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Convex Functions
and
Generalizations

Chapter
3

Convex and concave functions have many special and important properties. For
example, any local minimum of a convex function over a convex set is also a
global minimum. In this chapter we introduce the important topics of convex
and concave functions and develop some of their properties. As we shall learn in
this and later chapters, these properties can be utilized in developing suitable
optimality conditions and computational schemes for optimization problems that
involve convex and concave functions.
Following is an outline of the chapter.

Section 3.1: Definitions and Basie Properties We introduce convex and

concave functions and develop some of their basic properties. Continuity of

convex functions is proved, and the concept of a directional derivative is
introduced.

Section 3.2: Subgradients of Convex Functions A convex function has a
convex epigraph and hence has a supporting hyperplane. This leads to the
important notion of a subgradient of a convex function.

Section 3.3: Differentiable Convex Functions In this section we give
some characterizations of differentiable convex functions. These are helpful
tools for checking convexity of simple differentiable functions.

Section 3.4: Minima and Maxima of Convex Functions This section is
important, since it deals with the questions of minimizing and maximizing a
convex function over a convex set. A necessary and sufficient condition for
a minimum is developed, and we provide a characterization for the set of
alternative optimal solutions. We also show that the maximum occurs at an
extreme point. This fact is particularly important if the convex set is poly-
hedral.

Section 3.5: Generalizations of Convex Funetions Various relaxations of
convexity and concavity are possible. We present quasiconvex and pseudo-
convex functions and develop some of their properties. We then discuss
various types of convexity at a point. These types of convexity are some-
times sufficient for optimality, as shown in Chapter 4. (This section can be
omitted by beginning readers, and later references to generalized convexity
properties can largely be substituted simply by convexity.)

97



98 Chapter 3

3.1 Definitions and Basic Properties

In this section we deal with some basic properties of convex and concave
functions. In particular, we investigate their continuity and differentiability
properties.

3.1.1 Definition

Let £ S — R, where S is a nonempty convex set in R”. The function f'is said to
be convex on S if

JOAx +(A=A)x3) <A f(x)) +{1 - A) f(x3)

for each x|, x, € S and for each 4 € (0, 1). The function f is called strictly

convex on § if the above inequality is true as a strict inequality for each distinct
x; and x, in S and for each A € (0, 1). The function £ S — R is called concave

(strictly concave) on S if —f is convex (strictly convex) on S.

Now let us consider the geometric interpretation of convex and concave
functions. Let x; and x, be two distinct points in the domain of £, and consider
the point Ax; + (1 - A)x,, with A4 € (0, 1). Note that A f(x;)+(1- 1) f(X;) gives
the weighted average of f(x[) and f(x,), while f{Ax;+{l—-A4)x;] gives the
value of fat the point Ax; +(1 - 1)x5. So for a convex function £, the value of fat
points on the line segment Ax; +(1-4)x, is less than or equal to the height of
the chord joining the points [x;, f(x;)] and [x,, f(x;}]. For a concave function,

the chord is (on or) below the function itself. Hence, a function is both convex
and concave if and only if it is affine. Figure 3.1 shows some examples of
convex and concave functions.

The following are some examples of convex functions. By taking the
negatives of these functions, we get some examples of concave functions.

1. f{x)=3x+4.
2. f(x)=|4.
~ £ =_.2
2 JWK)=A4 —4LX

4
.2 2
5. S(x, %) =2x) + %5 =2x1%5.
6 f(xl,xz,x3)=x|4+2x22+3x§—4x]—4x2x3.

Note that in each of the above examples, except for Example 4, the func-

tion /'is convex over R". In Example 4 the function is not defined for x < 0. One
can readily construct examples of functions that are convex over a region but not

3

over R". For instance, f{x)=x’ is not convex over R but is convex over § =

{x:x>0}.
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concave function

Figure 3.1 Convex and concave functions.

The examples above cite some arbitrary illustrative instances of convex
functions. In contrast, we give below some particularly important instances of
convex functions that arise very often in practice and that are useful to
remember.

1 Let £, f2,-- S5 R" — R be convex functions. Then:

k
(@) f(x) =D a;f,(x), where a;>0 forj=1,2,., kisa
J=I
convex function (see Exercise 3.8).
(b) f(x)=max{fi(x), 5(x),..., fr (X)} is a convex function (see
Exercise 3.9).
2.  Suppose that gz R” — R is a concave function. Let S = {x : g{x)
> 0}, and define /£ S —» R as f(x) = l/g(x). Then fis convex
over S (see Exercise 3.11).
3,  Let g: R —» R be a nondecreasing, univariate, convex function,
and let 7. R" — R be a convex function. Then the composite

function £ R” — R defined as f(x) = g[h(x)] is a convex func-
tion (see Exercise 3.10).
4. Letg: R™ — R be aconvex function, and let h; R” — R™ be an

affine function of the form h(x) = Ax + b, where A is an m x n
matrix and b is an m x | vector. Then the composite function f:

R"— R defined as f(x) = g[h(x)] is a convex function (see

Exercise 3.16).
From now on, we concentrate on convex functions. Results for concave
functions can be obtained easily by noting that f'is concave if and only if —f is

convex.
Associated with a convex function f is the set S, ={xe S: f(X) < a},

a € R, usually referred to as a fevel set. Sometimes this set is called a lower-
level set, to differentiate it from the upper-level set {x € S: f(x) 2 a}, which has
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properties similar to these for concave functions. Lemma 3.1.2 shows that §, is

convex for each real number a. Hence, if g;: R” — R is convex fori =1,..., m,

the set {x: g;(x)<0,7=1,..., m} 1s a convex set.

3.1.2 Lemma

Let S be a nonempty convex set in R", and let £ S — R be a convex function.
Then the level set S, ={x€ §: f(x) < a}, where « 1s a real number, 1s a convex

set.

Proof

Let X, x5 €S,. Thus, x;, x, e S and f(x;)<a and f(X;)<a. Now let
A € (0, 1) and x = Ax; +(1- 2)x,. By the convexity of S, we have that x € S.
Furthermore, by the convexity of £,

F)SAfxD+A=-ADf(x) S Aa+(-ADa =a.

Hence, x € S, and therefore, S, is convex.

Continuity of Convex Functions
An important property of convex and concave functions is that they are
continuous on the interior of their domain. This fact is proved below.

3.1.3 Theorem

Let S be a nonempty convex set in R”, and let £ § —» R be convex. Then fis
continuous on the interior of S.

) Ty
Iroug

Let X € int S. To prove continuity of fat x, we need to show that given ¢
> 0, there exists a 4> 0 such that "x —i" < & implies that ‘f(x) — f(i)l < ¢. Since
X € int S, there exists 2 6’ > 0 such that ||x —i” <&’ implies that x € S. Con-

struct & as follows.

6= max {max[ f(x +8'¢,) - f(®), fX~5'¢)~ (D}, (3.1)

[<i<n

where e, is a vector of zeros except for a 1 at the ith position. Note that 0 < ¢ <
oo, Let

0 = min (3.2)

&

&

<
\‘ -

/
2
=3
e
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Choose an x with ||x—iHS5. If x,-x; > 0, let z, =d'¢;; otherwise, let z;, =

— n B
—5'e;. Thenx —x = Z a;z,, where a; > 0 for/ = 1,..., n. Furthermore,

i=] i

1/2

“x—i":&'(zfaf‘} . (3.3)
\i=l )

From (3.2), and since ”x —i" <4, it follows that a@; < I/nfori=1,..., n. Hence,

hy the convevitv nf £ and cince N < sy < 1 we ot
UJ (¥ ¥ "UII'UAILJ ULJ, LI JILINVY W T A r E

f(x)= f[i+2aisz = f[i2(§+naizi)}
i=1

i=1

I T
< —Zf(¥+nafizi
no
i=1

= l Eﬂ JTA—na )x +na;(x +z;)]
n
i=1

IA

%Z[U -ne;) f(X)+no; (X +z;))
i=l

Therefore, f(x)—f('x")QZLaI[f(‘i+z,-)——f(i)]. From (3.1) it is obvious

that f(X +z,)— f(X) <8 for each i; and since a; > 0, it follows that

JX) - f(X)<0) a, (3.4)

=
Noting (3.3) and (3.2), it follows that &, < £/n8, and (3.4) implies that f(x) —
f(X)<eé. So far, we have shown that |[x - X[ <& implies that f(x)- f(X)<e.

By definition, this establishes the upper semicontinuity of f at X. To complete
the proof, we need to establish the lower semicontinuity of fat X as well, that is,
to show that f(x)— f(x)<¢&. Let y =2Xx—x and note that Hy —i" <¢. There-

fore, as above,

Sy -fx)<e (3.5)
But x = (1/2)y + (1/2)x, and by the convexity of f, we have
SX) < /2) f(y)+1/2) f(x). (3.6)

Combining (3.5) and (3.6) above, it follows that f(x) — f(x) < £, and the proof
is complete.
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Note that convex and concave functions may not be continuous every-
where. However, by Theorem 3.1.3, points of discontinuity only are ailowed at
the boundary of S, as illustrated by the following convex function defined on S =
fx:-1<x<l1}:

Directional Derivative of Convex Functions

The concept of directional derivatives is particularly useful in the motivation
and development of some optimality criteria and computational procedures in
nonlinear programming, where one is interested in finding a direction along
which the function decreases or increases.

3.1.4 Definition

Let S be a nonempty set in R”, and let £ § —> R. Let X €S and d be a nonzero
vector such that x+Ad e S for 4 > 0 and sufficiently small. The directional
derivative of f at X along the vector d, denoted by f'(x;d), is given by the
following limit if it exists:

F@d) = lim LEADTT®
A-»0" A

In particular, the limit in Definition 3.1.4 exists for globally defined
convex and concave functions as shown below. As evident from the proof of the
following lemma, if £ S — R is convex on S, the limit exists if x € int S, but
might be oo if X € 38, even if fis continuous at X, as seen in Figure 3.2.

f(x}
\ :

Xe® > » X
d

Figure 3.2 Nonexistence of the directional derivative of fat x in the
direction d.
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3.1.5 Lemma

Let £ R" — R be a convex function. Consider any point X € R” and a nonzero

direction d € R”. Then the directional derivative f'(x:d), of f at x in the
direction d, exists.

