = y. 

Now consider the composite function φ(ί) = f(x(t)). Note that t* is a local 
minimizer of this function. By the first-order necessary condition for uncon-
strained local minimizers (see Theorem 6.1), 

Applying the chain rule yields 

^ ( f ) = Df{x')x(f) = Df(x*)y = Vf{x*)Ty - 0. 

So all y 6 T(x*) satisfy 
V / ( z * ) T y = 0; 
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h=0 

Vh(x*) 

Figure 20.13 Example where the Lagrange condition does not hold. 

that is, 

This completes the proof. 
v/(a:*) G T(x*y 

Lagrange's theorem states that if x* is an extremizer, then the gradient 
of the objective function / can be expressed as a linear combination of the 
gradients of the constraints. We refer to the vector λ* in Theorem 20.3 as the 
Lagrange multiplier vector, and its components as Lagrange multipliers. 

From the proof of Lagrange's theorem, we see that a compact way to write 
the necessary condition is V/(x*) G N(x*). If this condition fails, then x* 
cannot be an extremizer. This situation is illustrated in Figure 20.13. 

Notice that regularity is stated as an assumption in Lagrange's theorem. 
This assumption plays an essential role, as illustrated in the following example. 

Example 20.5 Consider the following problem: 

minimize f(x) 

subject to h(x) = 0, 

where f(x) = x and 

h(x) = < 

f x2 i f x < 0 
0 if 0 < x < 1 
(x-l)2 if x > l . 

The feasible set is evidently [0,1]. Clearly, x* = 0 is a local minimizer. 
However, f'(x*) = 1 and h'(x*) = 0. Therefore, x* does not satisfy the 
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necessary condition in Lagrange's theorem. Note, however, that x* is not a 
regular point, which is why Lagrange's theorem does not apply here. I 

It is convenient to introduce the Lagrangian function I : Mn x Rm —> R, 
given by 

l{x,X) = f(x) + XTh(x). 

The Lagrange condition for a local minimizer x* can be represented using the 
Lagrangian function as 

Dl(x*,\*) = 0T 

for some λ*, where the derivative operation D is with respect to the entire 
argument [ χ τ , λ ] τ . In other words, the necessary condition in Lagrange's 
theorem is equivalent to the first-order necessary condition for unconstrained 
optimization applied to the Lagrangian function. 

To see the above, denote the derivative of I with respect to x as Dxl and 
the derivative of / with respect to λ as D\l. Then, 

Dl{x, X) = [DJ(x, \),Dxl(x, X)]. 

Note that Dxl(x, X) = Df(x)+XTDh(x) and D\l(x, X) = h(x)T. Therefore, 
Lagrange's theorem for a local minimizer x* can be stated as 

DJ{x*,X*) = 0T, 

Dxl(x*,X*) = 0T 

for some λ*, which is equivalent to 

Dl{x*,X*) = 0T. 

In other words, the Lagrange condition can be expressed as Dl(x*,\*) = 0 T . 
The Lagrange condition is used to find possible extremizers. This entails 

solving the equations 

DJ(x,X) = 0T, 

Dxl(x,X) = 0T. 

The above represents n + m equations i n n + m unknowns. Keep in mind 
that the Lagrange condition is necessary but not sufficient; that is, a point x* 
satisfying the equations above need not be an extremizer. 

Example 20.6 Given a fixed area of cardboard, we wish to construct a closed 
cardboard box with maximum volume. We can formulate and solve this prob-
lem using the Lagrange condition. Denote the dimensions of the box with 
maximum volume by #ι, Χ2, and £3, and let the given fixed area of cardboard 
be A. The problem can then be formulated as 

maximize χχχ^Χζ 
A 

Subject tO X\X2 + #2^3 + #3#1 = 7Γ-
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We denote f(x) = —x\x2x^ and h(x) = xiX2-\-x2Xs+XsXi —A/2. We have 
V/(a?) = -[χ2Χ3,χιΧζ,χιχ2]

τ and V/i(x) = [x2 +x$,x\ + £3,£i + X2V - Note 
that all feasible points are regular in this case. By the Lagrange condition, 
the dimensions of the box with maximum volume satisfies 

#2^3 - Κχ2 + X3) 
£1^3 - λ(Χι + £3) 

£ i £ 2 - A(a?i + £ 2 ) 

£ l £ 2 + #2^3 + #3^1 

where λ e R. 
We now solve these equations. First, we show that that #1, #2, #3, a n d A are 

all nonzero. Suppose that Xi = 0. By the constraints, we have #2^3 = A/2. 
However, the second and third equations in the Lagrange condition yield 
Xx2 = Xx3 = 0, which together with the first equation implies that £2 £3 = 0. 
This contradicts the constraints. A similar argument applies to £2 and £3. 

Next, suppose that λ = 0. Then, the sum of the three Lagrange equations 
gives x2xz + x\x$ + x\X2 = 0, which contradicts the constraints. 

We now solve for £1, x2, and £3 in the Lagrange equations. First, multiply 
the first equation by x\ and the second by £2, and subtract one from the 
other. We arrive at χ^Χ(χι — x2) = 0. Because neither £3 nor λ can be zero 
(by part b), we conclude that X\ — x2. We similarly deduce that x2 = £3. 
From the constraint equation, we obtain x\ — x2 — £3 = y/A/Q. 

Notice that we have ignored the constraints that £1, x2, and £3 are positive 
so that we can solve the problem using Lagrange's theorem. However, there 
is only one solution to the Lagrange equations, and the solution is positive. 
Therefore, if a solution exists for the problem with positivity constraints on 
the variables £1, x2, and £3, then this solution must necessarily be equal to 
the solution above obtained by ignoring the positivity constraints. I 

Next we provide an example with a quadratic objective function and a 
quadratic constraint. 

Example 20.7 Consider the problem of extremizing the objective function 

f(x) =x\ + x\ 

on the ellipse 
{[£i,£2]T : h(x) = x\ + 2x\-l = 0}. 

We have 

ν / ( χ ) - [ 2 £ ! , 2 £ 2 ] Τ , 

ν / ι (χ ) = [2£!,4£2] τ . 

- 0 
= 0 
= 0 

A 

~ 2~' 
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Thus, 

Dxl(x, X) = Dx[f(x) + Xh(x)] = [2xi + 2λχι, 2x2 + 4λχ2] 

and 
D\l(x, X) = h(x) = x\ + 2x\ - 1. 

Setting Dxl(x, X) = 0 T and D\l(x, X) = 0, we obtain three equations in three 
unknowns 

2xi + 2λχι = 0, 
2x2 + 4λχ2 = 0, 

X\ ~~\~ AXo ^ A· 

All feasible points in this problem are regular. Prom the first of the equations 
above, we get either x\ = 0 or λ = — 1. For the case where X\ = 0, the 
second and third equations imply that λ = —1/2 and x2 = ± l / \ / 2 . For the 
case where λ = — 1, the second and third equations imply that x\ = ±1 and 
x2 = 0. Thus, the points that satisfy the Lagrange condition for extrema are 

0 
_l/>/2 

, x& = 
0 

- 1 / ^ 2 
, x& = 

1 
0 

, xW = 
- 1 
0 

Because 
f(xV) = f(xW) = \ 

and 
f(x(V) = f(xW) = l 

we conclude that if there are minimizers, then they are located at x^ and 
x^2\ and if there are maximizers, then they are located at x^ and x^. 
It turns out that, indeed, x^ and x^ are minimizers and x^ and x^ 
are maximizers. This problem can be solved graphically, as illustrated in 
Figure 20.14. I 

In the example above, both the objective function / and the constraint 
function h are quadratic functions. In the next example we take a closer look 
at a class of problems where both the objective function / and the constraint 
h are quadratic functions of n variables. 

Example 20.8 Consider the following problem: 

. . xTQx 
maximize τ η , 

x' Px 

where Q = QT > 0 and P = PT > 0. Note that if a point x = [# i , . . . , xn]
T 

is a solution to the problem, then so is any nonzero scalar multiple of it, 

tx = [txi,... )txn]
T, t φ 0. 
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Figure 20.14 Graphical solution of the problem in Example 20.7. 

Indeed, 
(tx)TQ(tx) t2xTQx xTQx 
(tx)TP(tx) t2xTPx xTPx 

Therefore, to avoid the multiplicity of solutions, we further impose the con-
straint 

xTPx = 1. 

The optimization problem becomes 

maximize x Qx 

subject to xTPx = 1. 

Let us write 

f(x) = xTQx, 

h(x) = 1- xTPx. 

Any feasible point for this problem is regular (see Exercise 20.13). We now 
apply Lagrange's method. We first form the Lagrangian function 

Z(x, λ) = xTQx + λ(1 - xTPx). 

Applying the Lagrange condition yields 

DJ{x, X) = 2xTQ - 2XxTP = 0 T , 

Dxl(x,X) = l-xTPx = 0. 
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The first of the equations above can be represented as 

Qx - XPx = 0 

or 
(XP - Q)x = 0. 

This representation is possible because P = P and Q = Q . B y assumption 
P > 0, hence P _ 1 exists. Premultiplying (XP — Q)x — 0 by P - 1 , we obtain 

(λ/η - Prefix = 0 
or, equivalently, 

P~lQx = Xx. 

Therefore, the solution, if it exists, is an eigenvector of P _ 1 Q , and the La-
grange multiplier is the corresponding eigenvalue. As usual, let x* and λ* be 
the optimal solution. Because x*TPx* = 1 and P _ 1 Q x * = A*cc*, we have 

X* =x*TQx*. 

Hence, λ* is the maximum of the objective function, and therefore is, in fact, 
the maximal eigenvalue of P~lQ. It is also called the maximal generalized 
eigenvalue. I 

In the problems above, we are able to find points that are candidates for 
extremizers of the given objective function subject to equality constraints. 
These critical points are the only candidates because they are the only points 
that satisfy the Lagrange condition. To classify such critical points as mini-
mizers, maximizers, or neither, we need a stronger condition—possibly a nec-
essary and sufficient condition. In the next section we discuss a second-order 
necessary condition and a second-order sufficient condition for minimizers. 

20.5 Second-Order Conditions 

We assume that / : W1 —► M. and h : Rn —> Rm are twice continuously 
differentiable: f,heC2. Let 

l(x, λ) = f(x) + XTh(x) = f(x) + λιΛι(χ) + · · · + Xmhm(x) 

be the Lagrangian function. Let L(x, X) be the Hessian matrix of Z(x, λ) with 
respect to x: 

L(x, X) = F(x) + λιJii(a;) + · · · + XmHmix), 

where F(x) is the Hessian matrix of / at x and Hk(x) is the Hessian matrix 
of hk at x, k = 1 , . . . , m, given by 

Hk(x) = 
"äif(X) " ' dx^dxx (X) 

3 f̂c (γ) . . . d hk (γ) I 
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We introduce the notation [AJH"(SC)]: 

[XH(X)} = Aiffifc) + · · ■ + \mHm(x). 

Using the notation above, we can write 

L(x,\) = F(x) + [\H(x)}. 

Theorem 20.4 Second-Order Necessary Conditions. Let x* be a local 
minimizer of f : W1 —► R subject to h(x) = 0, h : Rn —► Mm, m < n, and 
f,h EC2. Suppose that x* is regular. Then, there exists λ* G Rm such that: 

1. Df(x*)+\*TDh{x*)=0T. 

2. For all y G T{x*), we have yTL(x*,\*)y > 0. D 

Proof. The existence of λ* G Rm such that Df(x*) + \*TDh(x*) = 0 T 

follows from Lagrange's theorem. It remains to prove the second part of the 
result. Suppose that y G T(x*); that is, y belongs to the tangent space to 
S = {x G W1 : h(x) = 0} at x*. Because h G C2, following the argument of 
Theorem 20.1, there exists a twice-differentiable curve {x(t) : t G (a, b)} on 5 
such that 

a;(t*)=a;*, i( t*) = y 

for some i* G (a, 6). Observe that by assumption, t* is a local minimizer of 
the function <j>(t) — f(x(t)). Prom the second-order necessary condition for 
unconstrained minimization (see Theorem 6.2), we obtain 

Using the formula 

±{y{t)
Tz(t))=z(t)^(t) + y(t)T^(t) 

and applying the chain rule yields 

= x{t*)T F(x*)x(t*) + Df{x*)x(t*) 

= yTF(x*)y + Df(x*)x(t*) > 0. 

Because h(x(t)) = 0 for all t € (a, b), we have 

^\*Th(x(t)) = 0. 
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Thus, for all t G (a, 6), 

έλ·τ"Μ'»=! 

~ dt 

£ 
dt 

\*T-h(x(t)) 

J2\*k-hk(x(t)) 
Lfc=i 

J2\*kDhk(x(t))x(t) 
.k=l 

= tlX^(Dhk(x(t))x(t)) 
fe=l 

J^K [x(t)THk(x(t))x(t) + Dhk(x(t))x(t)] 
fe=l 

= xT(t)\X*H(x(t))}x(t) + \*TDh{x(t))x{t) 

= 0. 

In particular, the above is true for t = t*; that is, 

yT[X*H(x*)]y + X*T Dh(x*)x(t*) = 0. 

Adding this equation to the inequality 

yTF(x*)y + Df(x*)x(t*)>0 

yields 

yT (F(x*) + [λ*Η(χ·)]) y + (Df(x*) + \*TDh(x*))x(t*) > 0. 

But, by Lagrange's theorem, Df(x*) + X*TDh(x*) — 0 T . Therefore, 

y T (F(x*) + [\*H(x*)})y = yTL{x\\*)y > 0, 

which proves the result. I 

Observe that L(x, X) plays a similar role as the Hessian matrix F(x) of the 
objective function / did in the unconstrained minimization case. However, 
we now require that L{x*, λ*) > 0 only on T(x*) rather than on Rn. 

The conditions above are necessary, but not sufficient, for a point to be a 
local minimizer. We now present, without a proof, sufficient conditions for a 
point to be a strict local minimizer. 

Theorem 20.5 Second-Order Sufficient Conditions. Suppose that 
f,h eC2 and there exists a point x* G W1 and λ* G Rm such that: 

1. D/(x*) + A* T D/i( :z*)=0 T . 
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2. For all y e T(x*), y^O, we have yTL(x*,X*)y > 0. 

Then, x* is a strict local minimizer of f subject to h(x) = 0. D 

Proof. The interested reader can consult [88, p. 334] for a proof of this result. 

Theorem 20.5 states that if an cc* satisfies the Lagrange condition, and 
Ζ/(χ*,λ*) is positive definite on T(x*), then x* is a strict local minimizer. 
A similar result to Theorem 20.5 holds for a strict local maximizer, the only 
difference being that L(x*,\*) be negative definite on T(x*). We illustrate 
this condition in the following example. 

Example 20.9 Consider the following problem: 

xTQx 

where 

Q 

ιιια,Λ.11 

4 θ" 
0 1 

U 1~ xTPx' 

P = 
2 0 
0 1 

As pointed out earlier, we can represent this problem in the equivalent form 

maximize x Qx 

subject to xT Px = 1. 

The Lagrangian function for the transformed problem is given by 

l(x, X) = xTQx + λ(1 - xTPx). 

The Lagrange condition yields 

( A J - P _ 1 Q ) x = 0, 

where 

PlQ = 
2 0 
0 1 

There are only two values of λ that satisfy (XI — P~lQ)x = 0, namely, the 
eigenvalues of P~XQ: X\ — 2, X2 — 1. We recall from our previous discussion 
of this problem that the Lagrange multiplier corresponding to the solution is 
the maximum eigenvalue of P~1Q^ namely, λ* = λι = 2. The corresponding 
eigenvector is the maximizer—the solution to the problem. The eigenvector 
corresponding to the eigenvalue λ* = 2 satisfying the constraint xTPx = 1 
is ±x*, where 
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At this point, all we have established is that the pairs (±χ*,λ*) satisfy 
the Lagrange condition. We now show that the points ±x* are, in fact, strict 
local maximizers. We do this for the point x*. A similar procedure applies to 
—x*. We first compute the Hessian matrix of the Lagrangian function. We 
have 

L(x*,\*) = 2Q-2XP= p ° . v y 10 —2J 

The tangent space T(x*) to {x : 1 — xTPx = 0} is 

T(x*) = {y e R2 : x*JPy = 0} 

= {y:[V2,0]y = 0} 

= {y:y = [0,a]T, a G R}. 