Let 4, > A; > 0. Noting the convexity of f, we have

B r/’q B / A \_7
fE+Ad) = f[z(x+ﬂgd)+tl—ngJ
A

)

s
< — f(x d
S )

This inequality implies that

SG A~ fB) _ [+ o)~ f(5).
A A

Thus, the difference quotient [f(X+Ad)— f(X)I/A is monotone decreasing

(nonincreasing) as A — 0%
Now, given any A > 0, we also have, by the convexity of £, that

[+

_ A |
J(x) = ft——ju—(x—d)ﬁhm(xwtd)J

A

A _ 1 _
— ~d)+— Ad).
1+/1f(x )+I+/1f(x+ )

e
o

fx+4d)- f(x)
A

> f(X)- f(X-0).

Hence, the monotone decreasing sequence of values [ /(X +Ad)— f(X))/4, as
A — 07, is bounded from below by the constant f(X)— f(x —d). Hence, the
limit in the theorem exists and is given by

i LEHA) @) e G2 ()

107 A A>0 A

3.2 Subgradients of Convex Functions

In this section, we introduce the important concept of subgradients of convex

and concave functions via supporting hyperplanes to the epigraphs of convex
functions and to the hypographs of concave functions.
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Epigraph and Hypograph of a Function

A function fon S can be fully described by the set {[x, f(x)]:x €S} < R™,

which is referred to as the graph of the function. One can construct two sets that
are related to the graph of £ the epigraph, which consists of points above the
graph of £ and the hypograph, which consists of points below the graph of f

These notions are clarified in Definition 3.2.1.
3.2.1 Definition

Let S be a nonempty set in R", and let £ S — R. The epigraph of f, denoted by
epif; is a subset of R™*! defined by

{(x,y):xe 8§, yeR, y2 f(x)}.
The hypograph of £, denoted by hyp £, is a subset of R™! defined by

{(x,y):XxeS, yeR, y< f(x)}.

Figure 3.3 illustrates the epigraphs and hypographs of several functions.
In Figure 3.3a, neither the epigraph nor the hypograph of fis a convex set. But
in Figure 3.35 and c, respectively, the epigraph and hypograph of fare convex
sets. It turns out that a function is convex if and only if its epigraph is a convex
set and, equivalently, that a function is concave if and only if its hypograph is a
convex set.

3.2.2 Theorem

Let S be a nonempty convex set in R”, and let £ S — R Then fis convex if and

/

77

Figure 3.3 Epigraphs and hypographs.
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Proof

Assume that f is convex, and let (x;,y;) and (x;, ) € epi f; that is, x;,
Xy € S, M 2 f(xl), and Va2 2 f(X2). Letd e (0, 1). Then

Ayy+(I-A)yy 2 Af(x))+ (- ) f(x3) = f(Ax; +(1-A)xp),

where the last inequality follows by the convexity of f Note that Ax; +
(1-A)xy €§. Thus, [Ax; +{1-4)xy, Ay, +(I-A4)y, ] € epi /, and hence epi fis
convex. Conversely, assume that epi f is convex, and let x;, x, € S. Then
[x;, £(x;)] and [x,, f(x5)] belong to epi f, and by the convexity of epi f, we
must have

[Ax; +(1-A)xp, Af (x))+ (1 -A) f(x;3)] €epi f for 4 € (0, 1).

In other words, 2 f(x;)+(1-4)f(xy) = fIAx; +(1-A)x, ] for each A € (0, 1);
that is, fis convex. This completes the proof.

Theorem 3.2.2 can be used to verify the convexity or concavity of a given
function £ Making use of this result, it is clear that the functions illustrated in
Figure 3.3 are (a) neither convex nor concave, {(6) convex, and (¢) concave.

Since the epigraph of a convex function and the hypograph of a concave
function are convex sets, they have supporting hyperplanes at points of their
boundary. These supporting hyperplanes lead to the notion of subgradients,
which is defined below.

3.2.3 Definition

Let S be a nonempty convex set in R", and let £ S — R be convex. Then & is
called a subgradient of fat x € Sif

fX)z fX)+&'(x-X)  forallx € S.

Similarly, let f: S — R be concave. Then & is called a subgradient of fat X € S
if

f(x)< fX)+E(x-X) for all x € S.

From Definition 3.2.3 it follows immediately that the collection of
subgradients of f at X (known as the subdifferential of f at X) is a convex set.
Figure 3.4 shows examples of subgradients of convex and concave functions.
From the figure we see that the function f )+ & (x—X) corresponds to a

supporting hyperpiane of the epigraph or the hypograph of the function £ The
subgradient vector £ corresponds to the slope of the supporting hyperplane.
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g (x-x)
! ' where £=tané
7,
| i
i J(X)
| |
' Y
X X
Convex function Concave function

Figure 3.4 Geometric interpretation of subgradients.

3.2.4 Example
Let f(x)=min { f{(x), f2(x)}, where £, and f, are as defined below:

filx) = 4-|x

xe kR

Hx) = 4-(x-2), x €R.

Since f5(x) > f;(x) for 1 <x <4, fcan be represented as follows:

[4-x, |<x<4

x)=
/69 14 ~{x- 2)2, otherwise.
In Figure 3.5 the concave function f is shown in dark lines. Note that £ = —1 is
the slope and hence the subgradient of f at any point x in the open interval (1, 4).
lLI < i orx > ‘+ g - —4x - Z.} lb lﬂU umquc bl.l[)gm(llﬁn[ Ul] At the pUlHl& X = l
and x = 4, the subgradients are not unique because many supporting hyperplanes
exist At x = I, the family of subgradients is characterized by AVf(l) +

{ —.?1.)‘\?:;2\1) = A(- 1) +{i —/{‘(2) =2-3Afor A c LU ” In other words, any r‘: in

the interval [-1, 2] is a subgradient of fat x = 1, and this corresponds to the
slopes of the family of supporting hyperplanes of fatx = 1. Atx = 4, the family
of subgradients is characterized by AVf;(4) + (1 - ) VL (4) = A-1) + (1 - A) (4)
= 4 + 34 for A € [0, 1]. In other words, any & in the interval [-4, —1] is a
subgradient of fat x = 4. Exercise 3.27 addresses the general characterization of
subgradients of functions of the form f(x) = min{f,(x), />(x)}.

The following theorem shows that every convex or concave function has
at least one subgradient at points in the interior of its domain. The proof relies
on the fact that a convex set has a supporting hyperplane at points of the
boundary.



Convex Functions and Generalizations 107

2

N
N

Figure 3.5 Setup for Example 3.2.4.

3.2.5 Theorem

Let S be a nonempty convex set in R”, and let f: S — R be convex. Then for X e
int S, there exists a vector & such that the hyperplane

H={(x,»):y=f(X)+&(x~%)}
supports epi fat [X, f(X)]. In particular,
f(x)z fX)+E(x-X) for each x € §;
that is, £ is a subgradient of f'at X.

Proof

By Theorem 3.2.2, epi f is convex. Noting that [X, f(x)] belongs to the
boundary of epi /; by Theorem 2.4.7 there exists a nonzero vector (&,u) € R”
x R such that

(x-X)4+ ply— f(@]<0  forall (x,y)e epif. (3.7)

\l
== LN

Note that u is not positive, because otherwise, inequality (3.7) will be
contradicted by choosing y sufficiently large. We now show that p < 0. By

contradiction, suppose that z =0 . Then &}(x—X)<0 forall x € S. Since X €

int S, there exists a 4 > 0 such that x + &, €S and hence A£(&, <0. This
implies that & =0 and (&, 1) =(0,0), contradicting the fact that (&, u) is a
nonzero vector. Therefore, u < 0. Denoting &5/ |y] by & and dividing the

inequality in (3.7) by | 4], we get

E(x—-X)-y+ f(X)<0 for all (x,y) € epi f. (3.8)
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In particular, the hyperplane H = {(x,y): y = f(X)+ £ (x-X)} supports epi fat

[X, /(X)]. By letting y = f(X) in (3.8), we get f(x)> f(X)+& (x-X) for al} x
€ S, and the proof is complete.

Corollary

Let S be a nonempty convex set in R”, and let £ S — R be strictly convex. Then
for X € int S there exists a vector £ such that

f(xX)> FE)+E(x—X) forallx € §, x = X.
Proof
By Theorem 3.2.5 there exists a vector & such that
f(x)= f(X)+&E(x-X) forall x € S. (3.9)
By contradiction, suppose that there is an x = X such that f(x) = f(x) +
&' (X —-X). Then, by the strict convexity of ffor A € (0, 1), we get
JIAR+(1-DR] < Af @+ (1~ D fR) = fG)+ (1~ DE (-F). (3.10)
But letting x = AX + (1~ 4)X in (3.9), we must have
SIAX+ (-] 2 f(X)+(1 - ' (3 -X),
contradicting (3.10). This proves the corollary.

The converse of Theorem 3.2.5 is not true in general. In other words, if
corresponding to each point X € int S there is a subgradient of f, then f is not
necessarily a convex function. To illustrate, consider the following example,
where fis definedon § = {{x;,x):0<x,x, <1}

N N+ < N ]
Wy U_._A].._.i’ U\.&z.._l
J(x,xp)= 2
72 %"(-"1“%) , 0<x <], x=0

For each point in the interior of the domain, the zero vector is a subgradient of £,
However, fis not convex on S since epi f is clearly not a convex set. However,
as the following theorem shows, fis indeed convex on int S.

3.2.6 Theorem
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()2 )+ E(x—X) for each x € S.
Then, fis convex on int S.

Proof

Let x;, x, €int §, and let A € (0, 1). By Corollary 1 to Theorem 2.2.2,
int § is convex, and we must have Ax; +(l— A)x, €int S. By assumption, there
exists a subgradient £ of fat Ax; +(1—-A)x,. In particular, the following two

.
ma
1ld

nnalitieec hntAd tre-
& ‘1““‘ ARA%WLF AAWLSA LA L Y

[+

f(x) = f[Ax; +(} —A)x2]+(lﬂﬂ.)§’(x] —X3)

f(x)= flAx; +(} ~11)x2]+/1§!(x2 —~Xp).

Multiplying the above two inequalities by 2 and (! — A), respectively, and
adding, we obtain

AfGH A=) f(x3) 2 flAx +(1-)x, ),

and the result follows.

3.3 Differentiable Convex Functions

We now focus on differentiable convex and concave functions. First, consider
the following definition of differentiability.

3.3.1 Definition

Let § be a nonempty set in R”, and let £ § — R. Then f is said to be
differentiable at X € int S if there exist a vector V/(X), called the gradient

vector, and a function a: R” — R such that
S =@+ V(X (x-X)+|x-%|a(x;x~X)  foreach xeS,

where lim,_,; a(x;x—X)=0. The function fis said to be differentiable on the

open set §' c S if it is differentiable at each point in S’. The representation of f
above i1s called a first-order (Taylor series) expansion of f at (or about) the point
x ; and without the implicitly defined remainder term involving the function «,
the resulting representation is called a first-order (Taylor series) approximation
of fat (or about) the point X.

Note that if f/ is differentiable at X, there could only be one gradient
vector, and this vector is given by

(7 @Y o £
L o o J =(fi(X)yeees f i

Vix)=
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where f:(X)=9df(X)/dx, is the partial derivative of /with respect to x; at x (see

Exercise 3.36, and review Appendix A.4).

The following lemma shows that a differentiable convex function has
only one subgradient, the gradient vector. Hence, the results of the preceding
section can easily be specialized to the differentiable case, in which the gradient
vector replaces subgradients.

3.3.2 Lemma

Let S be a nonempty convex set in R”, and let £ S —» R be convex. Suppose that
£ is differentiable at x e int S. Then the collection of subgradients of fat X is
the singleton set {V/(x}}.

Proof

By Theorem 3.2.5, the set of subgradients of fat X is not empty. Now, let
£ be a subgradient of fat x. As a resuit of Theorem 3.2.5 and the differentiability
of fat x, for any vector d and for A sufficiently small, we get

S(x+Ad)> f(X)+AEd
SX+Ad) = f(X)+ AVF(X) d + A |d| e (X; Ad).
Subtracting the equation from the inequality, we obtain

0> A[E-VFE)I d—1|d|a(x; Ad).

If we divide by 4 > 0 and let A — 07, it follows that [&-V/ (X)) d <0.
Choosing d =& — Vf(X), the last inequality implies that & = V/(x). This com-

pletes the proof.
In the light of Lemma 3.3.2, we give the following important

l- rantarizatinm nf A ffaramntiahla Ane et ne e 'T‘lnn e~ £ Sn frvs v [LRPN
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Theorems 3.2.5 and 3.2.6 and Lemma 3.3.2.

3.3.3 Theorem

Let S be a nonempty open convex set in 8", and let £ § — R be differentiable on
S. Then fis convex if and only if for any x € S, we have

F(x)z fX)+ V&)Y (x~¥) for each x € S.
Similarly, fis strictly convex if and only if for each x € §, we have
X)) > fX)+ V(D) (x-X) for each x # X in S.

There are two evident implications of the above result that find use in various
contexts. The first is that if we have an optimization problem to minimize f(x)

subject to x € X, where fis a convex function, then given any point x, the affine



Convex Functions and Generalizations 111

function f(X)+ Vf(x) (x -X) bounds f from below. Hence, the minimum of

f(X) + VF(X)' (x—X) over X (or over a relaxation of.Y) yields a lower bound on

the optimum value of the given optimization problem, which can prove to be
useful in an algorithmic approach. A second point in the same spirit is that this
affine bounding function can be used to derive polyhedral outer approximations.

T mwre . A alin o amdk Vo £ o ANy — 1 L T T DI
rul CKdIHPlC, CUINIUCT LIS SEL A uix.g,-\,ghu, [ m}, WIICTIC gl 15 a
convex function for each i = [ ..., m. (Given any point X, construct the
polyhedra} set X ={x:g;(x)+Vg,(x)(x~x)<0, i = 1,.., m}. Note that the
polyhedral set X contains X and, hence, affords an outer linearization of this
set, since for any x € X, we have 0> g,(x) > g,-(i)+Vg,-('i)’ (x-x) fori=1,...,
m by Theorem 3.3.3. Such representations play a central role in many successive
approximation algorithms for various nonlinear optimization problems.

The following theorem gives another necessary and sufficient characteri-

zation of differentiable convex functions. For a function of one variable, the
characterization reduces to the slope being nondecreasing.

3.3.4 Theorem

Let S be a nonempty open convex set in R” and let £ S — R be differentiable on
S. Then fis convex if and only if for each x;, x, € § we have

[V/(x2) -V (I (x; - %) 20,

Similarly, f is strictly convex if and only if, for each distinct x;, x, € S, we
have

[VF(xy) - Vi(x) (x; —x;) > 0.
Proof

Assume that f1s convex, and let x,, X, € S. By Theorem 3.3.3 we have
F(x) 2 f(x) +Vf (%) (%]~ %3)
S(x) 2 f(x) + Y (xp) (% — %),

Adding the two inequalities, we get [V/(xy)—Vf(x)]' (x, —x;)>0. To show
the converse, let x;, x, € S. By the mean value theorem,

F(x2)— f(x) = VI(x) (x; —xp), (3.11)

where x = Ax; +(1 - A)x, for some 4 € (0, 1). By assumption, [V/(x) — Vi(x)Y
(x-x;)>0; that is, (1-A)NVs(x)-V/(x;)'(x; —x;)=0. This implies that
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Vi) (xp — x)2Vi(x) (x;—-x;). By (3.11) we get f(x3)2 f(x;) +
Vi(x )'(xz — X ), so by Theorem 3.3.3, f'is convex. The strict case is similar and
the proof 1s complete.

Even though Theorems 3.3.3 and 3.3.4 provide necessary and sufficient

}'I nntorratinne nf annua FHin rhanl-ing thaca annditinne 1a AifFianlé framm
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a computational standpoint. A simple and more manageable characterization, at
least for quadratic functions, can be obtained, provided that the function is twice
differentiable.

Twice Differentiable Convex and Concave Functions

A function f'that is differentiable at X is said to be twice differentiable at X if the
second-order (Taylor series) expansion representation of Definition 3.3.5 exists.

3.3.5 Definition

Let S be a nonempty set in R", and let £ § — R. Then f is said to be nwice
differentiable at x €int § if there exist a vector Vf(x), and an n x n symmetric

matrix H(X), calied the Hessian matrix, and a function o, R* — R such that

FX)= fX)+V(x) (x— i)+—;-(xﬁi)’H(§)(x ~X)+ ||:.{~i||2 a(X;x—~X)

for each x € S, where lim,_,5 a(X;x —x) = 0. The function f is said to be twice

differentiable on the open set §* < S if it is twice differentiable at each pointin S".
It may be noted that for twice differentiable functions, the Hessian matrix
H(x) is comprised of the second-order partial derivatives f;(X)=

0° f(x)/x, bx; fori=1,..,n,

[ [ o fiy (R ]
21X ) o ()

LW

H(T) =

_fnl(i—) fnZ(i) fnn(i)_

In expanded form, the foregoing representation can be written as
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n

)= F+ Y 10 ~F)+ =3 Y (=5 =5 fy ()
= =1 j=I

+x—F a®:x~%).

Again, without the remainder term associated with the function a, this
representation is known as a second-order (Taylor series) appreoximation at (or
about) the point x.

3.3.6 Exampies

Example 1. Let f(x;,x;)= 2x, +6xy —2x{ —3x% +4x,x,. Then we have

B 2—4fl+4f2 — -4 4
me"[&@mg} and H(x)“[ 4 —6]'

For example, taking X = (0, 0)’, the second-order expansion of this function is
given by

/x]'\ I I___4 4'1/xl\
f‘x""z’:(z’ﬁ)txzJ*E"‘""”L e [sz.

Note that there is no remainder term here since the given function is quadratic,
so the above representation is exact.

Example 2. Let £(x;,X;) = €>1*3%2_ Then we get

282?r]+35r"2 48231 +3.¥2 662.?|+3f2
VI (%)= 2% +3% and H(x) = 2%+ 3% 2%+3% |
32X Ge2X173%2 g axItIN

Hence, the second-order expansion of this function about the point X = (2,1)’ is
given by

7,1
f(‘f):e7+(237,3e7)("'_2}%&’_2,x2_1) 4e’ 6e (xlﬁzj

X -1 e’ 9¢’ [\ 22~}
+||x - E”z a(X;x—X).
Theorem 3.3.7 shows that f is convex on § if and only if its Hessian
matrix is positive semidefinite (PSD) everywhere in S; that is, for any X in §, we
have x’H(X)x >0 for all x € R". Symmetrically, a function /is concave on § if

and only if its Hessian matrix is negative semidefinite (NSD) everywhere in S,

Ll L ANRALS



114 Chapter 3

that is, for any X € S, we have X’ H(X)x <0 for all xe R". A matrix that is
neither positive nor negative semidefinite is called indefinite (1D).

3.3.7 Theorem

et S be a nonempty open convex set in R”, and let £ § R be twice

Aiflnvmtilalo nee @ Thao Fin mecegas i F cemed el t8 #hhn 1T Tom e mdwia 3 Ao ibiers
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semidefinite at each pointin S.