Note that for each y e T(x*), 2 / ^ 0 , 

y T £(a*,A*)y=[0,a] 

Hence, Χ(χ*,λ*) < 0 on T(x*), and thus x* = [l/>/2,0]T is a strict local 
maximizer. The same is true for the point —x*. Note that 

x*TQx* = 2 
x*TPx* 

which, as expected, is the value of the maximal eigenvalue of P~1Q. Finally, 
we point out that any scalar multiple tx* of as*, t φ 0, is a solution to the 
original problem of maximizing xTQx/xTPx. I 

20.6 Minimizing Quadratics Subject to Linear Constraints 

Consider the problem 

. . . 1 τ^ minimize -x Qx 

subject to Ax = 6, 

where Q > 0, A £ Rm X n , m < n, rank A = m. This problem is a special 
case of what is called a quadratic programming problem (the general form of 
a quadratic programming problem includes the constraint x > 0). Note that 
the constraint set contains an infinite number of points (see Section 2.3). We 
now show, using Lagrange's theorem, that there is a unique solution to the op-
timization problem above. Following that, we provide an example illustrating 
the application of this solution to an optimal control problem. 

0 0 
0 - 2 

-2a2 < 0. 
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To solve the problem, we first form the Lagrangian function 

/(», λ) = -xTQx + λ τ ( 6 - Ax). 

The Lagrange condition yields 

DJ{x*, X*) = x*TQ - λ* τ A = 0 T . 

Rewriting, we get 
x* =Q~1AT\*. 

Premultiplying both sides of the above by A gives 

Ax* =AQ1AT\*. 

Using the fact that Ax* = 6, and noting that AQ~1AT is invertible because 
Q > 0 and rank A = m, we can solve for λ* to obtain 

λ* = (AQ'1AT)'1b. 

Therefore, we obtain 

x* = Q-1AT(AQ-1AT)-1b. 

The point x* is the only candidate for a minimizer. To establish that x* is 
indeed a minimizer, we verify that x* satisfies the second-order sufficient con-
ditions. For this, we first find the Hessian matrix of the Lagrangian function 
at (a:*,A*). We have 

L{x*,\*) = Q, 

which is positive definite. Thus, the point x* is a strict local minimizer. We 
will see in Chapter 22 that x* is, in fact, a global minimizer. 

The special case where Q = J n , the n x n identity matrix, reduces to the 
problem considered in Section 12.3. Specifically, the problem in Section 12.3 
is to minimize the norm ||x|| subject to Ax = b. The objective function 
here is f(x) = \\x\\, which is not differentiable at x = 0. This precludes 
the use of Lagrange's theorem because the theorem requires differentiability 
of the objective function. We can overcome this difficulty by considering an 
equivalent optimization problem: 

minimize - | | # | | 2 

subject to Ax = b. 

The objective function ||a?||2/2 has the same minimizer as the previous objec-
tive function ||x||. Indeed, if x* is such that for all x G Rn satisfying Ax = 6, 
||^*|| < II&H, then ||ic*||2/2 < | |x| |2/2. The same is true for the converse. 
Because the problem of minimizing | |x| |2/2 subject to Ax = b is simply the 
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problem considered above with Q — I n , we easily deduce the solution to be 
x* = A (AA ) _ 1 6, which agrees with the solution in Section 12.3. 

Example 20.10 Consider the discrete-time linear system model 

xk = axk-i + buk, k > 1, 

with initial condition XQ given. We can think of {xk} as a discrete-time signal 
that is controlled by an external input signal {uk}. In the control literature, 
Xk is called the state at time k. For a given XQ, our goal is to choose the control 
signal {uk} so that the state remains "small" over a time interval [l,iV], but 
at the same time the control signal is "not too large." To express the desire 
to keep the state {xk} small, we choose the control sequence to minimize 

1 N 

On the other hand, maintaining a control signal that is not too large, we 
minimize 

The two objectives above are conflicting in the sense that they cannot, in 
general, be achieved simultaneously—minimizing the first may result in a large 
control effort, while minimizing the second may result in large states. This is 
clearly a problem that requires compromise. One way to approach the problem 
is to minimize a weighted sum of the two functions above. Specifically, we 
can formulate the problem as 

1 N 

minimize - 2_\ {QX1 + ruTj 

subject to Xk = axk-i + buk, k = 1 , . . . , TV, x0 given, 

where the parameters q and r reflect the relative importance of keeping the 
state small versus keeping the control effort not too large. This problem is an 
instance of the linear quadratic regulator (LQR) problem (see, e.g., [15], [20], 
[85], [86], or [99]). Combining the two conflicting objectives of keeping the 
state small while keeping the control effort small is an instance of the weighted 
sum approach (see Section 24.4). 
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To solve the problem above, we can rewrite it as a quadratic programming 
problem. Define 

Q = 
QIN O 

O rIN 

' 1 . . . o - 6 

-a I : -b 

b = 

0 

axo 
0 

0 

-a 1 0 

z = [XI,...,XN,UI,...,UN]T . 

With these definitions, the problem reduces to the previously considered 
quadratic programming problem, 

. . . 1 τ ^ minimize -z Qz 

subject to Az — 6, 

where Q is 2N x 27V, A is N x 27V, and b e RN. The solution is 

1-1 ΛΤ -1 ΛΤ\-Ι, z* =Q-LA[(AQ-LAl)-Lb. 

The first N components of z* represent the optimal state signal in the interval 
[1, N], whereas the second iV components represent the optimal control signal. 

In practice, computation of the matrix inverses in the formula for z* above 
may be too costly. There are other ways to tackle the problem by exploiting 
its special structure. This is the study of optimal control (see, e.g., [15], [20], 
[85], [86], or [99]). I 

The following example illustrates an application of the above discussion. 

Example 20.11 Credit-Card Holder Dilemma. Suppose that we currently 
have a credit-card debt of $10,000. Credit-card debts are subject to a monthly 
interest rate of 2%, and the account balance is increased by the interest 
amount every month. Each month we have the option of reducing the ac-
count balance by contributing a payment to the account. Over the next 10 
months, we plan to contribute a payment every month in such a way as to min-
imize the overall debt level while minimizing the hardship of making monthly 
payments. 
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Figure 20.15 Plots for Example 20.11 with q = 1 and r = 10. 

We solve our problem using the LQR framework described in Exam-
ple 20.10. Let the current time be 0, Xk the account balance at the end 
of month fc, and Uk our payment in month k. We have 

xk = 1.02zfc_i -uk, k = 1 , . . . , 10; 

that is, the account balance in a given month is equal to the account balance 
in the previous month plus the monthly interest on that balance minus our 
payment that month. Our optimization problem is then 

minimize 
1 10 

Ö Σ faXi + rUi) 
i = l 

subject to Xk = 1.02xfc_i — Uk, k = 1 , . . . , 10, x0 = 10,000, 

which is an instance of the LQR problem. The parameters q and r reflect 
our priority in trading off between debt reduction and hardship in making 
payments. The more anxious we are to reduce our debt, the larger the value 
of q relative to r. On the other hand, the more reluctant we are to make 
payments, the larger the value of r relative to q. 

The solution to the problem above is given by the formula derived in Exam-
ple 20.10. In Figure 20.15 we plot the monthly account balances and payments 
over the next 10 months using q = 1 and r = 10. We can see here that our 
debt has been reduced to less than $1000 after 10 months, but with a first 
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Figure 20.16 Plots for Example 20.11 with q = 1 and r = 300. 

payment close to $3000. If we feel that a payment of $3000 is too high, then 
we can try to reduce this amount by increasing the value of r relative to q. 
However, going too far along these lines can lead to trouble. Indeed, if we use 
q = 1 and r = 300 (see Figure 20.16), although the monthly payments do not 
exceed $400, the account balance is never reduced by much below $10,000. In 
this case, the interest on the account balance eats up a significant portion of 
our monthly payments. In fact, our debt after 10 months will be higher than 
$10,000. ■ 

For a treatment of optimization problems with quadratic objective func-
tions, subject to linear or quadratic constraints, arising in communication and 
signal processing, see [105] and [106]. 

EXERCISES 

20.1 Consider the following constraints on R2: 

h(xux2) = (xi - 2)2 = 0 and g(xi,x2) = (x2 + I ) 3 < 0. 

Find the set of feasible points. Are the feasible points regular? Justify your 
answer. 
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20.2 Find local extremizers for the following optimization problems: 

a. Minimize x\ + 2x\x<i + 3x2 + 4χχ + 5x2 + 6^3 

subject to x\+ 2x2 = 3 
4#i + 5x3 = 6. 

b . Maximize 4xi + x\ 

subject to x\ + x\ = 9. 

c. Maximize x\x2 

subject to x\ + 4#2 = 1· 

20.3 Find minimizers and maximizers of the function 

f{x) = (aTx)(bTx), x G R3, 

subject to 

xi + x2 — 0 
X2 + ^3 = 0, 

where 
Γο" 
1 

L° 
and b = 

"l] 
0 
lj 

20.4 Consider the problem 

minimize f(x) 

subject to h(x) = 0, 

where / : R2 -> R, ft : R2 -> R, and V/ (» ) = [χι,Χι + 4]T . Suppose that x* 
is an optimal solution and Vft(x*) = [1,4]T. Find Vf(x*). 

20.5 Consider the problem 

minimize 11 x — XQ \ |2 

subject to ||x||2 = 9, 

where x0 = [1, A/3]T · 

a. Find all points satisfying the Lagrange condition for the problem. 
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b . Using second-order conditions, determine whether or not each of the 
points in part a is a local minimizer. 

20.6 We wish to construct a closed box with minimum surface area that 
encloses a volume of V cubic feet, where V > 0. 

a. Let a, 6, and c denote the dimensions of the box with minimum sur-
face area (with volume V). Derive the Lagrange condition that must be 
satisfied by a, b, and c. 

b . What does it mean for a point x* to be a regular point in this problem? 
Is the point x* = [a, fr, c]T a regular point? 

c. Find a, 6, and c. 

d. Does the point x* = [a,b,c]T found in part c satisfy the second-order 
sufficient condition? 

20.7 Find local extremizers of 

a. / ( x i , X2, X3) = x\ + 3x | + xs subject to x\-\-x\-\-x\ = 16. 

b . f(xi,x2) = x\ + x\ subject to 3x\ + 4xix2 + 6x| = 140. 

20.8 Consider the problem 

minimize 2x\ + 3#2 — 4, x\,x2 G R 
subject to £1X2 = 6. 

a. Use Lagrange's theorem to find all possible local minimizers and maxi-
mizers. 

b . Use the second-order sufficient conditions to specify which points are 
strict local minimizers and which are strict local maximizers. 

c. Are the points in part b global minimizers or maximizers? Explain. 

20.9 Find all maximizers of the function 

x 18x? - 8x1X2 + 12x1 
/ ( x i '*2 ) = — 2 x T T ^ i — ■ 

20.10 Find all solutions to the problem 

maximize xT 3 4 

0 3 x 

subject to ||#||2 = 1. 
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20.11 Consider a matrix A with the property that A A has eigenvalues 
ranging from 1 to 20 (i.e., the smallest eigenvalue is 1 and the largest is 20). 
Let x be a vector such that ||x|| = 1, and let y = Ax. Use Lagrange multiplier 
methods to find the range of values that \\y\\ can take. 
Hint: What is the largest value that \\y\\ can take? What is the smallest value 
that 11 y \ | can take? 

20.12 Consider a matrix A G R m X n . Define the induced 2-norm of A, 
denoted ||A||2, to be the number 

||A||2 = max{||Ax|| : x e R n , ||α|| = 1}, 

where the norm || · || on the right-hand side above is the usual Euclidean norm. 
Suppose that the eigenvalues of A A are λ ι , . . . , λη (ordered from largest 

to smallest). Use Lagrange's theorem to express || A||2 in terms of the eigen-
values above (cf. Theorem 3.8). 

20.13 Let P = PT be a positive definite matrix. Show that any point x 
satisfying 1 — xTPx = 0 is a regular point. 

20.14 Consider the problem 

maximize ax\ + bx2, X\,%2 £ R 
subject to x\ + x\ = 2, 

where a,b G R. Show that if [1,1]T is a solution to the problem, then a = b. 

20.15 Consider the problem 

minimize X\X2 — 2#i, #i,#2 € M 
subject to x\ — x\ = 0. 

a. Apply Lagrange's theorem directly to the problem to show that if a so-
lution exists, it must be either [1,1]T or [—1,1]T. 

b . Use the second-order necessary conditions to show that [—1,1]T cannot 
possibly be the solution. 

c. Use the second-order sufficient conditions to show that [1,1]T is a strict 
local minimizer. 

20.16 Let A G R m x n , m < n, rank A = m, and x0 G Rn. Let x* be the 
point on the nullspace of A that is closest to XQ (in the sense of Euclidean 
norm). 

a. Show that x* is orthogonal to x* — XQ. 



EXERCISES 485 

b . Find a formula for x* in terms of A and XQ. 

20.17 Consider the problem 

minimize 

subject to 

where A G R m x n , m > n, C G R p x n , p < n, and both A and C are of full 
rank. We wish to find an expression for the solution (in terms of A, 6, C, 
and d). 

a. Apply Lagrange's theorem to solve this problem. 

b . As an alternative, rewrite the given optimization problem in the form of 
a quadratic programming problem and apply the formula in Section 20.6 
to obtain the solution. 

20.18 Consider the problem of minimizing a general quadratic function sub-
ject to a linear constraint: 

minimize -xTQx — cTx + d 

subject to Ax — 6, 

where Q = Q > 0, A G R m x n , m < n, rank A = m, and d is a constant. 
Derive a closed-form solution to the problem. 

20.19 Let L be an n x n real symmetric matrix, and let M be a subspace 
of Rn with dimension m < n. Let {&i , . . . ,6 m } C Mn be a basis for M, 
and let B be the n x m matrix with bi as the ith column. Let LM be the 
mxm matrix defined by LM = B LB. Show that L is positive semidefinite 
(definite) on M if and only if LM is positive semidefinite (definite). 
Note: This result is useful for checking that the Hessian of the Lagrangian 
function at a point is positive definite on the tangent space at that point. 

20.20 Consider the sequence {xk}, %k £ ^ generated by the recursion 

Xk+i = axk + buki k > 0 (a, b G R, a, b φ 0), 

where ^0,^1,^2»··· is a sequence of "control inputs," and the initial condition 
#o Φ 0 is given. The recursion above is also called a discrete-time linear 
system. We wish to find values of control inputs uo and u\ such that #2 = 0, 
and the average input energy (UQ + uf)/2 is minimized. Denote the optimal 
inputs by UQ and u\. 

\\\Ax-b\\* 

Cx = d, 
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a. Find expressions for UQ and u* in terms of a, 6, and XQ. 

b . Use the second-order sufficient conditions to show that the point tx* = 
[tio,^*]T in part a is a strict local minimizer. 

20.21 Consider the discrete-time linear system Xk = %Xk-i + f̂c> k > 1, with 
#0 = 1· Find the values of the control inputs U\ and U2 to minimize 

2 , 1 2 , 1 2 
*2 + 2M1 + 3^2· 

20.22 Consider the discrete-time linear system x^+i = Xk + 2^^, 0 < A: < 2, 
with #o = 3. Use the Lagrange multiplier approach to calculate the optimal 
control sequence {uo, ^1,^2} that transfers the initial state XQ to £3 = 9 while 
minimizing 

! 2 

fc=0 



CHAPTER 21 

PROBLEMS WITH INEQUALITY 
CONSTRAINTS 

21.1 Karush-Kuhn-Tucker Condition 

In Chapter 20 we analyzed constrained optimization problems involving only 
equality constraints. In this chapter we discuss extremum problems that also 
involve inequality constraints. The treatment in this chapter parallels that of 
Chapter 20. In particular, as we shall see, problems with inequality constraints 
can also be treated using Lagrange multipliers. 

We consider the following problem: 

minimize f(x) 

subject to h(x) = 0, 

where / : Rn -> R, h : W1 -+ Rm , m < n, and g : Rn -> W. For the general 
problem above, we adopt the following definitions. 

Definition 21.1 An inequality constraint gj(x) < 0 is said to be active at 
x* if 9j{x*) = 0. It is inactive at x* if gj(x*) < 0. I 

An Introduction to Optimization, Fourth Edition. 487 
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By convention, we consider an equality constraint hi(x) = 0 to be always 
active. 

Definition 21.2 Let x* satisfy h(x*) = 0, g(x*) < 0, and let J(x*) be the 
index set of active inequality constraints: 

Then, we say that x* is a regular point if the vectors 

Vfti(x*), Vgj(x*), l < i < r a , j G J(x*) 

are linearly independent. I 

We now prove a first-order necessary condition for a point to be a local 
minimizer. We call this condition the Karush-Kuhn-Tucker (KKT) condition. 
In the literature, this condition is sometimes also called the Kuhn-Tucker 
condition. 

Theorem 21.1 Karush-Kuhn-Tucker (KKT) Theorem. Let f,h,g G 
C1. Let x* be a regular point and a local minimizer for the problem of min-
imizing f subject to h(x) = 0, g(x) < 0. Then, there exist λ* G Rm and 
μ* G Rp such that: 

1. μ* > 0. 

2. Df(x*) + \*TDh(x*) + ß*TDg{x*) = 0 T . 

S. ß*Tg{x*) = 0. 

D 

In Theorem 21.1, we refer to λ* as the Lagrange multiplier vector and μ* as 
the Karush-Kuhn-Tucker (KKT) multiplier vector. We refer to their compo-
nents as Lagrange multipliers and Karush-Kuhn-Tucker (KKT) multipliers, 
respectively. 

Before proving this theorem, let us first discuss its meaning. Observe that 
μj > 0 (by condition 1) and gj{x*) < 0. Therefore, the condition 

μ* τ0(χ*) = ßlgi(x*) + · · ■ + μ^ρί**) = 0 

implies that if gj(x*) < 0, then μ^ = 0; that is, for all j 0 J(as*), we have 
μ^ = 0. In other words, the KKT multipliers μ!· corresponding to inactive con-
straints are zero. The other KKT multipliers, μ*, i G J(x*), are nonnegative; 
they may or may not be equal to zero. 

Example 21.1 A graphical illustration of the KKT theorem is given in Fig-
ure 21.1. In this two-dimensional example, we have only inequality constraints 
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Figure 21.1 Illustration of the Karush-Kuhn-Tucker (KKT) theorem. 

9j(&) < 0, j = 1,2,3. Note that the point x* in the figure is indeed a min-
imizer. The constraint gz(x) < 0 is inactive: g${x*) < 0; hence μ£ = 0. By 
the KKT theorem, we have 

V/Or*) + μΐν9ι(χ*) + μ*2ν92(χ*) = 0, 

or, equivalently, 

V/(x*) = -μΐν9ι(χ*) - M 5 V ^ ( X * ) , 

where μ\ > 0 and μ\ > 0. It is easy to interpret the KKT condition graphi-
cally for this example. Specifically, we can see from Figure 21.1 that V/(x*) 
must be a linear combination of the vectors — S7gi(x*) and — V#2(#*) with 
positive coefficients. This is reflected exactly in the equation above, where 
the coefficients μ\ and μ\ are the KKT multipliers. I 

We apply the KKT condition in the same way that we apply any necessary 
condition. Specifically, we search for points satisfying the KKT condition and 
treat these points as candidate minimizers. To summarize, the KKT condition 
consists of five parts (three equations and two inequalities): 

1. μ* > 0. 

2. Df(x*) + \*TDh{x*) 4- ß*TDg(x*) = 0 T . 

3. μ*τ9{χ*)=0. 
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4. fe(x*) = 0. 

5. g(x*) < 0. 

We now prove the KKT theorem. 

Proof of the Karush-Kuhn-Tucker Theorem. Let x* be a regular local min-
imizer of / on the set {x : h(x) = 0,g(x) < 0}. Then, x* is also a regular 
local minimizer of / on the set {x : h(x) = 0,gj(x) = 0, j G J(x*)} (see 
Exercise 21.16). Note that the latter constraint set involves only equality 
constraints. Therefore, from Lagrange's theorem, it follows that there exist 
vectors λ* G Rm and μ* G W such that 

Df(x*) + X*TDh(x*) + ß*TDg(x*) = 0 T , 

where for all j 0 J{x*), we have μ!· = 0. To complete the proof it remains to 
show that for all j G J(x*), we have μ!· > 0 (and hence for all j = 1 , . . . ,p, 
we have μ!· > 0, i.e., μ* > 0). We use a proof by contradiction. So suppose 
that there exists j G J(x*) such that μ!· < 0. Let S and T(x*) be the surface 
and tangent space defined by all other active constraints at x*. Specifically, 

S = {x : h(x) = 0, gi(x) = 0, i G J(x*),i Φ j} 

and 
f (x*) = {2/ : L > M * > = 0, D9i(x*)y = 0, ί G J(x*), ί ^ j}· 

We claim that by the regularity of x*, there exists y G T(cc*) such that 

D f t ( x * ) 2 / ^ 0 . 

To see this, suppose that for all y G T(x*), V^j(x*)Ty = Dgj(x*)y = 0. 
This implies that V^j(x*) G T^cc*)-1. By Lemma 20.1, this, in turn, implies 
that 

Vgj(x*) G span[V/ifc(x*), fc = 1 , . . . , m, V^(x*) , z G J(x*), i ^ j ] . 

But this contradicts the fact that x* is a regular point, which proves our claim. 
Without loss of generality, we assume that we have y such that Dgj(x*)y < 0. 

Consider the Lagrange condition, rewritten as 

Df(x*) + \*TDh(x*) + ß*aD9j{x*) + Σμ*ίΌ9ί{χ*) = 0T. 
ίφύ 

If we postmultiply the above by y and use the fact that y G T(x*), we get 

Df(x*)y = -μ)Ό9ί{χ*)ν. 

Because Dgj(x*)y < 0 and we have assumed that μ^ < 0, we have 

Df(x*)y < 0. 
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20 V ^ = 10 Ω 

Figure 21.2 Circuit in Example 21.2. 

Because y G T(x*}, by Theorem 20.1 we can find a differentiable curve 
{x(t) : t G (a, b)} on S such that there exists t* G (a, b) with x(i*) = x* and 
i( t*) = y. Now, 

p(x(t*)) = Df{x*)y < 0. 
The above means that there is a δ > 0 such that for all t G (t*, t* + 5], we 
have 

/(*(<))</(x(t*)) = /0O· 
On the other hand, 

d_ 
dt 

gj(x(t*)) = Dgj(x*)y<0, 

and for some ε > 0 and all ί G [t*, ί*+ε], we have that gj(x(t)) < 0. Therefore, 
for all t G (ί*,Γ +πύη{<ϊ,ε}], we have that gj(x(t)) < 0 and f(x(t)) < f{x*). 
Because the points x(t), t G (t*,t* + min{£,ε}], are in 5, they are feasible 
points with lower objective function values than x*. This contradicts the 
assumption that x* is a local minimizer, which completes the proof. I 

Example 21.2 Consider the circuit in Figure 21.2. Formulate and solve the 
KKT condition for the following problems. 

a. Find the value of the resistor R > 0 such that the power absorbed by 
this resistor is maximized. 

b . Find the value of the resistor R > 0 such that the power delivered to the 
10-Ω resistor is maximized. 

Solution: 

a. The power absorbed by the resistor R is p = i2R, where i = 10
25^. The 

optimization problem can be represented as 

400i? 
minimize (10 + R)2 

subject to — R < 0. 
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The derivative of the objective function is 

400(10 + R)2 - 800^(10 + R) 400(10 - R) 

(10 + # ) 4 " " (10 + R)3 ' 

Thus, the KKT condition is 

400(10 - R) 
(io + i?)3 μ " 0 , 

μ > 0 , 
μR = 0, 

-R<0. 

We consider two cases. In the first case, suppose that μ > 0. Then, 
R = 0. But this contradicts the first condition above. Now suppose that 
μ = 0. Then, by the first condition, we have R = 10. Therefore, the only 
solution to the KKT condition is R = 10, μ = 0. 

b . The power absorbed by the 10-Ω resistor is p = i210, where z = 20/(10 + 
i2). The optimization problem can be represented as 

. . . 4000 
minimize — -—- —77 

(10 + # ) 2 

subject to — R < 0. 

The derivative of the objective function is 
8000 

(10 + R)3' 

Thus, the KKT condition is 
8000 

(10 + Ä)3 μ " ' 
μ > 0 , 

μ β = 0, 
- Ä < 0 . 

As before, we consider two cases. In the first case, suppose that μ > 0. 
Then, # = 0, which is feasible. For the second case, suppose that μ = 0. 
But this contradicts the first condition. Therefore, the only solution to 
the KKT condition is R = 0, μ = 8. I 

In the case when the objective function is to be maximized, that is, when 
the optimization problem has the form 

maximize f(x) 

subject to h(x) = 0 
9(x) < 0, 
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the KKT condition can be written as 

1. μ* > 0. 

2. -Df{x*) + \*TDh{x*) + μ*τ£>0(α*) = 0 T . 

3. μ*τ9{χ*) = 0. 

4. h(x*) = 0. 

5. »(«*) < 0. 

The above is easily derived by converting the maximization problem above 
into a minimization problem, by multiplying the objective function by —1. It 
can be further rewritten as 

1. μ* < 0. 

2. Df(x*) + \*TDh(x*) + μ*ΎΌ9{χ*) = 0 T . 

3. μ*τ0(α*) = 0. 

4. /ι(χ*) = 0. 

5. <?(**) < 0. 

The form shown above is obtained from the preceding one by changing the 
signs of μ* and λ* and multiplying condition 2 by —1. 

We can similarly derive the KKT condition for the case when the inequality 
constraint is of the form g(x) > 0. Specifically, consider the problem 

minimize f(x) 

subject to h(x) = 0 
9(x) > 0. 

We multiply the inequality constraint function by —1 to obtain — g(x) < 0. 
Thus, the KKT condition for this case is 

1. μ* > 0. 

2. Df(x*) + \*TDh(x*) - μ*τ£>0(χ*) = 0 T . 

3. μ*Τ0(χ*)=Ο. 

4. h{x*) = 0. 

5. g(x*) > 0. 

Changing the sign of μ* as before, we obtain 

1. μ* < 0. 
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2. Df(x*) + A*TDft(x*) + μ*τ£>0(**) = <>T 

3. μ* τ^(χ*) = 0. 

4. h(x*) = 0. 

5. g(x*) > 0. 

For the problem 

maximize f(x) 

subject to h(x) = 0 
9{x) > 0, 

the KKT condition is exactly the same as in Theorem 21.1, except for the 
reversal of the inequality constraint. 

Example 21.3 In Figure 21.3, the two points X\ and #2 are feasible points; 
that is, g(x\) > 0 and #(#2) > 0, and they satisfy the KKT condition. 

The point X\ is a maximizer. The KKT condition for this point (with KKT 
multiplier μ\) is 

1. μι > 0. 

2. V/(a5i)+MiV^(«i) = 0. 

3. μι9(χι) = 0. 

4. 0(*i) > 0. 

The point X2 is a minimizer of / . The KKT condition for this point (with 
KKT multiplier /X2) is 

1. μ2 < 0. 

2. V/(a?2) + /x2V£(tt2) = 0. 

3. μ29{Χ2) = 0. 

4. <?(*2) > 0. 

■ 

Example 21.4 Consider the problem 

minimize / (x 1, Χ2) 

subject to £i,#2 > 0, 

where 
f(xi, x2) = x\ + x\ + xiX2 — 3#i. 
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WVf(Xl) 

Figure 21.3 Points satisfying the KKT condition (x± is a maximizer and X2 is a 
minimizer). 

The KKT condition for this problem is 

1. μ = [μι,μ2]
Τ < 0. 

2. £>/ (*)+ μ τ = 0 T . 

3. μτχ = 0. 

4. χ > 0. 

We have 

This gives 

Df{x) = [2xi + x2 - 3, zi + 2x2]· 

2xi + X2 + Mi = 3, 
xi + 2x2 + M2 = 0, 

μιΧι + μ2^2 = 0. 

We now have four variables, three equations, and the inequality constraints 
on each variable. To find a solution (as*,/x*), we first try 

which gives 

* 
Mi 

,* _ 
1 — 

= 0, 

3 
2 ' 

x2 ~ 

μ>2 = 

= o, 

3 
2 
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The above satisfies all the KKT and feasibility conditions. In a similar fashion, 
we can try 

μ* = 0 , x\ = 0, 

which gives 
x * = 0 , μ ί = 3 . 

This point clearly violates the nonpositivity constraint on μ\. 
The feasible point above satisfying the KKT condition is only a candidate 

for a minimizer. However, there is no guarantee that the point is indeed 
a minimizer, because the KKT condition is, in general, only necessary. A 
sufficient condition for a point to be a minimizer is given in the next section. 

■ 
Example 21.4 is a special case of a more general problem of the form 

minimize f(x) 

subject to x > 0. 

The KKT condition for this problem has the form 

μ < 0 , 
ν/(*)+μ = 0, 

μτχ = 0, 
x > 0 . 

Prom the above, we can eliminate μ to obtain 

V/ (*) > 0, 
x T V / 0 r ) = 0, 

x > 0 . 

Some possible points in 1R2 that satisfy these conditions are depicted in Fig-
ure 21.4. 

For further results related to the KKT condition, we refer the reader to 
[90, Chapter 7]. 

21.2 Second-Order Condit ions 

As in the case of extremum problems with equality constraints, we can also 
give second-order necessary and sufficient conditions for extremum problems 
involving inequality constraints. For this, we need to define the following 
matrix: 

£ ( χ , λ , μ ) - F(x) + [XH(x)} + [μβ(χ)], 
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Figure 21.4 Some possible points satisfying the KKT condition for problems with 
positive constraints. (Adapted from [13].) 

where F(x) is the Hessian matrix of / at cc, and the notation [XH(x)] rep-
resents 

[XH(x)] = λ ι Η ι ( α ) + · · · + Amffm(x) , 

as before. Similarly, the notation [/xG(x)] represents 

[μβ(χ)] = μιβι(χ) Η h pbpGp{x), 

where Gk{x) is the Hessian of g^ at £c, given by 

dxndk
Xl \X) ^ w 

Gk(x) 

r d29k („\ &M. 

I d 9k (χ) . . . d gk 

In the following theorem, we use 

T(x*) = {y€Rn: Dh(x*)y = 0, D9j(x')y = 0, j € J(x*)}, 
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that is, the tangent space to the surface defined by active constraints. 

Theorem 21.2 Second-Order Necessary Conditions. Let x* be a local 
minimizer of f : Rn -> R subject to h(x) = 0, g(x) < 0, h : Rn -» Rm , 
m < n, g : M.n ^> Rp, and f,h,g G C2. Suppose that x* is regular. Then, 
there exist λ* G Rm and μ* G Rp such that: 

1. μ* > 0, Df{x*) + λ*τ£>/ι(χ*) + μ*τDg(x*) = 0 T , μ*τ^(»*) = 0. 