Proof

Suppose that f is convex, and let X € S. We need to show that
x'H(X)x >0 for each x e R". Since § is open, then for any given xe R",
X+Axe S for IZ,I # 0 and sufficiently small. By Theorem 3.3.3 and by the twice
differentiability of £, we get the following two expressions:

FX+Ax) = f(X)+ AV (X) x (3.12)
FR+AX)= f(X)+ AVF(X) x +—;~12sz(i)x + 12 _1_1x|\2 a(X;Ax).  (3.13)
Subtracting (3.13) from (3.12), we get
%izx’H(i)x + 22 |x a(x;4x) 2 0.

Dividing by 42 > 0 and letting 4 —» 0, it follows that x' H(X)x > 0. Conversely,

suppose that the Hessian matrix 1s positive semidefinite at each point in .
Consider x and X in S. Then, by the mean value theorem, we have

! Lerel

Y SN TN £ 1 AN
) BAXNX~ X}, \3-19)

|

Vo SRS Y S v 7 & e U L l/..__
JAX)j=Jix)+ (X)X A)-rZ\A

where X = AX + ([~ A)x for some 4 € (0, ]). Note that X e S and hence, by assump-

tion, H(X) is positive semidefinite. Therefore, (x — X)' H(X)(x~X) > 0, and from
(3.14), we conclude that

J(x)2 f(X)+VfZ) (x~X).

Since the above inequality is true for each x, X in S, f is convex by Theorem
3.3.3. This completes the proof.

Theorem 3.3.7 is useful in checking the convexity or concavity of a twice
differentiable function. In particular, if the function is quadratic, the Hessian
matrix is independent of the point under consideration. Hence, checking its

convexity reduces to checking the positive semidefiniteness of a constant
matrix.
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Results analogous to Theorem 3.3.7 can be obtained for the strict convex
and concave cases. It turns out that if the Hessian matrix is positive definite at
each point in S, the function is strictly convex. In other words, if for any given

point X in S, we have x'H(X)x >0 for all x # 0 in R", then f'is strictly convex.

This follows readily from the proof of Theorem 3.3.7. However, if f is strictly
convex, its Hessian matrix is positive semidefinite, but not necessarily positive
definite everywhere in S, unless, for example, if /is quadratic. The latter is seen
by writing (3.12) as a strict inequality for Ax # 0 and noting that the remainder
term in (3.13) is then absent. To illustrate, consider the strictly convex function

defined by 7(x) = x* The Hessian matrix H(x) = 12x2 is positive definite for all

nonzero x but is positive semidefinite, and not positive definite, at x = 0. The
following theorem records this fact.

3.3.8 Theorem

Let S be a nonempty open convex set in R”, and let £ § — R be twice
differentiable on S. If the Hessian matrix is positive definite at each point in S, f
is strictly convex. Conversely, if f is strictly convex, the Hessian matrix is
positive semidefinite at each point in S. However, if f is strictly convex and

Jaooior 1o oot ira
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The foregoing result can be strengthened somewhat while providing some
additional insights into the second-order characterization of convexity. Consider,
for example, the univariate function f(x)= x* addressed above, and let us show
how we can argue that this function is strictly convex despite the fact that
f"(0)=0. Since f"(x)=0 for all xe R, we have by Theorem 3.3.7 that f is
convex. Hence, by Theorem 3.3.3, all that we need to show is that for any point
x, the supporting hyperplane y = f(x)+ f'(x){(x - x) to the epigraph of the

ctin nur‘hee f}uc pﬁ1urﬂnh nrﬂv at the auvnﬂ namt v YV =(» f(v“ nn fhp
F a3 ll l-l ll BLSRA WA R hE A& l.l b el LA AW bi wld Pvlll‘ \J\r j} \J" J \ ;} ik ryy g

contrary, if this supporting hyperplane also touches the epigraph at some other
point (x, f(x)), we have f(x)= f(x)+ f'(x)(x— x). But this means that for any

y oy ~ 1
J,;l '—-/I:.l'f\l"_ﬂ-),.l, U = N >

convexity of £,

AfG)+(A=A) f(x)= fO)+ () xg —x)< ) SAS(x)+(1-2) f(x).
Hence, equality holds true throughout, and the supporting hyperplane touches
the graph of the function at all convex combinations (x;, f(x;)) as well. In fact,
we obtain f(x;)=Af(E)+(1-A)f(x) forall 0 < A< 1,50 f"(x;)=0 at the
uncountably infinite number of points x; for all 0 < A < 1. This contradicts the

fact that /"(x) =0 only at x = 0 from the above example, and therefore, the
function is strictly convex. As a result, if we lose positive definiteness of a

' ssrn hosin  sssem sxpmiis T e
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univariate convex function at only a finite (or countably infinite) number of
points, we can still claim that this function is strictly convex.

Staying with univariate functions for the time being, if the function is
infinitely differentiable, we can derive a necessary and sufficient condition for
the function to be strictly convex. [By an infinitely differentiable function f.
R" — R, we mean one for which for any X in R”", derivatives of all orders
exist and so are continuous; are uniformly bounded in values; and for which the
infinite Taylor series expansion of f(x) about f(X) gives an infinite series
representation of the value of / Of course, this infinite series can possibly have
only a finite number of terms, as, for example, when derivatives of order
exceeding some value all vanish.j

3.3.9 Theorem

Let S be 2 nonempty open convex set in R, and let . § — R be infinitely
differentiable. Then f'is strictly convex on § if and only if for each x € §, there

exists an even » such that f(”)(f) >0, while f(f)(f) =0 forany } <j <n,

where [ (7} denotes the jth-order derivative of /.

Proof

Let X be any point in S, and consider the infinite Taylor series expansion

of fabout x for a perturbation /# # 0 and small enough:
_ _ N L G
SE+B) = S+ E)+ 2= £G4 " E)

If fis strictly convex, then by Theorem 3.3.3 we have that f(x+ %) >/(x) +
Af'(x) for h = 0. Using this above, we get that for all » # 0 and sufficiently small,
H W K’

AR MO A I

Hence, not all derivatives of order greater than or equal to 2 at X can be zero.
Moreover, since by making # sufficiently small, we ¢an make the first nonzero
term above dominate the rest of the expansion, and since /# can be of either sign,
it follows that this first nonzero derivative must be of an even order and positive
for the inequality to hold true.

Conversely, suppose that given any x € 8, there exists an even » such
that f(x)>0, while f'(x)=0 for | <j < n. Then, as above, we have
(x+heSand fG+h)> )+ hA'(x) forall -6 <h <6, for some 6 >0 and
sufficiently small, Now the hypothesis given also asserts that /"(x) >0 for all
x €8, so by Theorem 3.3.7 we know that f is convex. Consequentiy, for any
h+0, with (T+h)e S, we get f(x+h)= f(x)+hf'(X) by Theorem 3.3.3. To
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complete the proof, we must show that this inequality is indeed strict. On the
contrary, if f(x + h)= fx)+hf'(x), we get

AfE+R)+ (- f(F) = f(X)+ AR (X) < f(X +Ah)
= fIAE+R)+ (- AXI<AfEx+h)+(1-)f(X)
for all 0 < A < I. But this means that equality holds throughout and that f{x +
/IE) = f{x)+ AE}“(E) for alt 0 < A < 1. By taking A close enough to zero, we can

contradict the statement that f(x +h) > f(x)+hf'(x) for all -5 <h <, and
this completes the proof.

To illustrate, when f(x)=x4, we have f’(x)=4x3 and f"(x)~= 12x2.
Hence, for x # 0, the first nonzero derivative as in Theorem 3.3.9 is of order 2
and is positive. Furthermore, for x = 0, we have f"(x)= f"(x) =0 and /¥ (%)

= 24 >0, so by Theorem 3.3.9, we can conclude that f/'is strictly convex.

Now let us turn to the multivariate case. The following result provides an
insightful connection between the univariate and multivariate cases and permits
us to derive results for the latter case from those for the former case. For

notational simplicity. we have stated this result for £ R" — R. althoueh one can
llllllllllllllll t,lll"l'J £ TY W AL W R LALT LA RILAF b WLSRAAR AWSA JI an - “, ul‘llu“b‘l AFELIW W LAER

readily restate it for £ § — R, where S is some nonempty convex subset of R”.

3.3.10 Theorem

Consider a function /i R” — R, and for any point Xe R" and a nonzero
direction d € R", define Fzay(A) = f(x+4d) as a function of 1 € R. Then f'is

(strictly) convex if and only if F5.4y is (strictly) convex for all X andd # 0 in R".

| T o
rroo

Given any X and d = 0 in R", let us write Fixqy(4) simply as F(4) for

e arntnimn TR L0 s Al Lo ans L

we have

Flak +(1-a)k) = falx+A4d]+(1-a)[X + 4d])

< af@+Ad)+(-a)f(X+Ad) =aF @A) +(1-Q)F(4).

Hence, F 1s conveX. Conversely, suppose that Fix. d)(/l), A € R, is convex for all

xand d = 0 in R”. Then, for any X, and X, in R” and 0 < A < 1, we have
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AFxD)+(=-2)1(x2) = AfIx; +0(xz —xp)]+ (=) fIx; +1(x3 —x))]
. "“?{xl;{lz—ll)](o)*”(l_ﬂ‘)ﬁll;(lz—ﬂ)](l)
2 Hxpsxg-xi{1=4)

SIxp + (1= A)xy —xp)) = flAx +(1-A)xz ],

so f is convex. The argument for the strictly convex case is similar, and this
completes the proof.

This insight of examining f: R" —» R via its univariate cross sections
Fz.q) can be very useful both as a conceptual tool for viewing f and as an
analytical tool for deriving various results. For example, writing F(1) =
Fz.ay(A) = f(X +Ad), for any given X and d # 0 in R", we have from the
univariate Taylor series expansion (assuming infinite differentiability) that

.2 3
F(.&)=F(O)+.&F'(O)-%%—!—F”(O)+—/;-F'"(O)+~-~.