£ For a// y G T(sc*) we ftave y1'L(x*, λ*, ß*)y > 0. D 

Proof. Part 1 is simply a result of the KKT theorem. To prove part 2, we note 
that because the point as* is a local minimizer over {x : h(x) = 0, 0(215) < 0}, 
it is also a local minimizer over {x : h(x) = 0, Qj{x) = 0, j e J(cc*)}; that 
is, the point x* is a local minimizer with active constraints taken as equality 
constraints (see Exercise 21.16). Hence, the second-order necessary conditions 
for equality constraints (Theorem 20.4) are applicable here, which completes 
the proof. I 

We now state the second-order sufficient conditions for extremum problems 
involving inequality constraints. In the formulation of the result, we use the 
following set: 

Τ(χ*,μ*) = {y : Dh(x*)y = 0, Dgi(x*)y = 0,i G J{x\ μ*)}, 

where </(χ*,μ*) = {i : g%{x*) = Ο,μ* > 0}. Note that J(x*,ß*) is a subset 
of J(x*): </(χ*,μ*) C J(x*). This, in turn, implies that T(x*) is a subset of 
f (as* ,M*) : r (x*)cf (e» ,M*) . 

Theorem 21.3 Second-Order Sufficient Conditions. Suppose that 
/ , ^ , / i e C2 and there exist a feasible point x* G Rn and vectors λ* G Rm and 
μ* G Rp such that: 

1. μ* > 0, £>/(**) + λ*τΖ)/ι(χ*) + μ*τΌ9{χ*) = 0 T , μ* τ^(χ*) = 0. 

2. For all y G T(cc*, μ*), y ^0, we have yTL(x*, λ*, μ*)?/ > 0. 

77ien, x* zs a sinci /ocaZ minimizer of f subject to h(x) = 0, g(x) < 0. □ 

Proof For a proof of this theorem, we refer the reader to [88, p. 345]. I 

A result similar to Theorem 21.3 holds for a strict local maximizer, the 
only difference being that we need μ* < 0 and that L(x*,A*) be negative 
definite on Γ(χ*,μ*). 

Example 21.5 Consider the following problem: 

minimize x\X2 

subject to x\ + X2 > 2 
x2 > x\. 
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a. Write down the KKT condition for this problem. 

b . Find all points (and KKT multipliers) satisfying the KKT condition. In 
each case, determine if the point is regular. 

c. Find all points in part b that also satisfy the SONC. 

d. Find all points in part c that also satisfy the SOSC. 

e. Find all points in part c that are local minimizers. 

Solution: 

a. Write f(x) = X1X2, gi{x) = 2 — xi—x2, and g2(x) =x\— X2· The KKT 
condition is 

X2 - μι + M2 = 0, 
χι - μι - μ2 = 0, 

μι(2 - χ ι - χ2) + μ2{χ\ - x2) = 0, 
μι,μ2 > 0, 

2 — χι — χ2 < 0, 
Χι — %2 < 0. 

b . It is easy to check that μ\ φ 0 and μ2 ^ 0. This leaves us with only one 
solution to the KKT condition: x\ = x\ — 1, μ\ = 1, μ2 = 0. For this 
point, we have Dgi(x*) = [—1,-1] and Dg2(x*) = [1,-1]· Hence, x* is 
regular. 

c. Both constraints are active. Hence, because x* is regular, T(x*) = {0}. 
This implies that the SONC is satisfied. 

d. Now, 

Σ(χ\μ*)= I o . 

Moreover, Τ(χ*,μ*) = {y : [-1,-1]*/ = 0} = {y : yx = -y2}. Pick 
y = [ 1 , - 1 ] τ β Τ(χ*,μ*). We have yTL(x*^*)y = - 2 < 0, which 
means that the SOSC fails. 

e. In fact, the point x* is not a local minimizer. To see this, draw a picture 
of the constraint set and level sets of the objective function. Moving in 
the feasible direction [1,1]T, the objective function increases; but moving 
in the feasible direction [—1,1]T, the objective function decreases. 

■ 
We now solve analytically the problem in Example 20.1 that we solved 

graphically earlier. 
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Example 21.6 We wish to minimize f(x) = {x\ — l ) 2 + X2 — 2 subject to 

h(x) = X2 — x\ — 1 = 0, 
g{x) = xi + X2 — 2 < 0. 

For all a: 6 R2, we have 

Dh(x) = [-1,1], Dg(x) = [1,1]. 

Thus, Vft(aj) and Vg(x) are linearly independent and hence all feasible points 
are regular. We first write the KKT condition. Because Df(x) = [2#i — 2,1], 
we have 

Df(x) + XDh(x) + ßDg(x) = [2xx - 2 - λ + μ,1 + λ + μ ] = 0 τ , 
μ(χι + X2 - 2) = 0, 

μ > 0 , 
^2 - Xi - 1 = 0, 
xi + x2 - 2 < 0. 

To find points that satisfy the conditions above, we first try μ > 0, which 
implies that Χχ + X2 — 2 = 0. Thus, we are faced with a system of four linear 
equations 

2xi - 2 - λ + μ = 0, 
1 + λ + μ = 0, 

x2 - #1 - 1 = 0, 
Xl + X2 ~ 2 = 0. 

Solving the system of equations above, we obtain 

1 3 
31 = 2' X2 = 2 ' λ = = _ 1 , ^ = 0 · 

However, the above is not a legitimate solution to the KKT condition, because 
we obtained μ = 0, which contradicts the assumption that μ > 0. 

In the second try, we assume that μ = 0. Thus, we have to solve the system 
of equations 

2xi - 2 - A = 0, 
1 + A = 0, 

X2 - xi - 1 = 0, 

and the solutions must satisfy 

g(xi, x2) = xi + #2 - 2 < 0. 
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Solving the equations above, we obtain 

1 3 ^ ^ 

Note that cc* = [1/2,3/2] satisfies the constraint g{x*) < 0. The point x* 
satisfying the KKT necessary condition is therefore the candidate for being a 
minimizer. 

We now verify if x* = [1/2,3/2] τ , λ* = —1, μ* = 0, satisfy the second-
order sufficient conditions. For this, we form the matrix 

L(x\ λ*, μ*) - F(x*) + \*H{x*) + ß*G{x*) 

"2 0" 
0 0 

"2 0' 
0 0 

+ (-1) 
0 0" 
0 0 

+ (0) 
0 0" 
0 0 

We then find the subspace 

f(x*,ß*) = {y:Dh(x*)y = 0}. 

Note that because μ* = 0, the active constraint g(x*) = 0 does not enter the 
computation of Γ(χ*,μ*). Note also that in this case, T(x*) = {0}. We have 

Τ(χ*,μ*) = {y : [ -1 , l]y = 0} = {[a,a]T : a G R}. 

We then check for positive definiteness of L(x*, λ*, μ*) on T(x*, μ*). We have 

yTL(cc*,A*^*)t/ = [a, a] 2 0 
0 0 

= 2a2. 

Thus, L(iE*,A*,/i*) is positive definite on Γ(χ*,μ*). Observe that 
L(x*, λ*,μ*) is, in fact, only positive semidefinite on R2. 

By the second-order sufficient conditions, we conclude that x* = 
[1/2,3/2] is a strict local minimizer. I 

E X E R C I S E S 

21.1 Consider the optimization problem 

minimize x\ + Ax\ 

subject to x\ + 2x\ > 4. 

a. Find all the points that satisfy the KKT conditions. 
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b . Apply the SOSC to determine the nature of the critical points from the 
previous part. 

21.2 Find local extremizers for: 

a. x\ + x\ — 2x\ — 10x2 + 26 subject to jrx2 — x\ < 0, 5xi + \x2 < 5. 

b . x\ + x\ subject to x\ > 0, X2 > 0, x\ + x^ > 5. 

c. #i + 6x1X2 — 4xi — 2x2 subject to x\ + 2x2 < 1, 2xi — 2x2 < 1. 

21.3 Find local minimizers for x\ + x\ subject to x\ + 2xiX2 + x | = 1, 
#i - ^2 < 0. 

21.4 Write down the Karush-Kuhn-Tucker condition for the optimization 
problem in Exercise 15.8. 

21.5 Consider the problem 

minimize X2 — (xi — 2)3 + 3 
subject to x2 > 1, 

where x\ and X2 are real variables. Answer each of the following questions, 
making sure that you give complete reasoning for your answers. 

a. Write down the KKT condition for the problem, and find all points that 
satisfy the condition. Check whether or not each point is regular. 

b . Determine whether or not the point(s) in part a satisfy the second-order 
necessary condition. 

c. Determine whether or not the point(s) in part b satisfy the second-order 
sufficient condition. 

21.6 Consider the problem 

minimize X2 

subject to X2 > — (xi — l ) 2 + 3. 

a. Find all points satisfying the KKT condition for the problem. 

b . For each point x* in part a, find T(x*), 7V(cc*), and T(x*). 

c. Find the subset of points from part a that satisfy the second-order nec-
essary condition. 
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21.7 Consider the problem of optimizing (either minimizing or maximizing) 
(xi - 2)2 + (x2 - l ) 2 subject to 

2 — x\ — X2 > 0 
xi > 0 . 

The point x* = 0 satisfies the KKT conditions. 

a. Does x* satisfy the FONC for minimization or maximization? What are 
the KKT multipliers? 

b . Does x* satisfy the SOSC? Carefully justify your answer. 

21.8 Consider the optimization problem 

minimize f(x) 

subject to x £ Ω, 

where f(x) = x\x\, where x = [xi ,x 2]T , and Ω = {x G R2 : x\ = x2, x\ > 
0}. 

a. Find all points satisfying the KKT condition. 

b . Do each of the points found in part a satisfy the second-order necessary 
condition? 

c. Do each of the points found in part a satisfy the second-order sufficient 
condition? 

21.9 Consider the problem 

minimize - | | A x — 6||2 

subject to x\-\ h xn = 1 
X\ , . . . , Χγι ^ U. 

a. Write down the KKT condition for the problem. 

b . Define what it means for a feasible point x* to be regular in this particular 
problem. Are there any feasible points in this problem that are not 
regular? If yes, find them. If not, explain why not. 
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21.10 Let g : Rn -> R and x0 G Rn be given, where g(x0) > 0. Consider the 
problem 

minimize -\\x — Xo\\2 

subject to g(x) < 0. 

Suppose that #* is a solution to the problem and g G C1. Use the KKT 
theorem to decide which of the following equations/inequalities hold: 

i. g(x*) < 0. 

ii. g(x*) = 0. 

iii. (x* -x0)
TVg(x*) < 0. 

iv. (x* -x0)
TVg(x*) = 0. 

v. (x* - x0)TV^(ir*) > 0. 

21.11 Consider a square room with corners located at [0,0]T, [0,2]T, [2,0]T, 
and [2,2]T (in R2). We wish to find the point in the room that is closest to 
the point [3,4]T. 

a. Guess which point in the room is the closest point in the room to the 
point [3,4]T. 

b . Use the second-order sufficient conditions to prove that the point you 
have guessed is a strict local minimizer. 

Hint: Minimizing the distance is the same as minimizing the square distance. 

21.12 Consider the quadratic programming problem 

minimize -xTQx 

subject to Ax < b, 

where Q = QT > 0, A G R m x n , and b > 0. Find all points satisfying the 
KKT condition. 

21.13 Consider the linear programming problem 

minimize ax\ + 6x2 
subject to cx\+ dx2 = e 

X\,X2 > 0, 

where a, b, c, d, e G R are all nonzero constants. Suppose that x* is an optimal 
basic feasible solution to the problem. 
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a. Write down the Karush-Kuhn-Tucker condition involving x* (specifying 
clearly the number of Lagrange and KKT multipliers). 

b . Is x* regular? Explain. 

c. Find the tangent space T(x*) (defined by the active constraints) for this 
problem. 

d. Assume that the relative cost coefficients of all nonbasic variables are 
strictly positive. Does x* satisfy the second-order sufficient condition? 
Explain. 

21.14 Consider the problem 

minimize 
subject to 

where A G M m x n , m < n, is of full rank. Use the KKT theorem to show that 
if there exists a solution, then the optimal objective function value is 0. 

21.15 Consider a linear programming problem in standard form (see Chap-
ter 15). 

a. Write down the Karush-Kuhn-Tucker condition for the problem. 

b . Use part a to show that if there exists an optimal feasible solution to the 
linear program, then there exists a feasible solution to the corresponding 
dual problem that achieves an objective function value that is the same 
as the optimal value of the primal (compare this with Theorem 17.1). 

c. Use parts a and b to prove that if x* is an optimal feasible solutions of 
the primal, then there exists a feasible solution λ* to the dual such that 
(cT - λ* τΛ)χ* = 0 (compare this with Theorem 17.3). 

21.16 Consider the constraint set S = {x : h(x) = 0,g(x) < 0}. Let x* G S 
be a regular local minimizer of / over S and J(x*) the index set of active 
inequality constraints. Show that x* is also a regular local minimizer of / 
over the set S' = {x : h(x) = 0,gj(x) = 0 , j G J(x*)}. 

21.17 Solve the following optimization problem using the second-order suf-
ficient conditions: 

minimize x\ + x\ 

subject to x\ — #2 — 4 < 0 
x2 - x\ - 2 < 0. 

cTx 

Ax < 0, 
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See Figure 22.1 for a graphical illustration of the problem. 

21.18 Solve the following optimization problem using the second-order suf-
ficient conditions: 

minimize x\ + x\ 

subject to X\ — x\ — 4 > 0 
xx - 10 < 0. 

See Figure 22.2 for a graphical illustration of the problem. 

21.19 Consider the problem 

minimize x\ + x\ 

subject to 4 — x\ — x^ < 0 
3^2 — #i < 0 
— 3^2 — xi < 0. 

Figure 22.3 gives a graphical illustration of the problem. Deduce from the 
figure that the problem has two strict local minimizers, and use the second-
order sufficient conditions to verify the graphical solutions. 

21.20 Consider the following optimization problem with an inequality con-
straint: 

minimize 3#i 
subject to x\ + x\ > 2. 

a. Does the point x* = [2,0]T satisfy the KKT (first-order necessary) con-
dition? 

b . Does the point x* = [2,0]T satisfy the second-order necessary condition 
(for problems with inequality constraints)? 

c. Is the point x* = [2,0]T a local minimizer? 

(See Exercise 6.15 for a similar problem treated using set-constrained meth-
ods.) 

21.21 Consider the problem 

• · · 1 II 112 

minimize - a s 
2 ii ii 

subject to aTx = b 

x > 0, 
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where a G Rn , a > 0, and b G R, b > 0. Show that if a solution to the 
problem exists, then it is unique, and find an expression for it in terms of a 
and b. 

21.22 Consider the problem 

minimize (x\ — a)2 + (#2 — &)2> #i, #2 € R 
subject to re2 + #2 < 1, 

where a, 6 G R are given constants satisfying a2 + 62 > 1. 

a. Let x* = [#*,#2]T be a solution to the problem. Use the first-order 
necessary conditions for unconstrained optimization to show that (x\)2 + 
(x*2)

2 = 1. 

b . Use the KKT theorem to show that the solution x* = [χ ΐ ,^ ] 1 " is unique 
and has the form x\ = αα, x\ = ab, where a G R is a positive constant. 

c. Find an expression for a (from part b) in terms of a and b. 

21.23 Consider the problem 

minimize x\ + (x2 + l ) 2 , #1, £2 £ R 
subject to #2 > exp(a?i) 

[exp(x) = ex is the exponential of x\. Let as* = [#ί,#2]Τ be the solution to 
the problem. 

a. Write down the KKT condition that must be satisfied by x*. 

b . Prove that x\ = exp(#i). 

c. Prove that - 2 < x\ < 0. 