F'(A)=Vf(X+Ad) d =Y f:(X + Ad)d,

F'()=d'HX+Ad)d =33 f;(X+ 2d)d,d
I
F () =333 fiu (X +2d)d,d d,, etc.
i jk

Substituting above, this gives the corresponding muitivariate Taylor series expan-
sion as

- _ v AT A _
f(X+Ad) = f(X) +AV/(X) d +7”—d’H(x)d + =2 2.2 S (X)ad ;i -+
Z! 3y ik ’
As another example, using the second-order derivative result for characterizing
the convexity of a univariate function along with Theorem 3.3.10, we can derive

that f: R" — R is convex if and only if F{"h” (A)=0 forall L e R, XeR", and

d € R". But since X and d can be chosen arbitrarily, this is equivalent to requiring

that F{”E,d) (0)= 0 for all X and d in R". From above, this translates to the state-

ment that d'H(X)d > 0 for all d € R”, for each X € R", or that H(X) is positive

semidefinite for all X € R”, as in Theorem 3.3.7. In a simifar manner, or by
using the multivariate Taylor series expansion directly as in the proof of
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Theorem 3.3.9, we can assert that an infinitely differentiable function /: R" —»
R is strictly convex if and only if for each X and d # 0 in R”, the first nonzero

derivative term [F { )(0)] of order greater than or equal to 2 in the Taylor series

expansion above exists, is of even order, and is positive. We leave the details of
exploring this result to the reader in Exercise 3.38.

We present below an ellicient (poiynomiai-time) algorithm 1or checking
the definiteness of a (symmetric) Hessian matrix H(X) using elementary Gauss—
Jordan operatlons Appendlx A cites a characterization of definiteness in terms of

. G S
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algorithmically convenient alternative. Moreover, 1f one needs to check for the

definiteness of a matrix H(x) that is a function of x, this eigenvalue method is

very cumbersome, if not virtually impossible, to use. Although the method
presented below can also get messy in such instances, it is overall a more simple
and efficient approach.

We begin by considering a 2 x 2 Hessian matrix H in Lemma 3.3.11,
where the argument X has been suppressed for convenience. This is then
generalized in an inductive fashion to an n X # matrix in Theorem 3.3.12.

wfonrs A B R4S NLERLREE

. ab : . . o
Consider a symmetric matrix H :[ :| Then H is positive semidefinite if and
¢

only ifa >0, ¢ > 0, and ac—4°> 0, and is positive definite if and only if the
foregoing inequalities are all strict.

Proof

By definition, H is positive semidefinite if and only if d'Hd = ad}

2bdyd, +cdy > 0 for all (d,, d,)' € R?. Hence, if H is positive semidefinite, we
must clearly have a > 0 and ¢ > 0. Moreover, if @ = 0, we must have 4 = 0, so
ac—-b° = 0; or else, by taking d; =1 and d; = -Mb for M > 0 and large enough,

we would obtain d'Hd < 0, a contradiction. On the other hand, if @ > 0, then
completing the squares, we get

2 2 2 42
d'Hd = a[d] o 2bdyd; b—2d§J+d§(c—b— =a(d1 +P—d2] +d22 acb
a a

a a a

Hence, we must again have (ac - b%) = 0, since otherwise, by taking d, = 1 and

d, = —bla, we would get d'Hd =(ac—b2 Yo < 0, a contradiction. Hence, the
condition of the theorem holds true. Conversely, suppose that a > 0, ¢ > 0, and
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ac—b* > 0. If a = 0, this gives b = 0, so d"Hd = cds > 0. On the other hand, if a
> 0, by completing the squares as above we get

! b 5 ac—b°
d Hd = a dl +—d2 -+ dz >qQ,
a

d

Hence, H is positive semidefinite. The proof of positive definiteness is similar,
and this completes the proof.

We remark here that since a matrix H is negative semidefinite (negative
definite) if and only if —H is positive semidefinite (positive definite), we get
from Lemma 3.3.11 that H is negative semidefinite if and only if a <0, ¢ <0,

and ac - 6% 20, and that H is negative definite if and only if these inequalities
are al! strict. Theorem 3.3.12 is stated for checking positive semidefiniteness or
positive definiteness of H, By replacing H by —H, we could test symmetrically
for negative semidefiniteness or negative definiteness, If the matrix turns out to
be neither positive semidefinite nor negative semidefinite, it is indefinite, Also,
we assume below that H is symmetric, being the Hessian of a twice

I o' S S o e e P P

ar L Y. N I i M I EEE-T - T ST S T
AITICTCILd DIC LUNLLIOUN 1OI OUD pUrpascs. in goneral, 1l 11 s niot 5ymmclrlc, (18151 |
since d'Hd = d‘H'd =d’[(H +H')/2]d, we can check for the definiteness of H

by using the symmetric matrix (H+ H’)/2 below.

3.3.12 Theorem (Checking for PSD/PD)

Let H be a symmetric » x » matrix with elements 4.
(a) If h; <0 forany ie{l,..,n}, H is not positive definite; and if &, <
0 forany 7€ {l,..,n}, H is not positive semidefinite.
(b) If Ay =0 forany 7€ {l,...,n}, we must have #; =h; =0 forall j =

1...., n as well, or else H is not positive semidefinite.
() Ifn=1, H is positive semidefinite (positive definite) if and only if
M= 0(>0). Otherwise, if n2>2, let

H= hll q!
q G
in partitioned form, where q = 0 if /; = 0, and otherwise, #, > 0.

Perform elementary Gauss—Jordan operations using the first row of
H to reduce it to the following matrix in either case:

H=“’11 qt '
[0 Grew |
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Then G,,.,, is a symmetric (n - 1) X (» ~ ) matrix, and H is positive semidefinite
if and only if G, is positive semidefinite. Moreover, if 4, >0, H is positive

definite if and only if G, is positive definite.

Proof

(a) Since d'Hd = d,-zh,,- whenever d, = 0 for all j # i, Part (a) of the

theorem is obviously true.
(b) Suppose that for some i # /, we have #; = 0 and h.,-J, # 0. Then, by

taking d; = O for all k = i or j, we get d'Hd=2hydd, +d h,,

which can be made negative as in the proof of Lemma 3.3.11 by
taking d; = | and d; = —#, M for M > 0 and sufficiently large. This

establishes Part (b).
(¢) Finally, suppose that H is given in partitioned form as in Part (c). If

n = |, the result is trivial. Otherwise, for n > 2, let d' = (d,8"). If
fy = 0, by assumption we also have q = 0, and then G, = G.

WA ot o alvzw_®
Moreover, in this case, d' Hd = &

F B o~ FT I o elaliin Cmienl
i O, 30 1T 1y PUSIUYE >Cllll-
definite if and only if G, is positive semidefinite. On the other

hand, if A, > 0, we get

tifd
d'Hd = (d,,&‘)hf ‘(‘JL 5‘} = dih, +2d,(q'8)+8'GS.

But by the Gauss—Jordan reduction process, we have

- -

74’
! thr ! t
G =G-—{ 7“7 1=G-—qq’,
e TR My
7"

which is a symmetric matrix. By substituting this above, we get

2
's
d'Hd = dlzhll +2dl (qla) +8' (Gnew '*”hquq! 15=8!Gnew8+hl ] [dl +%_ .
1 g
Hence, it can readily be verified that d'Hd > 0 for all d € R" if and only if

8'G ., > 0 for all 5 R"™!, because & ;(d, +q'8/h;)° 20, and the latter term

can be made zero by selecting d; = —q'8/ /4y, if necessary. By the same argu-
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ment, d'Hd >0 for all d # 0 in R” if and only if 8/G,., 8> 0 for all § 0 in

R™ | and this completes the proof.

Observe that Theorem 3.3.12 prompts a polynomial-time algorithm for
checking the PSD/PD of a symmetric n x » matrix H. We first scan the diagonal
elements to see if either condition (a) or (b) leads to the conclusion that the

matri¥ is not DQn/Dn If thic does not 'I'Prmmﬂfp the nrocess we nerform the

L S I ) MIELS wARSWAF QISR RWA ) e A Y | PL A ALL LAk

Gauss—Jordan reduction as in Part (¢) and arrive at a matrix G, of one lesser
dimension for which we may now perform the same test as on H When | ST

ﬁna}iy a2 x 2 matr u\ we can use Lemma 3 3.11 1, OF Wt Carni continue to 1cduu: it
to a 1 x | matrix and hence determine the PSD/PD of H. Since each pass through

the inductive step of the algorithm is of complexity O(nz) (read as “of order n’”

and meaning that the number of elementary arithmetic operations, comparison,
etc., involved are bounded above by Kn® for some constant K) and the number
of inductive steps is of O(n), the overall process is of polynomial complexity
O(°). Because the algorithm basically works toward reducing the matrix to an

upper triangular matrix, it is sometimes called a superdiagonalization algorithm.
This algorithm affords a proof for the following useful result, which can
alternatively be proved using the eigenvalue characterization of definiteness (see
Exercise 3.42),

Corollary
Let H be an # x » symmetric matrix. Then H is positive definite if and only if it
is positive semidefinite and nonsingular.

Proof

If H is positive definite, it is positive semidefinite, and since the superdi-
agonalization algorithm reduces the matrix H to an upper triangular matrix with
positive diagonal elements via elementary row operations, H is nonsingular.
Conversely, if H is positive semidefinite and nonsingular, the superdiagonalization
algorithm must always encounter nonzero elements along the diagonal because
H is nonsingular, and these must be positive because H 1s positive semide finite.
Hence, H is positive definite.

3.3.13 Examples

Example 1. Consider Example 1 of Section 3.3.6. Here we have

4 4
H(x)z{ 4 —61

50
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4 -4
—H(x)=[_4 6]'

By Lemma 3.3.11 we conclude that —H(x) is positive definite, so H(X) is
negative definite and the function fis strictly concave.