21.24 Consider the problem 

minimize cTx + 8 

subject to - | | x | | 2 < 1, 

where c G Rn , c φ 0. Suppose that x* = a e is a solution to the problem, 
where a G R and e = [ 1 , . . . , 1]T , and the corresponding objective value is 4. 

a. Show that ||x*||2 = 2. 

b . Find a and c (they may depend on n). 
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21.25 Consider the problem with equality constraint 

minimize f(x) 

subject to h(x) = 0. 

We can convert the above into the equivalent optimization problem 

minimize f(x) 

subject to - | |Ma;)| |2 < 0. 

Write down the KKT condition for the equivalent problem (with inequality 
constraint) and explain why the KKT theorem cannot be applied in this case. 



CHAPTER 22 

CONVEX OPTIMIZATION PROBLEMS 

22.1 Introduction 

The optimization problems posed at the beginning of this part are, in general, 
very difficult to solve. The source of these difficulties may be in the objective 
function or the constraints. Even if the objective function is simple and "well-
behaved," the nature of the constraints may make the problem difficult to 
solve. We illustrate some of these difficulties in the following examples. 

Example 22.1 Consider the optimization problem 

minimize x\ + x\ 

subject to X2 — X\ — 2 < 0 
x\ - x2 - 4 < 0. 

The problem is depicted in Figure 22.1, where, as we can see, the constrained 
minimizer is the same as the unconstrained minimizer. At the minimizer, 
all the constraints are inactive. If we had only known this fact, we could 
have approached this problem as an unconstrained optimization problem using 
techniques from Part II. I 

An Introduction to Optimization, Fourth Edition. 509 
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc. 
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Figure 22.1 Situation where the constrained and the unconstrained minimizers are 
the same. 

Example 22.2 Consider the optimization problem 

minimize 
subject to x\ 

2 I 2 
X\ ~\~ Xo 

10 < 0 
xi - x\ - 4 > 0. 

The problem is depicted in Figure 22.2. At the solution, only one constraint is 
active. If we had only known about this we could have handled this problem 
as a constrained optimization problem using the Lagrange multiplier method. 

Example 22.3 Consider the optimization problem 

minimize 
subject to 

2 . 2 
X\ i Xo 

4 — x\ — 

3x2 — x\ 

- 3 x 2 -

x\ < 0 

<o 
xi < 0 . 

The problem is depicted in Figure 22.3. This example illustrates the situation 
where the constraints introduce local minimizers, even though the objective 
function itself has only one unconstrained global minimizer. | 

Some of the difficulties illustrated in the examples above can be eliminated 
if we restrict our problems to convex feasible regions. Admittedly, some im-
portant real-life problems do not fit into this framework. On the other hand, 
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x r10=0 

Figure 22.2 Situation where only one constraint is active. 

Figure 22.3 Situation where the constraints introduce local minimizers. 
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it is possible to give results of a global nature for this class of optimization 
problems. In the next section, we introduce the notion of a convex function, 
which plays an important role in our subsequent treatment of such problems. 

22.2 Convex Functions 

We begin with a definition of the graph of a real-valued function. 

Definition 22.1 The graph of / : Ω -> R, Ω C Rn, is the set of points in 
Ω x R C R n + 1 given by 

x 

/ ( * ) 
:χβΩ 

We can visualize the graph of / as simply the set of points on a "plot" of 
f(x) versus x (see Figure 22.4). We next define the epigraph of a real-valued 
function. 

Definition 22.2 The epigraph of a function / : Ω —► R, Ω C Rn , denoted 
epi(/), is the set of points in Ω x R given by 

epi(/) : x e Ω, ß e R, ß > f(x)}. 

The epigraph epi(/) of a function / is simply the set of points in Ω x R on 
or above the graph of / (see Figure 22.4). We can also think of epi(/) as a 
subset of R n + 1 . 

Recall that a set Ω C Rn is convex if for every X\,xi G Ω and a G (0,1), 
aa?i + (1 — a)#2 G Ω (see Section 4.3). We now introduce the notion of a 
convex function. 

Definition 22.3 A function / : Ω -► R, Ω C Rn, is convex on Ω if its 
epigraph is a convex set. I 

Theorem 22.1 / / a function f : Ω —► R, Ω C Rn , is convex on Ω, then Ω is 
a convex set. D 

Proof We prove this theorem by contraposition. Suppose that Ω is not a 
convex set. Then, there exist two points yx and y2 such that for some a G 
(0,1), 

z = ay1 + (l- a)y2 £ Ω. 
Let 

ßi = f(vi), & = / (y 2 ) · 
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f(x)A 

graph of f 

Figure 22.4 Graph and epigraph of a function / : R 

Then, the pairs 
3/2 

Ä 
belong to the graph of / , and hence also the epigraph of / . Let 

+ (1 - a) 

We have 

w = a 

w = 

2/2 

A 

aft + (1 - α)Α 

But note that w 0 epi(/), because z 0 Ω. Therefore, epi(/) is not convex, 
and hence / is not a convex function. I 

The next theorem gives a very useful characterization of convex functions. 
This characterization is often used as a definition for a convex function. 

Theorem 22.2 A function f : Ω —> R defined on a convex set Ω C Rn is 
convex if and only if for all x,y G Ω and all a G (0,1), we have 

f{ax + (1 - a)y) < af{x) + (1 - a)f(y). 

Proof <=: Assume that for all cc, y G Ω and a G (0,1), 

f{ax + (1 - a)y) < af{x) + (1 - a)f(y). 

Let [asT,a]T and [yT ,6]T be two points in epi(/), where a,b £ 
definition of epi(/) it follows that 

/(*) < a, f(y) < b. 

D 

Prom the 
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Therefore, using the first inequality above, we have 

f(ax + (1 — a)y) < eta + (1 — a)b. 

Because Ω is convex, ax + (1 — a)y G Ω. Hence, 

ax + (1 — a)y 
aa + (1 — a)b 

e epi(/), 

which implies that epi(/) is a convex set, and hence / is a convex function. 
=>: Assume that / : Ω —► R is a convex function. Let x, y G Ω and 

/ ( * ) = a, / (» ) = 6. 

Thus, 

G epi(/). 

Because / is a convex function, its epigraph is a convex subset of R n + 1 . 
Therefore, for all a G (0,1), we have 

a + (!-") 
ax + (1 — α)τ/ 
αα + (1 — α)6 

G epi(/). 

The above implies that for all a G (0,1), 

f(ax + (1 - a)y) < aa + (1 - a)6 = a / ( » ) + (1 - a ) / ( y ) . 

This completes the proof. I 

A geometric interpretation of Theorem 22.2 is given in Figure 22.5. The 
theorem states that if / : Ω —► R is a convex function over a convex set 
Ω, then for all x, y G Ω, the points on the line segment in R n + 1 connecting 
[xT , f{x)]T and [yT, f(y)]T must lie on or above the graph of / . 

Using Theorem 22.2, it is straightforward to show that any nonnegative 
scaling of a convex function is convex, and that the sum of convex functions 
is convex. 

Theorem 22.3 Suppose that f, / i , and fa are convex functions. Then, for 
any a > 0, the function af is convex. Moreover, f\ + /2 is convex. □ 

Proof. Let x, y G Ω and a G (0,1). Fix a > 0. For convenience, write / = af. 
We have 

f(ax + (1 - a)y) = af(ax + (1 - a)y) 

< a (af(x) + (1 — a)f(y)) because / is convex and a > 0 
= a(a/(a:)) + ( l - a ) ( a / ( y ) ) 
= af(x) + (1 - a ) / (y ) , 
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f(y) 

af(x)+(1-a)f(y) 

f(x) 

f(ax+(1-a)y) 

Figure 22.5 Geometric interpretation of Theorem 22.2. 

which implies that / is convex. 
Next, write fs = / i + / 2 . We have 

fs(ax + (1 - a)y) = fi(ax + (1 - a)y) + / 2 ( a x + (1 - a)y) 
< (α/χ(χ) + (1 - a ) / i (y) ) + (af2(x) + (1 - a) / 2(y)) 

by convexity of / i and / 2 

= α(Λ(χ) + /2(x)) + (1 - a)( / !(y) + /2(y)) 
= a / 3 (x) + ( l - a ) / 3 ( y ) , 

which implies that fs is convex. I 

Theorem 22.3 implies that for any given collection of convex functions 
/ i , . . . , fa and nonnegative numbers C\,..., Q , the function c i / 2 H \- ctjt is 
convex. Using a method of proof similar to that used in Theorem 22.3, it is 
similarly straightforward to show that the function max{ / i , . . . , fa} is convex 
(see Exercise 22.6). 

We now define the notion of strict convexity. 

Definition 22.4 A function / : Ω —> R on a convex set Ω C Rn is stnctly 
convex if for all x, y G Ω, χ φ y, and a G (0,1), we have 

f{ax + (1 - a)y) < af(x) + (1 - a)f(y). 

■ 
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From this definition, we see that for a strictly convex function, all points on 
the open line segment connecting the points [ χ τ , / ( χ ) ] τ and [ y T , / ( y ) ] T lie 
(strictly) above the graph of / . 

Definition 22.5 A function / : Ω —* R on a convex set Ω C Rn is (strictly) 
concave if — / is (strictly) convex. I 

Note that the graph of a strictly concave function always lies above the line 
segment connecting any two points on its graph. 

To show that a function is not convex, we need only produce a pair of 
points x, y G Ω and an a G (0,1) such that the inequality in Theorem 22.2 is 
violated. 

Example 22.4 Let f(x) = x\x<i. Is / convex over Ω = {x : x\ > 0, #2 > 0}? 
The answer is no. Take, for example, x = [1,2]T G Ω and y = [2,1]T G Ω. 

Then, 
[2 - ol 

ax + (1 - a)y = \ 
1 + a\ 

Hence, 
f(ax + (1 - a)y) = (2 - a ) ( l + a) = 2 + a - a2 

and 
af(x) + (1 - a)f(y) = 2. 

If, for example, a = 1/2 e (0,1), then 

/ U a ; + 2 i / j = 4 > 2 / ( x ) + 2 / ( l / ) ' 
which shows that / is not convex over Ω. I 

Example 22.4 is an illustration of the following general result. 

Proposition 22.1 A quadratic form f : Ω —► R, Ω C Rn , given by f(x) = 
xTQx, Q G R n x n , Q = Q T , is convex on Ω if and only if for all x,y G Ω, 
(x-y)TQ(x-y)>0. u 

Proof The result follows from Theorem 22.2. Indeed, the function f{x) = 
xTQx is convex if and only if for every a G (0,1), and every x, y G Rn , we 
have 

f(ax + (1 - a)y) < af(x) + (1 - a ) / (y ) , 

or, equivalently, 

af(x) + (1 - a)f(y) - f(ax + (1 - a)y) > 0. 
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Substituting for / into the left-hand side of this equation yields 

axTQx + (1 — OL)yTQy — (ctx + (1 - a)y)TQ(ax + (1 - a)y) 

= axTQx + yTQy — ayTQy — a2xT Qx 

- (2a - 2a2)xTQy - (1 - 2a + a2)yTQy 

= a( l — a)xTQx — 2a(l — a)xTQy + a ( l — ct)yT Qy 

= a( l - a)(x - y)TQ{x - y). 

Therefore, / is convex if and only if 

a ( l - a)(a; - y)TQ(x - y) > 0, 

which proves the result. 

Example 22.5 In Example 22.4, f(x) = X\X2, which can be written as 
f(x) = xTQx, where 

Q 
1 0 1 

1 0 

Let Ω = {x : x > 0}, and x = [2,2]T G Ω, y = [1,3]T G Ω. We have 

-ll 
y-x = 

and 

(y-x)TQ(y-x) = \[-l,l] 
0 1 
1 0 

- 1 
1 

= - 1 < 0. 

Hence, by Proposition 22.1, / is not convex on Ω. 

Diiferentiable convex functions can be characterized using the following 
theorem. 

Theorem 22.4 Let f : Ω —► M, / G C1, be defined on an open convex set 
Ω C Rn . Then, f is convex on Ω if and only if for all x, y G Ω, 

f(y)>f(x) + Df(x)(y-x). 

D 

Proof =>: Suppose that / : Ω —► R is diiferentiable and convex. Then, by 
Theorem 22.2, for any y, x G Ω and a G (0,1) we have 

f(ay + (1 - a)x) < af(y) + (1 - a ) / ( x ) . 
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Rearranging terms yields 

f(x + a(y - x)) - f(x) < a(f(y) - f(x)). 

Upon dividing both sides of this inequality by a, we get 

/ ( t t + a C y - * ) ) - / ( * ) 
a 

If we now take the limit as a —> 0 and apply the definition of the directional 
derivative of / at x in the direction y — x (see Section 6.2), we get 

Df(x)(y-x)<f(y)-f(x) 

or 
f{v)>f{x) + Df{x){y-x). 

<=: Assume that Ω is convex, / : Ω —> R is differentiable, and for all 
X XI G Ω 

f{y)>f{x) + Df(x)(y-x). 

Let u, v G Ω and a G (0,1). Because Ω is convex, 

w = au + (1 — a)v G Ω. 

We also have 
f(u)>f(w) + Df{w)(u-w) 

and 
f(v)>f(w) + Df(w)(v-w). 

Multiplying the first of this inequalities by a and the second by (1 — a) and 
then adding them together yields 

af(u) + (1 - a)f{v) > f(w) + Df(w) (au + (1 - a)v - w). 

But 
w — au + (1 — a)v. 

Hence, 
af(u) + (1 - α) / (υ) > f(au + (1 - o » . 

Hence, by Theorem 22.2, / is a convex function. I 

In Theorem 22.4, the assumption that Ω be open is not necessary, as long 
as f eC1 on some open set that contains Ω (e.g., / G C1 on Rn) . 

A geometric interpretation of Theorem 22.4 is given in Figure 22.6. To ex-
plain the interpretation, let xo G Ω. The function £(x) = f(x0) + Df(xo)(x — 
Xo) is the linear approximation to / at ceo- The theorem says that the graph 
of / always lies above its linear approximation at any point. In other words, 
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f(y) 

f(x)+Df(x)(y-x) 

: y x 

* y ' 

Ω 

Figure 22.6 Geometric interpretation of Theorem 22.4. 

the linear approximation to a convex function / at any point of its domain 
lies below epi(/). 

This geometric idea leads to a generalization of the gradient to the case 
where / is not differentiable. Let / : Ω —> R be defined on an open convex set 
Ω C Rn . A vector g G Rn is said to be a subgradient of / at a point x G Ω if 
for all y G Ω, 

f(y)>f(x)+gT(y-x)· 
As in the case of the standard gradient, if g is a subgradient, then for a given 
Xo G Ω, the function £(x) = f(xo) + gT(x — xo) lies below epi(/). 

For functions that are twice continuously differentiable, the following the-
orem gives another possible characterization of convexity. 

Theorem 22.5 Let f : Ω —> R, / G C2, be defined on an open convex set 
Ω c Rn . Then, f is convex on Ω if and only if for each x G Ω, the Hessian 
F(x) of f at x is a positive semidefinite matrix. □ 

Proof. <=: Let x,y G Ω. Because / G C2, by Taylor's theorem there exists 
a G (0,1) such that 

f(y) = f(x) + Df{x){y - x) + \{y - x)TF{x + a{y - x))(y - x). 

Because F(x + a(y — x)) is positive semidefinite, 

\ epi(f) 

(y - x)TF(ay + (1 - a)x)(y -x)>0. 
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Therefore, we have 
f(v)>f(x) + Df(x)(y-x), 

which implies that / is convex, by Theorem 22.4. 
=>: We use contraposition. Assume that there exists x G Ω such that 

Fix) is not positive semidefinite. Therefore, there exists d G Rn such that 
d F(x)d < 0. By assumption, Ω is open; thus, the point x is an interior 
point. By the continuity of the Hessian matrix, there exists a nonzero s G R 
such that x + sd G Ω, and if we write y = x + sd, then for all points z on the 
line segment joining x and y, we have d F(z)d < 0. By Taylor's theorem 
there exists a G (0,1) such that 

f(y) = f(x) + Df(x)(y -x) + i ( y - x)TF(x + a(y - x))(y - x) 

= f(x) + Df(x)(y - x) + -s2dTF(x + asd)d. 