—v3|’)v2 Horo o hawu
_Jl o - 4

By Lemma 3.3.11, whenever x; < 0, H(x) is indefinite. However, H(x) is

positive definite for x; > 0, so fis strictly convex over {x :x; > 0j.
Example 3. Consider the matrix
2 1 2
H={1 2 3|
2 3 4

Note that the matrix is not negative semidefinite. To check PSD/PD, apply the
superdiagonalization algorithm and reduce H to

2 1 2

. 3/2 2
0 3/2 2 which gives Gew =[ 5 Z]'
0 2 2

Now the diagonals of G,.,, are positive, but det(G ., ) = -1. Hence, H is not

positive semidefinite. Alternatively, we could have verified this by continuing to
reduce G, to obtain the matrix

3/2 2
L0 -2/3]

Since the resulting second diagonal element (i.e., the reduced G, ) is negative,

H is not positive semidefinite. Since H is not negative semidefinite either, it is
indefinite.

3.4 Minima and Maxima of Convex Functions

in this section we consider the problems of minimizing and maximizing a
convex function over a convex set and develop necessary and/or sufficient
conditions for optimality.
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Minimizing a Convex Function

The case of maximizing a concave function is similar to that of minimizing a
convex function. We develop the latter in detail and ask the reader to draw the
analogous resuits for the concave case.

3.4.1 Definition

Let £ R" — R and consider the problem to minimize f(x) subjectto x € S. A
point x € S is called a feasible solution to the problem. If x € Sand f(x) > f(X)
for each x € S, X is called an optimal solution, a global optimal solution, or
simply a solution to the problem. The collection of optimal solutions are called
alternative optimal solutions. If x € § and if there exists an g-neighborhood
N (X) around X such that f(x)= f(x) for each xe SAN_(X), X is called a
local optimal solution. Similarly, if x € Sand if f(x)> f(X) forallx e §
N (X), x2X, for some ¢> 0, X is called a strict local optimal solution. On the
other hand, if X € § is the only local minimum in SN, (X), for some &

neighborhood N, (x) around X, X is called a strong or isolated local optimal

solution. AH these types of local optima or minima are sometimes also referred
to as relative minima. Figure 3.6 illustrates instances of local and global minima
for the problem of minimizing f(x) subject to x € S, where fand S are shown in
the figure.

The points in S corresponding to A, B, and C are also both strict and
strong local minima, whereas those corresponding to the flat segment of the
graph between D and E are local minima that are neither strict nor strong. Note
that if X 1s a strong or isolated local minimum, it is also a strict minimum. To
see this, consider the gneighborhood N, (X) characterizing the strong local

minimum nature of X. Then we must also have f(x)> f(X) forallx € §

A

Global minmum

[
I
|
[
[
L
L

Y

Figure 3.6 Local and global minima.
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N, (X), because otherwise, suppose that there exists an X € § "N, (X) such that
J(X) = f(X). Note that X is an alternative optimal solution within SN _(X),
so there exists some 0 <&’ <& such that f(x)> f(X) forall x € S N (X).
But this contradicts the isolated local minimum status of X, and hence X must
also be a strict local minimum. On the other hand, a strict local minimum need

not be an isolated local minimum. Figure 3.7 illustrates two such instances. In
Figure 3.74, S= R and f(x) =1 forx = | and is equal to 2 otherwise. Note that

the point of discontinuity X = [ of fis a strict local minimum but is not isolated,

since any g-neighborhood about X contains points other than x = [, all of which

are also local minima. Figure 3.75 illustrates another case in which f(x)= x2, a

strictly convex function; but S = {I/Zk,k =0,1,2,...} {0} is a nonconvex set.

Here, the point X = 1/2 for any integer &> 0is an isolated and therefore a strict
local minimum because it can be captured as the unigue feasible solution in
8§ M N, (x) for some sufficiently small £ > 0. However, although x = 0 is clearly

a strict local minimum (it is, in fact, the unique global minimum), it is not
isolated because any e-neighborhood about x = 0 contains other local minima
of the foregoing type.

Nonetheless, for optimization problems, min{ f(x):x e S}, where fis a
convex function and S is a convex set, which are known as convex programming
problems and that are of interest to us in this section, a strict local minimum is
also a strong local minimum, as shown in Theorem 3.4.2 (see Exercise 3.47 for a
weaker sufficient condition). The principal result here is that each local
minimum of a convex program is also a global minimum, This fact is quite
useful in the optimization process, since it enables us to stop with a global
optimal solution if the search in the vicinity of a feasible point does not lead to
an improving feasible solution.

Let S be a nonempty convex set in R”, and let /3 § — R be convex on S.
Consider the problem to minimize f(x) subject to x € S. Suppose that X € S'is

a local optimal solution to the problem.

4

2

A

\f {x}

S={1/2) k=012, .} {0}

Y

{a) (#)
Figure 3.7 Strict local minima are not necessarily strong local minima.




126 Chapter 3

1. Then X is a global optimal solution.

2. If either X is a strict focal minimum or f is strictly convex, X is
the unique global optimal solution and is also a strong local
minimum.

around X such that

f(x)> f(X)  foreach xe SAN,(X). (3.15)

By contradiction, suppose that X is not a global optimal solution so that f(X) <

f(X) for some x e S. By the convexity of £, the following is true for each 0 <A
<l:

JOAx+(1=-)X) <A f(X)+(1- )/ (X) <Af(x)+(A-A) f(X) = f(X).

But for A > 0 and sufficiently small, AX+(1-A)Xe SNN_(X). Hence, the

above inequality contradicts (3.15), and Part 1 is proved.
Next, suppose that X is a strict local minimum. By Part 1 it is a global

IIlllIlIIll.llIl IYUW on lIlC L-Ul’lle.ly ll l.IlCIC Cﬁlblb all X c ;) bUbIl l...lld.l.. J k;\} - J kl),
then defining x; = A% +(1- A)X for 0 < A < 1, we have, by the convexity of /
and Sthat f(X;) < Af(&)+(-A)f(X)=f(X),and x,; € Sforall 0< 1 <1.By

taking 4 — 0", since we can make x; € N.(X)S for any £ > 0, this con-

tradicts the strict local optimality of X. Hence, X is the unique global minimum.
Therefore, it must also be an isolated local minimum, since any other local
minimum in N, (X).S for any &> 0 would also be a global minimum, which is
a contradiction.

Finally, suppose that X is a loca! optimal solution and that f is strictly
convex. Since strict convexity implies convexity, then by Part 1, X is a global
optimal solution. By contradiction, suppose that X is not the unique global
optimal solution, so that there exists an x € S, x # X such that f(x)= f(X). By

strict convexity,

f%ﬁ%ik f(x)+ 1) = f(%).

By the convexity of S, (1/2)x +(1/2)X € §, and the above inequality violates the

global optimality of X. Hence, X is the unique global minimum and, as above, is
also a strong local minimum. This completes the proof,

We now develop a necessary and sufficient condition for the existence of a
global solution. If such an optimal solution does not exist, then inf{ /(x):x € S} is

finite but is not achieved at any point in S, or it is equal to —o.
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3.4.3 Theorem

Let f: R™ — R be a convex function, and let S be a nonempty convex set in R”.
Consider the problem to minimize f(x) subjectto X € S. The point x € Sis an

optima} solution to this problem if and only if f has a subgradient & at x such
that £'(x -X) > 0 foralix € S.

Proof
Suppose that £ (x-X)20 for all x € S, where & is a subgradient of fat
X. By the convexity of /, we have
fX)2 X +EE-x)2 f(X) forallx € S,

and hence X is an optimal solution to the given problem.
To show the converse, suppose that x 1s an optimal solution to the

problem and construct the following two sets in R™*!:
Ap={x-X,y):xe R", y> f(x)- f(X)}
Ay ={(x~X,y):xe S, y<0}.

The reader may easily verify that both A; and A, are convex sets. Also, A; M
A, = because otherwise there would exist a point (x, y) such that

xeS, 02y>f(0-f(,

contradicting the assumption that x is an optimal solution to the problem. By
Theorem 2.4.8 there is a hyperplane that separates A; and A,; that is, there exist

a nonzero vector (&;, x) and a scalar a such that

Ex-X)+uy<a, VxeR" y> f(x)-f(X) (3.16)

So(x-X)+uyza, Vxes, y<0. (3.17)

L AR

L~

Ifweletx =X and y = 0 in (3.17), it follows that & < 0. Next, letting x = X and y
= g> 01n (3.16), it follows that & < «. Since this 1s true forevery £ >0, u<0

and o >0. To summarize, we have shown that gy <0and a = 0. If 4= 0, from
(3.16), &(x-x) <0 for each x € R". If we let x = X + &, it follows that

02 E(x-X) =&’

and hence & = 0. Since (&, #) # (8,0), we must have x4 < 0. Dividing (3.16)
and (3.17) by —uzand denoting —&,/u by & we get the following inequalities:
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y2E(x-X), VxeR", y> [(X)- f(X) (3.18)
E(x-X)-y=20, vxeS, y<0, (3.19)

By letting y = 0 in (3.19), we get £'(x-X)>0 forall x € S. From (3.18) it is
obvious that

fX)z fX)+&(x-X) for all xe R".

Therefore, & is a subgradient of fat X with the property that &' (x - X) > 0 for all
x € S, and the proof is complete.

Corollary 1

Under the assumptions of Theorem 3.4.3, if §' is open, X is an optimal solution to
the problem if and only if there exists a zero subgradient of fat X_ In particular,

if § = R", X is a global minimum if and only if there exists a zero subgradient of
fatx.

Proof

By the theorem, X is an optimal solution if and only if &(x -X)> 0 for
each x € §, where £ is a subgradient of f at X. Since S is open, x=X- A& e S for

some positive A. Therefore, -4 H‘§H2 > 0; thatis, £=0.

Corollary 2

In addition to the assumptions of the theorem, suppose that f is differentiable.
Then X is an optimal solution if and only if Vf(X)'(x—X)>0 for all x € S.
Furthermore, if § is open, X is an optimal solution if and only if V/(X)=0.

Note the important implications of Theorem 3.4.3. First, the theorem
gives a necessary and sufficient characterization of optimal solutions. This
characterization reduces to the well-known condition of vanishing derivatives if

[ is differentiable and S is open. Another important implication is that if we

reach a nonoptimal point X, where Vf(X) (x -X) < 0 for some x € §, there is an
obvious way to proceed to an improving solution. This can be achieved by
moving from X in the direction d = x — X. The actual size of the step can be
determined by solving a /ine search problem, which is a one-dimensional
minimization subproblem of the following form: Minimize f{X -+ Ad] subject to

A>0and X + Ad € §. This procedure is called the method of feasible directions
and is discussed in more detail in Chapter 10.

To provide additional insights, let us dwell for awhile on Corollary 2,
which addresses the differentiable case for Theorem 3.4.3. Figure 3.8 illustrates
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Contour of

©

v — Hyperplane V/(X)(x-X)}=0

VY (x-x)20

Figure 3.8 Geometry for Theorems 3.4.3 and 3.4.4.

the geometry of the result. Now suppose that for the problem to minimize f(x)

subject to x € S, we have f differentiable and convex, but § is an arbitrary set.
Suppose further that it turns out that the directional derivative f'(X;x—X) =

Urigiv TV 0 Ffarall v = €@ Tha wennf af the thoneat antiall; chnwwe that o
YAAAJ AT AoV LU gl A T 4. 1HC PIOUl Ul UIC UIRUITi abllaliy MIUWwD LUidl A
~

is a global minimum regardiess of &, since for any solution x that improves over
X, we have, by the convexity of f, that f(X)> f(X) > f(X)+Vf(X)'(x-%),
which implies that V/(X) (X —X) < 0, whereas V/(X)'(x—X)>0 for all x € §.
Hence, the hyperplane V/(X) (x—X) = 0 separates S from solutions that improve

over X. (For the nondifferentiable case, the hyperplane &'(x—X)=0 plays a
similar role.] However, if f is not convex, the directional derivative

Vf(X) (x—X) being nonnegative for all x € S does not even necessarily imply

that X is a local minimum. For example, for the problem to minimize f(x)= x>

subject to —1 <x <1, we have the condition f'(X}x-X)>0 forallx € § being
satisfied at X = 0, since f'(0) =0, but x = 0 is not even a local minimum for this
problem,

Conversely, suppose that f is differentiable but arbitrary otherwise and
that S is a convex set. Then, if X is a global minimum, we must have /'(X;x—X)

= Vf(X)'(x—X) > 0. This follows because, otherwise, if Vf(X)'(x—X) <0, we
could move along the direction d = x — X and, as above, the objective value
would fall for sufficiently small step lengths, whereas x +Ad would remain
feasible for 0 < 4 < 1 by the convexity of S. Note that this explains a more
general concept: if fis differentiable but fand S are otherwise arbitrary, and if X

PR, [

HOVE | o | waa L marm. O &l ___
1> d 1JLal LI vl J uyer O, wen
remains feasible for 0 < 4 < & for some 6 > 0, we must have a nonnegative
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directional derivative of f/ at X in the direction d: that is, we must have

J'&d)=Vf(x)'d20.

Now let us turn our attention back to convex programming problems. The
following result and its corollaries characterize the set of alternative optimal
solutions and show, in part, that the gradient of the objective function (assuming
twice differentiability) is a constant over the optimal solution set, and that for a
quadratic objective function, the optimal solution set is in fact polyhedral. (See

Figure 3.8 to identify the set of alternative optimal solutions S* defined by the
theorem in light of Theorem 3.4.3.)

3.4.4 Theorem

Consider the problem to minimize f(x) subject to X € S, where fis a convex

and twice differentiable function and S is a convex set, and suppose that there
eXists an optimal solution X. Then the set of alternative optimal solutions is
characterized by the set

S* ={xe S :V/(X) (x-%) <0 and Vf(x)=V/(X)}.

Pronf
Frogj

Denote the set of alternative optimal solutions as S, say, and note that

X € S # . Consider any X € S°. By the convexity of f and the definition of S°,
we have x €S and

S® 2 f(3)+ VR (X-%) = fE)+ V(D (X-%) 2 f(%),
so we must have X € S by the optimality of X. Hence, $* = S.
Conversely, suppose that xS, so that xe€ S and f(%)= f(X). This
means that f(X) = f(X)2 f(X)+VAX) (-X) or that V/(X)' (X -X)<0. But
by Corollary 2 to Theorem 3.4.3, we have V7 (X)' (Xx—X) = 0. Hence, V/(X)/ (X - X)

= 0. By interchanging the roles of X and %, we obtain Vf(X)'(X-X) = 0
symmetrically. Therefore,

[V/(X) - Vf (®)] (X-%) = 0. (3.20)
Now we have

[Vf(X) - Vf(%)) = Vf[X+AZ-R]Z)

_ j:éﬂ[i F+AX-RIX-%) dA =G(x-X),

(321)
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where G = I(I)H[i+/1(i~i)J dA and where the integral of the matrix is per-

formed componentwise. But note that G is positive semidefinite because d'Gd
= Iéd’H[i + (X -%))d d1>0 forall de R", since d'H[X + (X —%)]d is a non-
negative function of 4 by the convexity of /. Hence, by (3.20) and (3.21), we get
0 = (X—%)'[V/(X)-Vf(X)] = (X -X)'G(X - X). But the positive semidefinite-
ness of G implies that G(X-X) =0 by a standard result (see Exercise 3.41).
Therefore, by (3.21), we have V/(X) = Vf(x). We have hence shown that X € S,

V7 (X)' (X -X) <0, and VF(X) = V/(X). This means that X € §*, and thus S ¢ S°.
This, together with $* < S, completes the proof.
Corollary 1

The set S™ of alternative optimal solutions can equivalently be defined as
S ={xe8:VAX)' (x—X)=0 and V/(Xx)=V/(X)}.
Proof
The proof follows from the definition of §” in Theorem 3.4.4 and the fact
that V£ (X)' (x —X) > 0 for all x € Sby Corollary 2 to Theorem 3.4.3.
Corollary 2

Suppose that fis a quadratic function given by f(x)=¢/x +(1/2)x'Hx and that §
is polyhedral. Then 8™ is a polyhedral set given by

§*={xeS:e/(x-%)<0, Hx-X)=0}={xeS:c'(x~-X) =0,
H(x-X)= 0.

Proof

The proof follows by direct substitution in Theorem 3.4.4 and Corollary
1, noting that Vf(x) = ¢ + Hx.
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3.4.5 Example

3 2
Minimize [x,-EJ + (x, -5)°

subjectto  —x;+xp < 2
2x+3x < 11

- <0

-xy < 0.

Clearly, f(x,,x2)={xl—3!‘2}2+{xg —5)2 is a convex function, which

gives the square of the distance from the point (3/2, 5). The convex polyhedral
set § is represented by the above four inequalities. The problem is depicted in
Figure 3.9. From the figure, clearly the optimal point is (1, 3). The gradient

vector of f at the point (1, 3) is Vf(1,3) = (—1,—4). We see geomerrically that the
vector (-1, —4) makes an angle of <90° with each vector of the form (x —1,
xp —3), where (x;,x,)€ S. Thus, the optimality condition of Theorem 3.4.3 is
verified and, by Theorem 3.4.4, (1, 3) is the unique optimum.

To illustrate further, suppose that it is claimed that % =(0,0)' is an

optimal point. By Theorem 3.4.4, this cannot be true since we have V£ (X)' (% -
%) =13>0 when X =(1,3)". Similarly, by Theorem 3.4.3, we can easily verify

that % is not optimal. Note that Vf(0,0) = (-3,—10)' and actually, for each
nonzero X € S, we have —3x ~10x, <0. Hence, the origin could not be an
optimal point. Moreover, we can improve f by moving from 0 in the direction x
— 0 for any x € S. In this case, the best local direction is —Vf(0,0), that is, the

direction (3, 10). In Chapter 10 we discuss methods for finding a particular
direction among many alternatives.

xs \\:[j .1]
N v
(L3}
0.2 vf
5
& Ty
7]

Figure 3.9 Setup for Example 3.4.5.
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Maximizing a Convex Function

We now develop a necessary condition for a maximum of a convex function
over a convex set. Unfortunately, this condition is not sufficient. Therefore, it is
possible, and actually not unlikely, that several local maxima satisfying the
condition of Theorem 3.4.6 exist. Unlike the minimization case, there exists no
local information at such solutions that could iead us to better points. Hence,
maximizing a convex function is usually a much harder task than minimizing a
convex function. Again, minimizing a concave function is similar to maximizing
a convex function, and hence the development for the concave case is left to the
reader

3.4.6 Theorem
Let £ R" - R be a convex function, and let S be a nonempty convex set in R”.
Consider the problem to maximize f(x) subjecttox € S. If X € S is a local

optimal solution, &'(x-X) <0 for each x € S, where &is any subgradient of fat

X.

Proof

Suppose that x € § is a local optimal solution. Then an &neighborhood
N (X) exists such that f(x)< f(X) for each x e SN N (X). Let x € S, and note

that X + A(x - X) € SN N_(X) for 4> 0 and sufficiently small, Hence,
JIx+ Ax-X))< f(X). (3.22)

Let £be a subgradient of fat X. By the convexity of f, we have
fIX+ Ax-%)]- f(X) 2 A& (x-X).
The above inequality, together with (3.20), implies that A& (x-X)<0, and
dividing by 4 > 0, the resuit follows.
Corollary

In addition to the assumptions of the theorem, suppose that f is differentiable. 1f
X € S is a loca} optimal solution, V/(X)'(x—X)< 0 forallx € §.