Because a G (0,1), the point x + a sd is on the line segment joining x and y, 
and therefore 

dTF(x + asd)d < 0. 

Because 5 ^ 0, we have s2 > 0, and hence 

f{y)<f{x) + Df{x)(y-x). 

Therefore, by Theorem 22.4, / is not a convex function. I 

Theorem 22.5 can be strengthened to include nonopen sets by modifying 
the condition to be (y — x)TF(x)(y — x) > 0 for all x,y G Ω (and assuming 
that / G C2 on some open set that contains Ω; for example, / G C2 on Rn) . 
A proof similar to that above can be used in this case. 

Note that by definition of concavity, a function / : Ω —> R, / G C2, is 
concave over the convex set Ω C Rn if and only if for all x G Ω, the Hessian 
F(x) of / is negative semidefinite. 

Example 22.6 Determine whether the following functions are convex, con-
cave, or neither: 

1. / : R - > R , f{x) = -8x2. 

2. / : R3 -» R, f(x) = 4x1 + 3ar| + bx\ + §χλχ2 + ΧχΧζ - 3xi - 2x2 + 15. 

3. / : R2 -* R, f(x) = 2χλχ2 - x \ - x\. 

Solution: 

1. We use Theorem 22.5. We first compute the Hessian, which in this case 
is just the second derivative: (d2f/dx2)(x) = —16 < 0 for all x G R. 
Hence, / is concave over R. 
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2. The Hessian matrix of / is 

F(x) 
8 6 1 
6 6 0 
1 0 10 

The leading principal minors of F(x) are 

Δι = 8 > 0, 

det 8 6 
6 6 

12 > 0 , 

A 3 = d e t F ( x ) = 114>0 . 

Hence, F(x) is positive definite for all 1 6 R 3 . Therefore, / is a convex 
function over M.3. 

3. The Hessian of / is 

F(x) 
- 2 2 

2 - 2 

which is negative semidefinite for all x G R 2 . Hence, / is concave on R2. 

22.3 Convex Optimization Problems 

In this section we consider optimization problems where the objective func-
tion is a convex function and the constraint set is a convex set. We refer to 
such problems as convex optimization problems or convex programming prob-
lems. Optimization problems that can be classified as convex programming 
problems include linear programs and optimization problems with quadratic 
objective function and linear constraints. Convex programming problems are 
interesting for several reasons. Specifically, as we shall see, local minimizers 
are global for such problems. Furthermore, first-order necessary conditions 
become sufficient conditions for minimization. 

Our first theorem below states that in convex programming problems, local 
minimizers are also global. 

Theorem 22.6 Let f : Ω —► R be a convex function defined on a Convex set 
Ω C Rn . Then, a point is a global minimizer of f over Ω if and only if it is 
a local minimizer of f. □ 

Proof. =>: This is obvious. 
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<=: We prove this by contraposition. Suppose that x* is not a global 
minimizer of / over Ω. Then, for some y G Ω, we have f(y) < f(x*). By 
assumption, the function / is convex, and hence for all a G (0,1), 

/ ( a y + (1 - a)x*) < af(y) + (1 - a)f(x*). 

Because f(y) < / (#*) , we have 

af(y) + (1 - <*)/(*·) = a ( / (y ) - /(**)) + /(**) < / (**) . 

Thus, for a l i a G (0,1), 

/ ( a y + ( l - a ) x * ) < / ( * * ) . 

Hence, there exist points that are arbitrarily close to x* and have lower ob-
jective function value. For example, the sequence {yn} of points given by 

converges to cc*, and f(yn) < f(x*)> Hence, x* is not a local minimizer, 
which completes the proof. I 

We now show that the set of global optimizers is convex. For this, we need 
the following lemma. 

Lemma 22.1 Let g : Ω —► R be a convex function defined on a convex set 
Ω C Rn . Then, for each c e R, the set 

r c = {x e Ω : g(x) < c} 

is a convex set. □ 

Proof. Let x,y G Tc. Then, g(x) < c and g(y) < c. Because g is convex, for 
a l l a G (0,1), 

g(ax + (1 - a)y) < ag{x) + (1 - a)g(y) < c. 

Hence, ax + (1 — a)y G Tc, which implies that Tc is convex. I 

Corollary 22.1 Let f : Ω —► R be a convex function defined on a convex set 
Ω C Rn . Then, the set of all global minimizers of f over Ω is a convex set. 

D 

Proof. The result follows immediately from Lemma 22.1 by setting 

c = min / (x ) . 
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We now show that if the objective function is continuously differentiable 
and convex, then the first-order necessary condition (see Theorem 6.1) for a 
point to be a minimizer is also sufficient. We use the following lemma. 

Lemma 22.2 Let f : Ω —► R be a convex function defined on the convex set 
Ω C Rn and f G Cl on an open convex set containing Ω. Suppose that the 
point x* G Ω is such that for all x G Ω, χ φ x*, we have 

Df(x*){x-x*) > 0 . 

Then, x* is a global minimizer of f over Ω. D 

Proof Because the function / is convex, by Theorem 22.4, for all x G Ω, we 
have 

f(x) >f(x*) +Df (**)(*-**)· 
Hence, the condition Df{x*)(x — x*) > 0 implies that f(x) > / (#*) . I 

Observe that for any x G Ω, the vector x — x* can be interpreted as a 
feasible direction at x* (see Definition 6.2). Using Lemma 22.2, we have the 
following theorem (cf. Theorem 6.1). 

Theorem 22.7 Let f : Ω —► R be a convex function defined on the convex 
set Ω C Rn , and f G C1 on an open convex set containing Ω. Suppose that 
the point x* G Ω is such that for any feasible direction d at x*, we have 

dTVf(x*) > 0. 

Then, x* is a global minimizer of f over Ω. ü 

Proof Let x G Ω, x ^ x*. By convexity of Ω, 

x* + a(x - x*) = ax + (1 - a)x* G Ω 

for all a G (0,1). Hence, the vector d = x — x* is a feasible direction at x* 
(see Definition 6.2). By assumption, 

Df(x*)(x - x*) = d T V/(x*) > 0. 

Hence, by Lemma 22.2, x* is a global minimizer of / over Ω. I 

From Theorem 22.7, we easily deduce the following corollary (compare this 
with Corollary 6.1). 

Corollary 22.2 Let f : Ω —> R, / G C1, be a convex function defined on the 
convex set Ω C Rn . Suppose that the point x* G Ω is such that 

V/(**) = 0. 
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Then, x* is a global minimizer of f over Ω. D 

We now consider the constrained optimization problem 

minimize f(x) 

subject to h(x) = 0. 

We assume that the feasible set is convex. An example where this is the case 
is when 

h(x) — Ax — 6. 

The following theorem states that provided the feasible set is convex, the 
Lagrange condition is sufficient for a point to be a minimizer. 

Theorem 22.8 Let f : Rn —► R, / G C1, be a convex function on the set of 
feasible points 

Ω = {x G Rn : h{x) = 0}, 

where h : Rn —> Rm , h EC1 , and Ω is convex. Suppose that there exist x* € Ω 
and λ* e Rm such that 

Df(x*) + \*TDh(x*)=0T. 

Then, x* is a global minimizer of f over Ω. D 

Proof By Theorem 22.4, for all x G Ω, we have 

f(x)>f(x*) + Df(x*)(x-x*). 

Substituting Df(x*) = —\*TDh(x*) into the inequality above yields 

f(x) > / (»*) - \*TDh(x*)(x - x*). 

Because Ω is convex, (1 — a)x* + ax G Ω for all a G (0,1). Thus, 

h(x* + a(x - x*)) = h(( l - a)x* + ax) = 0 

for all a G (0,1). Premultiplying by λ* τ , subtracting \*Th(x*) = 0, and 
dividing by a, we get 

A*T/i(x* + a(x - x*)) - \*Th(x*) 
a 

for all a G (0,1). If we now take the limit as a —► 0 and apply the defini-
tion of the directional derivative of λ* h at x* in the direction x — x* (see 
Section 6.2), we get 

\*TDh(x*)(x - x*) = 0. 

Hence, 
f(x) > /(«·), 
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which implies that x* is a global minimizer of / over Ω. I 

Consider the general constrained optimization problem 

minimize f(x) 

subject to h(x) = 0 
g(x) < 0. 

As before, we assume that the feasible set is convex. This is the case if, for 
example, the two sets {x : h(x) = 0} and {x : g(x) < 0} are convex, because 
the feasible set is the intersection of these two sets (see also Theorem 4.1). 
We have already seen an example where the set {x : h(x) = 0} is convex. On 
the other hand, an example where the set {x : g(x) < 0} is convex is when 
the components of g = [#i , . . . ,gp]

T are all convex functions. Indeed, the set 
{x : g(x) < 0} is the intersection of the sets {x : gi(x) < 0}, i = 1 , . . . ,p. 
Because each of these sets is convex (by Lemma 22.1), their intersection is 
also convex. 

We now prove that the Karush-Kuhn-Tucker (KKT) condition is sufficient 
for a point to be a minimizer to the problem above. 

Theorem 22.9 Let f : Rn —> R, f G C1, be a convex function on the set of 
feasible points 

Ω = {x e Rn : h(x) = 0,g(x) < 0}, 

where h : Rn -► Rm , g : Rn -► Rp, h,g e C1, and Ω is convex. Suppose that 
there exist x* G Ω, λ* G Rm , and μ* G Rp, such that 

1. μ* > 0. 

2. Df(x*) + \*TDh(x*) + μ*τ£>0(α*) = 0 T . 

3. μ*τ</(**) = 0. 

Then, x* is a global minimizer of f over Ω. D 

Proof. Suppose that x G Ω. By convexity of / and Theorem 22.4, 

f(x)>f(x*) + Df(x*)(x-x*). 

Using condition 2, we get 

f(x) > fix*) - \*TDh(x*)(x - x*) - ß*TDg(x*)(x - x*). 

As in the proof of Theorem 22.8, we can show that λ* Dh(x*)(x — x*) = 0. 
We now claim that μ*τDg(x*)(x — x*) < 0. To see this, note that because 
Ω is convex, (1 — a)x* + ax G Ω for all a G (0,1). Thus, 

g(x* + a(x - x*)) = g((l - a)x* + ax) < 0 
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for all a G (0,1). Premultiplying by μ*τ > 0 T (by condition 1), subtracting 
μ*Ύ g(x*) = 0 (by condition 3), and dividing by a, we get 

μ*τ9(χ* + a{x - a?*)) - μ*Ί~ g{x*) < Q 

a ~ 

We now take the limit as a —> 0 to obtain μ*Ύ Dg{x*){x — x*) < 0. 
From the above, we have 

f(x) > / («*) - \*TDh{x*)(x - x*) - μ*τΌ9(χ*)(χ - x*) 

for all x G Ω, which completes the proof. I 

Example 22.7 A bank account starts out with 0 dollars. At the beginning of 
each month, we deposit some money into the bank account. Denote by Xk the 
amount deposited in the fcth month, k = 1,2, Suppose that the monthly 
interest rate is r > 0 and the interest is paid into the account at the end 
of each month (and compounded). We wish to maximize the total amount 
of money accumulated at the end of n months, such that the total money 
deposited during the n months does not exceed D dollars (where D > 0). 

To solve this problem we first show that the problem can be posed as a 
linear program, and is therefore a convex optimization problem. Let y^ be 
the total amount in the bank at the end of the fcth month. Then, yk = 
(1 + r)(yk-i + Xfe), fc > 1, with yo = 0. Therefore, we want to maximize yn 

subject to the constraint that Xk > 0, fc = 1 , . . . , n, and x\-\ \-xn < D. It 
is easy to deduce that 

yn = (1 + r)n
Xl + (1 + r)n~lx2 + · · · + (1 + r)xn. 

Let c T = [(1 + r ) n , ( l + r ) n " \ . . . , (1 + r)], e T = [1, . . . ,1] , and a; = 
[# i , . . . , xn]

T. Then, we can write the problem as 

maximize cTx 

subject to eTx < D 

x>0, 

which is a linear program. 
It is intuitively clear that the optimal strategy is to deposit D dollars 

in the first month. To show that this strategy is indeed optimal, we use 
Theorem 22.9. Let x* = [D,0 , . . . ,0] T G Rn . Because the problem is a 
convex programming problem, it suffices to show that x* satisfies the KKT 
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condition (see Theorem 22.9). The KKT condition for this problem is 

-οτ + μΜβτ-μ™τ = 0, 
μ(1\βτχ*-Ό) = 0, 

μΜτχ* = 0, 

eTx* - £> < 0, 
-x* < 0, 

μ(1) > 0, 
μ(2) > 0, 
eTx < D, 

x > 0, 

where μ^ G R and μ^ € Rn . Let μ& = (1 + r)n and μ<2> = (1 + r ) n e - c. 
Then, it is clear that the KKT condition is satisfied. Therefore, x* is a global 
minimizer. I 

An entire book devoted to the vast topic of convexity and optimization is 
[7]. For extensions of the theory of convex optimization, we refer the reader 
to [136, Chapter 10]. The study of convex programming problems also serves 
as a prerequisite to nondifferentiable optimization (see, e.g., [38]). 

22.4 Semidefinite Programming 

Semidefinite programming is a subfield of convex optimization concerned with 
minimizing a linear objective function subject to a linear matrix inequality. 
The linear matrix inequality constraint defines a convex feasible set over which 
the linear objective function is to be minimized. Semidefinite programming 
can be viewed as an extension of linear programming, where the componen-
twise inequalities on vectors are replaced by matrix inequalities (see Exer-
cise 22.20). For further reading on the subject of semidefinite programming, 
we recommend an excellent survey paper by Vandenberghe and Boyd [128]. 

Linear Matrix Inequalities and Their Properties 

Consider n + 1 real symmetric matrices 

Fi = Fj G M m x m , < = 0 , l , . . . , n 

and a vector 
x = [xi , . . . ,xn]T eRn . 
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Then, 

F(x) = F0 + x i F i + · · · + xnFn 

n 

= F0 + J2XiFi 

2 = 1 

is an affine function of x, because F(x) is composed of a linear term Σ7=ι xi^i 
and a constant term Fo. 

Consider now an inequality constraint of the form 

F(x) = F0 + xiFx + · · · + xnFn > 0. 

The inequality constraint above is to be interpreted as the set of vectors x 
such that 

zTF(x)z > 0 for all z G Rm; 

that is, F(x) is positive semidefinite [or, in the usual notation, F(x) > 0]. 
Recall that the terms Fi represent constant matrices, x is unknown, and 
F(x) = F(x)T is an affine function x. The expression F(x) = F0 + X\F\ + 
• · · + xnFn > 0 is referred to in the literature as a linear matrix inequal-
ity (LMI), although the term affine matrix inequality would seem to be more 
appropriate. It is easy to verify that the set {x : F(x) > 0} is convex (see 
Exercise 22.20). 

We can speak similarly of LMIs of the form F(x) > 0, where the require-
ment is for F(x) to be positive definite (rather than just positive semidefinite). 
It is again easy to see that the set {x : F{x) > 0} is convex. 

A system of LMIs 

F i ( x ) > 0 , F 2 ( x ) > 0 , . . . , Fk(x)>0 

can be represented as one single LMI: 

|>i(«) 1 

F(x) = # > 0. 

L Fk(x)\ 

As an example, a linear inequality involving an m x n real constant matrix A 
of the form 

Ax <b 

can be represented as m LMIs: 

b{ — ajx > 0, i = 1,2,... , m, 
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where aj is the ith row of the matrix A. We can view each scalar inequality 
as an LMI. We then represent m LMIs as one LMI: 

F(x) = 

bi — ajx 

a0 x 

bm - a^x 

>0 . 

With the foregoing facts as background, we can now give an example of 
semidefinite programming: 

minimize ex 

subject to F(x) > 0. 

The matrix property that we discuss next is useful when converting certain 
LMIs or nonlinear matrix inequalities into equivalent LMIs. We start with a 
simple observation. Let P be a nonsingular n x n matrix and let x = Mz, 
where M G R n X n such that det M φ 0. Then, we have 

that is, 

Similarly, 

xTPx > 0 if and only if zTMTPMz > 0; 

P > 0 if and only if MTPM > 0. 

P > 0 if and only if MTPM > 0. 

Suppose that we have a square matrix 

A B 

L Γ D 

Then, by the observation above, 

A B\ 
BT D 

> 0 if and only if 
I O 

A B 
BT D 

0 I 
1 O >o, 

where / is an identity matrix of appropriate dimension. In other words, 

A B\ 
BT D 

> 0 if and only if 
D BT 

B A 
>0 . 

We now introduce the notion of the Schur complement, useful in studying 
LMIs. Consider a square matrix of the form 

An Ai2 

A2i A22 
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where An and A22 are square submatrices. Suppose that the matrix An is 
invertible. Then, we have 

I O 

-Α21ΛΓ11 / 
An A12 

A21 A22 

I -ΑϊΪΑ12 

O I 
An O 
O A22- A2iAn

1A12\ 

Let 
A n = A22 - A2i An

xΛ12, 

which is called the Schur complement of A n . For the case when A12 = A 2 i , 
we have 

/ O 

-A21AU I 
An An 
A21 A22 

I -An'A 
O I 

1 AT 
21 

A n O 
O A n 

where 

Hence, 
"An 
A 2 i 

^■21 

A22 

A n = A2 2 - A 2 i A n A2 1 . 

> 0 if and only if An O 
O An 

>0; 

that is, 

A n A ^ 
A 2 I A2 2 

Given 

> 0 if and only if An > 0 and A n > 0. 

A n A12 
A21 A22 

we can similarly define the Schur complement of A22, assuming that A22 is 
invertible. We have 

I 
0 

-A12A2J 
I 

An 
A2\ 

An 
A22 

I 

~A22 A21 

O 
I 

Δ 2 2 

O 
O 

A22 

where Δ22 = A n — A12A221 A2i is the Schur complement of A22· So, for the 
case where A12 = A2 i , 

A n Aji 
A21 A22 

> 0 if and only if A22 > 0 and Δ22 > 0. 

Many problems of optimization, control design, and signal processing can 
be formulated in terms of LMIs. To determine whether or not there exists a 
point x such that F(x) > 0 is called a feasibility problem. We say that the 
LMI is nonfeasible if no such solution exists. 
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Example 22.8 We now present a simple example illustrating the LMI fea-
sibility problem. Let A G R m x m be a given real constant square matrix. 
Suppose that we wish to determine if A has all its eigenvalues in the open left 
half-complex plane. It is well known that this condition is true if and only if 
there exists a real symmetric positive definite matrix P such that 

A T P + P A < 0 , 

or, equivalently, 
-ATP -PA>0 

(also called the Lyapunov inequality; see [16]). Thus, the location of all eigen-
values of A being in the open left half-complex plane is equivalent to feasibility 
of the following matrix inequality: 

|> O 1 
[O -ATP-PA\ > 0 ; 

that is, the existence of P = PT > 0 such that ATP + PA < 0. 
We now show that finding P = PT > 0 such that AT P + PA < 0 is 

indeed an LMI. For this, let 

# 2 r a - l 

yx<m %2m—l ' ' ' %n J 

where 
m(m + 1) 

X\ X2 

%2 %m+l 
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We next define the following matrices: 

P i 

P 2 = 

1 
0 
0 

0 

0 
1 
0 

0 
0 
0 

0 

1 
0 
0 

0 ·· 
0 ·· 
0 ·· 

0 ·· 

0 ·· 
0 ·· 
0 · 

• 0 
• 0 
• 0 

• o 
• 0' 
• 0 
• 0 

0 0 0 

Pn 

0 0 0 · · · 0 

0 0 0 ··♦ 0 

0 0 0 · · · 0 

[0 0 0 · · · 1| 

Note that Pi has only nonzero elements corresponding to Xi in P. Let 

Fi = -ATPi - PiA, i = 1,2,.. . , n. 

We can then write 

ATP + PA = xx ( A T P i + ΡλΑ} + x2 ( A T P 2 + P 2 A ) + · · · 

+ xn(A
TPn + PnA) 

= -XlFi - X2F2 XnFn 

<0 . 

Let 
F(x) = x i F i 4- X2F2 + · · · + xnFn. 

Then, 
P = P T > 0 and ΑΎΡ + ΡΑ<0 

if and only if 
F(x) > 0. 

Note that this LMI involves a strict inequality. Most numerical solvers do 
not handle strict inequalities. Such solvers simply treat a strict inequality (>) 
as a non-strict inequality (>). I 
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LMI Solvers 

The inequality F(x) = Fo + xiFi + · · · + xnFn > 0 is called the canonical 
representation of an LMI. Numerical LMI solvers do not deal directly with 
LMIs in canonical form because of various inefficiencies. Instead, LMI solvers 
use a structured representation of LMIs. 

We can use MATLAB's LMI toolbox to solve LMIs efficiently. This toolbox 
has three types of LMI solvers, which we discuss next. 

Finding a Feasible Solution Under LMI Constraints 

First, we discuss MATLAB's LMI solver for solving the feasibility problem 
defined by a given system of LMI constraints. Using this solver, we can solve 
any system of LMIs of the form 

NTC(XU . . . , Xk)N < MTK(XU . . . , Xk)M, 

where X\,..., Xk are matrix variables, N is the left outer factor, M is the 
right outer factor, C{X\,..., Xk) is the left inner factor, and 7 £ ( X i , . . . , Xk) 
is the right inner factor. The matrices £(·) and 7£(·) are, in general, symmetric 
block matrices. We note that the term left-hand side refers to what is on the 
"smaller" side of the inequality 0 < X. Thus in X > 0, the matrix X is still 
on the right-hand side because it is on the "larger " side of the inequality. 

We now provide a description of an approach that can be used to solve 
the given LMI system feasibility problem. To initialize the LMI system de-
scription, we type se t lmis ( [ ] ) . Then we declare matrix variables using the 
command lmivar. The command lmiterm allows us to specify LMIs that 
constitute the LMI system under consideration. Next, we need to obtain an 
internal representation using the command getlmis. We next compute a fea-
sible solution to the LMI system using the command f easp. After that, we 
extract matrix variable values with the command dec2mat. In summary, a 
general structure of a MATLAB program for finding a feasible solution to the 
set of LMIs could have the form 

se t lmis ( [ ] ) 
lmivar 
lmiterm 

lmiterm 

getlmis 

feasp 

dec2mat 

We now analyze these commands in some detail so that the reader can write 
simple MATLAB programs for solving LMIs after completing this section. 
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First, to create a new matrix-valued variable, say, X, in the given LMI system, 
we use the command 

X = lmivar(type,structure) 

The input type specifies the structure of the variable X. There may be three 
structures of matrix variables. When type=l, we have a symmetric block 
diagonal matrix variable. The input type=2 refers to a full rectangular matrix 
variable. Finally, type=3 refers to other cases. The second input s t r uc tu r e 
gives additional information on the structure of the matrix variable X. For 
example, the matrix variable X could have the form 

|\Di O · · · O l 
\ O D2 · · · 0\ 

[O O · · · Dr\ 

where each Di is a square symmetric matrix. For the example above we would 
use type=l. The matrix variable above has r blocks. The input s t r uc tu r e 
is then an r x 2 matrix whose iih row describes the ith block, where the first 
component of each row gives the corresponding block size, while the second 
element of each row specifies the block type. For example, 

X = l m i v a r ( l , [ 3 1]) 

specifies a full symmetric 3 x 3 matrix variable. On the other hand, 

X = lmivar(2 , [2 3]) 

specifies a rectangular 2 x 3 matrix variable. Finally, a matrix variable S of 
the form 

" «1 

0 

0 
_ 0 

0 

Sl 

0 
0 

0 
0 

S2 

S3 

0 " 
0 

S3 

s4 . 

can be declared as follows: 

S = l m i v a r ( l , [ 2 0;2 1]) 

Note above that the second component of the first row of the second input has 
the value of zero; that is, s t r u c t u r e d , 2 ) =0. This describes a scalar block 
matrix of the form 

£>i = β ι / 2 . 

Note that the second block is a 2 x 2 symmetric full block. 
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We next take a closer look at a command whose purpose is to specify the 
terms of the LMI system of interest. This command has the form 

lmiterm(termid,A,B,flag) 

We briefly describe each of the four inputs of this command. The first input, 
termid, is a row with four elements that specify the terms of each LMI of 
the LMI system. We have termid( l )=n to specify the left-hand side of the 
nth LMI. We use te rmid( l )=-n to specify the right-hand side of the nth 
LMI. The middle two elements of the input termid specify the block location. 
Thus termid(2,3) = [i j ] refers to the term that belongs to the (i,j) block 
of the LMI specified by the first component. Finally, termid(4) =0 for the 
constant term, termid (4) =X for the variable term in the form AXB, while 
termid(4)=-X for the variable term in the form ΑΧΎΒ. The second and 
third inputs of the command lmiterm give the values of the left and right 
outer factors; that is, A and B give the values of the constant outer factors in 
the variable terms AXB and AX B. Finally, the fourth input to lmiterm 
serves as a compact way to specify the expression 

AXB + (AXB)T. 

Thus, f l a g = , s ' can be used to denote a symmetrized expression. We now 
illustrate the command above on the following LMI: 

PA + (PA)T < 0. 

We have one LMI with two terms. We could use the following description of 
this single LMI: 

lmiterm ([1 1 1 P],1,A) 
lmiterm([ l 1 1 -P ] ,Α ' ,1 ) 

On the other hand, we can describe this LMI compactly using the f lag as 
follows: 

lmiterm([ l 1 1 Ρ ϋ , Ι , Α , ' β ' ) 

Now, to solve the feasibility problem we could have typed 

[tmin,xfeas] = feas( lmis) 

In general, for a given LMI feasibility problem of the form 

find x 

such that L(x) < R(x), 

the command f easp solves the auxiliary convex problem 

minimize t 

subject to L(x) < R(x) -f 11. 
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The system of LMIs is feasible if the minimal t is negative. We add that the 
current value of t is displayed by f easp at each iteration. 

Finally, we convert the output of the LMI solver into matrix variables using 
the command 

P = dec2mat(lmis,xfeas,P) . 

Example 22.9 Let 

Ai = 
- 1 0 
0 - 1 

and A2 = 
- 2 0 
1 - 1 

We use the commands of the LMI Control Toolbox discussed above to write 
a program that finds P such that P > O.5J2 and 

A[P + PAX <O, 

Ä%P + PA2 < 0 . 

The program is as follows: 

A_l = [-1 0;0 - 1 ] ; 
A_2 = [-2 0;1 - 1 ] ; 
setlmis( [] ) 
P = l m i v a r ( l , [ 2 , l ] ) 
lmiterm([l 1 1 P] ,Α_1 ' ,1 , ' s ' ) 
lmiterm([2 1 1 P ] ,A_2 ' ,1 , ' s ' ) 
lmiterm([3 1 1 0 ] , . 5 ) 
lmiterm([-3 1 1 P ] , l , l ) 
lmis=getlmis; 
[tmin,xfeas] = feasp(lmis) ; 
P = dec2mat(lmis,xfeas,P) 

Minimizing a Linear Objective Under LMI Constraints 

The next solver we discuss solves the convex optimization problem 

minimize cTx 

subject to A(x) < B(x). 

The notation A(x) < B{x) is shorthand notation for a general structured 
LMI system. 

This solver is invoked using the function mincx. Thus, to solve a mincx 
problem, in addition to specifying the LMI constraints as in the f easp prob-
lem, we also declare the linear objective function. Then we invoke the function 
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mincx. We illustrate and contrast the f easp and mincx solvers in the following 
example. 

Example 22.10 Consider the optimization problem 

minimize cTx 

subject to Ax < 6, 

where 

4 5J 
"l l" 

1 3 

2 1 

5 

, b = 

's] 
18 

U\ 

We first solve the feasibility problem; that is, we find an x such that Ax < 6, 
using the f easp solver. After that, we solve the minimization problem above 
using the mincx solver. A simple MATLAB code accomplishing these tasks is 
shown below. 

°/e Enter problem data 
A = [1 1;1 3 ;2 1] ; 
b = [8 18 14] ' ; 
c = [-4 - 5 ] >; 
s e t l m i s ( [ ] ) ; 
X = l m i v a r ( 2 , [ 2 1 ] ) ; 
l m i t e r m ( [ l 1 1 X ] , A ( 1 , : ) 
l m i t e r m ( [ l 1 1 0 ] , - b ( D ) 
l m i t e r m ( [ l 2 2 X ] , A ( 2 , : ) 
l m i t e r m ( [ l 2 2 0 ] , - b ( 2 ) ) 
l m i t e r m ( [ l 3 3 X ] , A ( 3 , : ) 
l m i t e r m ( [ l 3 3 0 ] , - b ( 3 ) ) 
lmis = g e t l m i s ; 

l ) ; 

l ) ; 

1 ) ; 

d i sp ( ' feasp r e s u l t ' ) 
[tmin,xfeas] = feasp( lmis) ; 
x_feasp = dec2mat(lmis,xfeas,X) 
d i s p ( ' mincx r e s u l t ') 
[objective,x_mincx] = mincx(lmis,c ,[0.0001 1000 0 0 

The f easp function produces 

1]) 

•Efeasp — 
-64.3996 
-25.1712 
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The mincx function produces 

Xri 
3.0000 

5.0000 

In the next example, we discuss the function def ex, which we can use to 
construct the vector c used by the LMI solver mincx. 

Example 22.11 Suppose that we wish to solve the optimization problem 

minimize trace(P) 
subject to ATP + PA < 0 

P > 0 

where trace(P) is the sum of the diagonal elements of P . We can use the 
function mincx to solve this problem. However, to use mincx, we need a vector 
c such that 

cTx = trace (P) . 

After specifying the LMIs and obtaining their internal representation using, 
for example, the command lmisys=getlmis, we can obtain the desired c with 
the following MATLAB code, 

q = decnbr(lmisys); 

c = zeros(q,l); 

for j = l:q 
Pj = defcxClmisys,j,P); 

c(j) = trace(Pj); 

end 

Having obtained the vector c, we can use the function mincx to solve the 
optimization problem. I 

Minimizing a Generalized Eigenvalue Under LMI Constraints 

This problem can be stated as 

minimize λ 
subject to C(x) < D(x) 

0 < B{x) 

A(x) < XB{x). 

Here, we need to distinguish between standard LMI constraints of the form 
C(x) < D(x) and linear-fractional LMIs of the form A(x) < XB(x), which 
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are concerned with the generalized eigenvalue λ. The generalized eigenvalue 
minimization problem under LMI constraints can be solved using the solver 
gevp. The basic structure of the gevp solver has the form 

[ lopt ,xopt] = gep{lmisys,nflc} 

which returns lopt , the global minimum of the generalized eigenvalue, and 
xopt, the optimal decision vector variable. The argument lmisys is the sys-
tem of LMIs, C{x) < D(x), C(x) < D(x), and A(x) < XB(x) for λ = 1. 
As in the previous solvers, the corresponding optimal values of the matrix 
variables are obtained using dec2mat. The number of linear-fractional con-
straints is specified with nf l c . There are other inputs to gevp but they are 
optional. For more information on this type of the LMI solver, we refer the 
reader to the LMI Lab in MATLAB's Robust Control Toolbox user's guide. 

Example 22.12 Consider the problem of finding the smallest a such that 

P>0 

ATP + PA< - α Ρ , 

where 
^-1.1853 0.9134 0.2785 

0.9058 -1.3676 0.5469 
0.1270 0.0975 -3.0000 

This problem is related to finding the decay rate of the stable linear differential 
equation x = Ax. Finding a that solves the optimization problem above can 
be accomplished using the following LMIs: 

A = [-1.1853 0.9134 0.2785 

0.9058 -1.3676 0.5469 

0.1270 0.0975 -3.0000]; 

setlmis( [] ) ; 

P = lmivar(l,[3 1]) 

lmiterm([-l 1 1 P], 1,1) °/0 P 
lmiterm([l 1 1 0],.01) 7, P >= 0.01*1 

lmiterm([2 1 1 Ρΐ,Ι,Α,'ε') °/0 linear fractional constraint— 

lmiterm( [-2 1 1 P], 1,1) °/0 linear fractional constraint— 

lmis = getlmis; 

[gamma,P_opt] = gevp(lmis,1); 

P = dec2mat(lmis,P_opt,P) 

alpha = -gamma 

--LHS 

--RHS 

The result is 

a = 0.6561 and P = 
0.6996 -0.7466 -0.0296 

-0.7466 0.8537 -0.2488 
-0.0296 -0.2488 3.2307 
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Notice that we used P > 0.011 in place of P > 0. I 

More examples of linear matrix inequalities in system and control theory 
can be found in the book by Boyd et al. [16]. 

A quick introduction to MATLAB's LMI toolbox is the tutorial that can 
be accessed with the command Imidem within MATLAB. In addition to the 
MATLAB's LMI toolbox, there is another toolbox for solving LMIs called 
LMITOOL, a built-in software package in Scilab toolbox, developed at INRIA 
in Prance. Scilab offers free software for numerical optimization. There is a 
version of LMITOOL for MATLAB that can be obtained from the website of 
the Scilab Consortium. 

Yet Another LMI Package, YALMIP, for solving LMIs was developed in 
Switzerland in the Automatic Control Laboratory at ETH. YALMIP is an 
"intuitive and flexible modelling language for solving optimization problems 
in MATLAB." 

LMIs are tools of modern optimization. The following quote on numeri-
cal linear algebra from Gill, Murray, and Wright [52, p. 2] applies as well to 
the contents of this chapter: "At the heart of modern optimization methods 
are techniques associated with linear algebra. Numerical linear algebra ap-
plies not simply in optimization, but in all fields of scientific computation, in-
cluding approximation, ordinary differential equations, and partial differential 
equations. The importance of numerical linear algebra to modern scientific 
computing cannot be overstated. Without fast and reliable linear algebraic 
building blocks, it is impossible to develop effective optimization methods; 
without some knowledge of the fundamental issues in linear algebra, it is im-
possible to understand what happens during the transition from equations in 
a textbook to actual computation." 

EXERCISES 

22.1 Find the range of values of the parameter a for which the function 

/ (x i ,£ 2 ,#3) = 2χχχ3 — x\ — x\ — 5x\ — 2ax\X2 — 4x2X3 

is concave. 

22.2 Consider the function 

f(x) = -xTQx-xTb, 

where Q = QT > 0 and x,b e Rn . Define the function φ : R -► R by 
φ(ά) = f(x + ad), where cc, d € Rn are fixed vectors and d ^ O . Show that 
φ{ά) is a strictly convex quadratic function of a. 
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22.3 Show that f(x) = x\X2 is a convex function on Ω = {[a, ma\T : a G R}, 
where m is any given nonnegative constant. 

22.4 Suppose that the set Ω = {x : ft(a?) = c} is convex, where h : Rn —► R 
and c G R. Show that /i is convex and concave over Ω. 

22.5 Find all subgradients of 

f(x) = \x\, x G R, 

at x = 0 and at x = 1. 

22.6 Let Ω C Rn be a convex set, and fa : Ω —> R, z = 1 , . . . ,£ be convex 
functions. Show that max{ / i , . . . , fa} is a convex function. 
Note: The notation max{ / i , . . . , fa} denotes a function from Ω to R such that 
for each x G Ω, its value is the largest among the numbers fa(x), i = 1 , . . . , £. 

22.7 Let Ω C Rn be an open convex set. Show that a symmetric matrix 
Q G Rn is positive semidefinite if and only if for each #, y G Ω, (x — y)TQ(x — 
y) > 0. Show that a similar result for positive definiteness holds if we replace 
the ">" by ">" in the inequality above. 

22.8 Consider the problem 

minimize - | | A x — 6||2 

subject to x\ + h xn — 1 
X\ , . . . , Χγι -^ U 

(see also Exercise 21.9). Is the problem a convex optimization problem? If yes, 
give a complete proof. If no, explain why not, giving complete explanations. 

22.9 Consider the optimization problem 

minimize f(x) 

subject to x G Ω, 

where f(x) = x\x\, where x = [xi,X2]T, and Ω — {x G R2 : X\ = X2, x\ > 
0}. (See also Exercise 21.8.) Show that the problem is a convex optimization 
problem. 

22.10 Consider the convex optimization problem 

minimize f(x) 

subject to x G Ω. 
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Suppose that the points y G Ω and z G Ω are local minimizers. Determine 
the largest set of points G C Ω for which you can be sure that every point in 
G is a global minimizer. 

22.11 Suppose that we have a convex optimization problem on R3. 

a. Consider the following three feasible points: [1,0,0]T, [0,1,0]T, [0,0,1]T. 
Suppose that all three have objective function value 1. What can you say 
about the objective function value of the point (1/3) [1,1,1]T? Explain 
fully. 

b. Suppose we know that the three points in part a are global minimizers. 
What can you say about the point (1/3)[1,1,1]T? Explain fully. 

22.12 Consider the optimization problem 

. . . 1 τ ^ minimize -x Qx 

subject to Ax = b, 

where Q G R n x n , Q = QT > 0, A G R m X n , and rank A = m. 

a. Find all points satisfying the Lagrange condition for the problem (in 
terms of Q, A, and b). 

b . Are the points (or point) global minimizers for this problem? 

22.13 Let / : Rn —► R, / G C1, be a convex function on the set of feasible 
points 

Ω = {x GR n :ajx + bi > 0, i = l , . . . , p } , 

where o i , . . . , ap G Rn, and 6 i , . . . , bp G R. Suppose that there exist x* G 5, 
and μ* G Rp, μ* < 0, such that 

Df(x*)+ £ μ>Τ=Οτ , 
jeJ(x*) 

where J(x*) = {i : a^«* -f 6» = 0}. Show that x* is a global minimizer of / 
over Ω. 

22.14 Consider the problem: minimize \\x\\2 (x G Rn) subject to aTx > &, 
where a G Rn is a nonzero vector and b G R, b > 0. Suppose that x* is a 
solution to the problem. 

a. Show that the constraint set is convex. 

b . Use the KKT theorem to show that α τ χ* = b. 
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c. Show that x* is unique, and find an expression for x* in terms of a and 
b. 

22.15 Consider the problem 

minimize cTcc, a ; G l n 

subject to x > 0. 

For this problem we have the following theorem (see also Exercise 17.16). 
Theorem: A solution to this problem exists if and only if c > 0. Moreover, 
if a solution exists, 0 is a solution. 

a. Show that the problem is a convex programming problem. 

b . Use the first-order necessary condition (for set constraints) to prove the 
theorem. 

c. Use the KKT condition to prove the above theorem. 

22.16 Consider a linear programming problem in standard form. 

a. Derive the KKT condition for the problem. 

b . Explain precisely why the KKT condition is sufficient for optimality in 
this case. 

c. Write down the dual to the standard form primal problem (see Chap-
ter 17). 

d. Suppose that x* and λ* are feasible solutions to the primal and dual, 
respectively. Use the KKT condition to prove that if the complementary 
slackness condition (cT — λ* Α)χ* = 0 holds, then x* is an optimal 
solution to the primal problem. Compare the above with Exercise 21.15. 

22.17 Consider two real-valued discrete-time signals, s^ and s^2\ defined 
over the time interval [l,n]. Let s\ ' and s\ ' be the values at time i of the 
signals s^ and s^2\ respectively. Assume that the energies of the two signals 
are 1 [i.e., ( s ^ ) 2 + · · · + (s^)2 = 1 and (s^)2 + · · · + (ώ2 ))2 = 1]. 

Let Sa be the set of all signals that are linear combinations of s^ and s^ 
with the property that for each signal in 5 a , the value of the signal over all 
time is no smaller than a e R. For each s G 5 a , if s = Xi8^ + # 2 ^ 2 \ we call 
x\ and #2 the coefficients of s. 

We wish to find a signal in Sa such that the sum of the squares of its 
coefficients is minimized. 

a. Formulate the problem as an optimization problem. 
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b . Derive the Karush-Kuhn-Tucker conditions for the problem. 

c. Suppose that you have found a point satisfying the Karush-Kuhn-Tucker 
conditions. Does this point satisfy the second-order sufficient condition? 

d. Is this problem a convex optimization problem? 

22.18 Let a probability vector be any vector p G Rn satisfying pi > 0, 
i = 1 , . . . , n, and p\ Λ V pn = 1. 

Let p e M n and q G Rn be two probability vectors. Define 

D(p, q) = Pl log ( V ) + · · · + Pn log {^j , 

where "log" is the natural logarithm function. 

a. Let Ω be the set of all probability vectors (with fixed n). Show that Ω is 
convex. 

b . Show that for each fixed p, the function / defined by f(q) = D(p, q) is 
convex over Ω. 

c. Show the following: D{p,q) > 0 for any probability vectors p and q. 
Moreover, D(p, q) = 0 if and only if p — q. 

d. Describe an application of the result of part c. 

22.19 Let Ω C Rn be a nonempty closed convex set and z G Rn be a given 
point such that z 0 Ω. Consider the optimization problem 

minimize \\x — z\\ 

subject to x G Ω. 

Does this problem have an optimal solution? If so, is it unique? Whatever 
your assertion, prove it. 
Hint: (i) If X\ and #2 are optimal solutions, what can you say about X3 — 
(xi + X2V2? (ii) The triangle inequality states that | |x-f i / | |< | | ic | |H- | | i / | | , 
with equality holding if and only if x = ay for some a > 0 (or x = 0 or 
y = 0). 

22.20 This exercise is about semidefinite programming. 

a. Show that if A G R n X n and B G R n X n are symmetric and A > 0, 
B > 0, then for any a G (0,1), we have a A + (1 — a)B > 0. As usual, 
the notation "> 0" denotes positive semidefiniteness. 
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Consider the following semidefinite programming problem, that is, an 
optimization problem with linear objective function and linear matrix 
inequality constraints: 

minimize cTx 

subject to P 0 + Y^ XjFj > 0> 

where x = [xi,... , x n ] T € M.n is the decision variable, c G Mn, and 
P 0 , -P I , . . . , Fn G R m x m are symmetric. 

Show that this problem is a convex optimization problem. 

c. Consider the linear programming problem 

minimize c x 

subject to Ax > 6, 

where A G R m x n , b G Rm , and the inequality Ax > b has the usual 
elementwise interpretation. Show that this linear programming problem 
can be converted to the problem in part b. 
Hint: First consider diagonal Fj. 

22.21 Suppose that you have a cake and you need to divide it among n 
different children. Suppose that the ith child receives a fraction xi of the 
cake. We will call the vector x = [# i , . . . , x n ] T an allocation. We require 
that every child receives at least some share of the cake, and that the entire 
cake is completely used up in the allocation. We also impose the additional 
condition that the first child (i = 1) is allocated a share that is at least twice 
that of any other child. We say that the allocation is feasible if it meets all 
these requirements. 

A feasible allocation x is said to be proportionally fair if for any other 
allocation y, 

i=i Xl 

a. Let Ω be the set of all feasible allocations. Show that Ω is convex. 

b . Show that a feasible allocation is proportionally fair if and only if it solves 
the following optimization problem: 

maximize y^log(a^) 
i = l 

subject to x G Ω. 
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22.22 Let Ui : R —> R, Ui G C1, i = 1 , . . . , n, be a set of concave increasing 
functions. Consider the optimization problem 

n 

maximize 2_\ Ui (xi) 
i = l 

n 

subject to 2_] χΐ — C-> 
i=\ 

where C > 0 is a given constant. 

a. Show that the optimization problem above is a convex optimization prob-
lem. 

b . Show that cc* = [#*,... , #* ] T is an optimal solution to the optimiza-
tion problem if and only if there exists a scalar μ* > 0 such that 
x* = argmaxx(£/*(#) — μ*χ). [The quantity Ui(x) has the interpreta-
tion of the "utility" of x, whereas μ* has the interpretation of a "price" 
per unit of x.] 

c. Show that £?=i x* - C. 

22.23 Give an example of a function / : R2 —► R, a set Ω = {# : g(x) < 0}, 
and a regular point x* e Ω, such that the following all hold simultaneously: 

1. x* satisfies the FONC for set constraint Ω (Theorem 6.1). 

2. x* satisfies the KKT condition for inequality constraint g(x) < 0 (The-
orem 21.1). 

3. x* satisfies the SONC for set constraint Ω (Theorem 6.2). 

4. x* does not satisfy the SONC for inequality constraint g{x) < 0 (Theo-
rem 21.2). 

Be sure to show carefully that your choice of/, Ω = {x : g(x) < 0}, and x* 
satisfies all the conditions above simultaneously. 

22.24 This question is on duality theory for nonlinear programming prob-
lems, analogous to the theory for linear programming (Chapter 17). (A version 
for quadratic programming is considered in Exercise 17.24.) 

Consider the following optimization problem: 

minimize f(x) 

subject to g(x) < 0, 

where / : Rn —> R is convex, each component of g : Rn —> Rm is convex, and 
f,9 £ C1. Let us call this problem the primal problem. 
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Define the dual of the problem above as 

maximize ς(μ) 

subject to μ > 0, 

where q is defined by 
ς(μ) = min / (χ ,μ) , 

xeRn 

with l(x, μ) = f(x) + μΎ g(x) the Lagrangian at x, μ. 
Prove the following results: 

a. If XQ and μ0 are feasible points in the primal and dual, respectively, then 
/(#o) > #(Mo)· This *s the weak duality lemma for nonlinear program-
ming, analogous to Lemma 17.1. 

b . If Xo and μ0 are feasible points in the primal and dual, and f(xo) = 
#(μ0), then XQ and μ0 are optimal solutions to the primal and dual, 
respectively. 

c. If the primal has an optimal (feasible) solution, then so does the dual, 
and their objective function values are equal. (You may assume regular-
ity.) This is the duality theorem for nonlinear programming, analogous 
to Theorem 17.2. 

22.25 Consider the matrix 

M = 
1 7 - 1 
7 1 2 

- 1 2 5 

where 7 is a parameter. 

a. Find the Schur complement of Af (1,1); 

b . Find the Schur complement of M ( 2 : 3,2:3) (the bottom-right 2 x 2 sub-
matrix of M , using MATLAB notation). 

22.26 Represent the Lyapunov inequality 

where 

A T P + P A < 0 , 

0 1 
- 1 - 2 

as a canonical LMI. 
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22.27 Let A, B, and R be given matrices such that R = R > 0. Suppose 
that we wish to find a symmetric positive definite matrix P satisfying the 
following quadratic inequality: 

ATP + PA + PBR1BTP < 0. 

Represent this inequality in the form of LMIs. (This inequality should not 
be confused with the algebraic Riccati inequality, which has a negative sign in 
front of the third term.) 

22.28 Let 

A = 
-0.9501 -0.4860 -0.4565 
-0.2311 -0.8913 -0.0185 
-0.6068 -0.7621 -0.8214 

Write a MATLAB program that finds a matrix P satisfying 0.1 J3 < P < J3 
and 

ATP + PA < 0. 
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