Note that the above result is, in general, necessary but not sufficient for
optimality. To illustrate, let f(x)= x*and S = {x:—-1<x<2}. The maximum of
fover § is equal to 4 and is achieved at x = 2. However, at x = 0, we have
V7 (x) = 0 and hence V/(x)'(x - X) =0 for each x € S. Clearly, the point X = 0
is not even a local maximum. Referring to Example 3.4.5, discussed earlier, we
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have two local maxima, (0, 0) and (11/2, 0). Both points satisfy the necessary
condition of Theorem 3.4.6. If we are currently at the local optimal point (0, 0),
unfortunately no local information exists that will lead us toward the global
maximum point (11/2, 0). Also, if we are at the global maximum point (11/2, 0),
there is no convenient local criterion that tells us that we are at the optimal point,

Theorem 3 4.7 shows that a convex function achieves a maximum over a
comnact nnlvhpdml get at an extreme noint. This result has been utilized hv

wrriiipsdaten Aiwiweliiel Jwe iiw P reisiw. Ll Rt Nl & B a i

several computatlonal schemes for so!vmg such problems. We ask the reader to
think for a moment about the case when the objective function is linear and,
hence, both convex and concave. Theorem 3.4.7 could be extended to the case
where the convex feasible region is not polyhedrai.

3.4.7 Theorem

Let £ R" — R be a convex function, and let S be a nonempty compact polyhe-
dral set in R”. Consider the problem to maximize f(x) subjectto x € S. An
optimal solution X to the problem then exists, where X is an extreme point of S.

Proof
By Thecrem 3.1.3, note th..t f is continuous. Since § is com pact f
assumes a maximum at x' € §. If X' is an extreme point of S, the result is at
: r_k
hand. Otherwise, by Theorem 2.6.7, x" = = AiX where Z} 4 =1,4,>0,

and x  is an extreme point of § for / = 1...., k. By the convexity of /, we have

{ i k
fx)= fL X A%, |$ ZAS())
But since f(x')2 f(x;) forj = I,..., &, the above inequality implies that f(x') =
f(xj-) forj = 1,.., k. Thus, the extreme points x,,...,X; are optimal solutions to

the problem, and the proof is complete.

3.5 Generalizations of a Convex Functions

In this section we present various types of functions that are similar to convex
and concave functions but that share only some of their desirable properties. As
we shall learn, many of the resuits presented later in the book do not require the
restrictive assumption of convexity, but rather, the less restrictive assumptions
of quasiconvexity, pseudoconvexity, and convexity at a point.

Quasiconvex Functions

Definition 3.5.1 introduces quasiconvex functions. From the definition it is

v sned tland aurner A Lcmntinm 1o nlon Armotmmmiras

appareint tnat every conveX funclion is §i50 qUasiConvex.
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3.5.1 Definition

Let /: § — R, where S is a nonempty convex set in R". The function fis said to
be quasiconvex if for each x; and x,, € S, the following inequality is true:

SIAx%; + (1- A)x, ) <max{f(x;), f(x3)} foreach A € (0, 1).

The function f'is said to be quasiconcave if —f is quasiconvex.
From Definition 3.5.1, a function f is quasiconvex if whenever f(x,) >

f(x;), f(xy) is greater than or equal to f at all convex combinations of x, and
X,. Hence, if / increases from its value at a point along any direction, it must
remain nondecreasing in that direction. Therefore, its univariate cross section is

either monotone or unimodal (see Exercise 3.57). A function fis quasiconcave if
whenever f(X;)> f(x;), f at all convex combinations of x; and x, is greater
than or equal to f(x;). Figure 3.10 shows some examples of quasiconvex and
quasiconcave functions. We shall concentrate on quasiconvex functions; the
reader is advised to draw all the parallel results for quasiconcave functions. A
function that is both quasiconvex and quasiconcave is called quasimonotone (see
Figure 3.10d).

We have learned in Section 3.2 that a convex function can be
characterized by the convexity of its epigraph. We now learn that a quasiconvex
function can be characterized by the convexity of its level sets. This result is
given in Theorem 3.5.2.

3.5.2 Theorem

Let /© S > R where S is a nonempty convex set in R". The function f is
quasiconveX if and only if S, ={xeS: f(x)<a} is convex for each real

(@) (&) (c) ()

Figure 3.10 Quasiconvex and quasiconcave functions: (@) quasiconvex, ()
quasiconcave, (¢) neither quasiconvex nor quasiconcave, (d) quasimonotone,
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Proof

Suppose that / is quasiconvex, and let x;, x, € S, . Therefore, x,, X,
€S and max{f(x;), f(x;)} <a. Let 1e(0,1), and let x = Ax; +(1—A)X,. By
the convexity of S, xeS§. Furthermore, by the quasiconvexity of f
f(x) <max{f(x,), f(x;)}<a. Hence, xe§, and thus S, is convex.

Conversely, suppose that S, is convex for each real number a. Let x;, x, € §.
Furthermore, let 4 <(0,1) and x = 1x; + {1~ 1)x;. Note that x;, x, €5, for
a =max{f(x;), f(x;)}. By assumption, S, 1is convex, so that xeS§,.
Therefore, f(x)<a =max{f(x;), f(x;)}. Hence, f is quasiconvex, and the
proof is complete.

The level set S, defined in Theorem 3.5.2 is sometimes referred to as a
lower-level set, to differentiate it from the upper-level set {xe S : f(x) 2 a},

which is convex for all @ € R if and only if fis quasiconcave. Also, it can be
shown (see Exercise 3.59) that f'is quasimonotone if and only if the /eve! surface

{xe8§: f(X)=a} isconvex foralla € R.

We now give a result analogous to Theorem 3.4.7. Theorem 3.5.3 shows
that the maximum of a continuous quasiconvex function over a compact
polyhedral set occurs at an extreme point,

3.5.3 Theorem

Let S be a nonempty compact polyhedral set in R”, and let £ R® — R be
quasiconvex and continuous on S. Consider the problem to maximize f(x) sub-

ject to X € S. Then an optimal solution X to the problem exists, where X is an
extreme point of S.

Proof

Note that f is continuous on § and hence attains a maximum, say, at
x' € §. If there is an extreme point whose objective is equal to f(x"), the result is
at hand. Otherwise, let x;,...,x, be the extreme points of S, and assume that
S(x)> f(x;) forj=1,..., k By Theorem 2.6.7, x" can be represented as

k
J=l
k
j=I
i, 20, j= Lok

o

Since f(x")> f(x,) foreach j, then
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f(x') > max f(x;}=a. (3.23)
1< j<k

Now, consider the set S, ={x: f(x)<a}. Note that x ; € S, forj=1,..,

k, and by the quasiconvexity of f, S, is convex. Hence, x' = fo:;;v"; belongs
to S, . This implies that f{(x') <, which contradicts (3.23). This contradiction
shows that f(x) = f(x;) for some extreme point x ;, and the proof is complete.

The following theorem gives a necessary and sufficient characterization of a
differentiable quasiconvex function. (See Appendix B for a second-order char-
acterization in terms of bordered Hessian determinants.)

3.5.4 Theorem

Let S be a nonempty open convex set in R”, and let £ S - R be differentiable on
S. Then f is quasiconvex if and only if either one of the following equivalent
statements holds true;

I, Ifx;, X, €8 and f(x;)< f(Xy), VA(x3) (x;—x;3)<0.
2. Ifx;, X, €8 and VA(x) (x; —X3) >0, f(X;)> f(X5).

Proof

Obviously, statements | and 2 are equivalent. We shall prove Part }. Let f
be quasiconvex, and let x,, X, € S be such that f(x;) < f(x,). By the differ-

entiability of /at x,, for 4 € (0, 1), we have

T ==

FIAX; + (1= D)%5 )~ f(Xp) = AV (X)) (X; —Xp) + A{X; — X [|@[X55A(X; = X2)),

where a[x,; A(x; —x,)] >0 as 4 — 0. By the quasiconvexity of f, we have
SIAx; + (1-24)x, )< f(X,), and hence the above equation implies that

AVE(x3) (%) — X2)+ Ax; — X, [lalxo; A(x; —x3)1< 0.

Dividing by A and letting 1 — 0, we get Vf(x,) (x; ~X5)<0.

Conversely, suppose that Xx;, X, € § and that f(x;)< f(x;). We need to
show that given Part 1, we have f[Ax; +{1-A)x,]< f(x,) foreach 1 € (0, 1).
We do this by showing that the set

L={x:x=Ax; +(1-A)x5, A1 (0,1), £(X) > f(X3)}
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is empty. By contradiction, suppose that there exists an x’€ L. Therefore, x' =
Ax; +(1-A)x, for some A € (0, 1} and f(x) > f(x,). Since f'is differentiable,

it is continuous, and there must exista & € (0, 1) such that
Slux' + (1~ x5 ] > f(x3) for each i€ [4,1] (324)

and f(x')> fI6x'+(1-68)x,]. By this inequality and the mean value theorem,
we must have

0< f(x)— fI6X + (1-8)X,y] = (1- VAR (X' — X5), (3.25)

where X = ax’ +(1 - j1)x, for some f € (6,1). From (3.24) it is clear that f(Xx) >

f(x5). Dividing (3.25) by 1 - & > 0, it follows that Vf (&) (x'—x,)> 0, which
in turn implies that

V&) (x; -%5) >0. (3.26)

..+ n th
i L
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X, and x,, say X = ﬂ:xl +(l~j,)x2, where 4 €(0,1). By the assumption of the

theorem, V/ (%) (x; —%) < 0, and thus we must have

02 VA& (x -%) =1~ DVFE) (%, - X,).

The above inequality is not compatible with (3.26). Therefore, L is empty, and
the proof is complete.

3

To illustrate Theorem 3.5.4, let f{x)=x". To check its

>
inX R I LI LFi MrAER B | A M AW

auasiconvexitv
quasiconvexit v,

suppose that f(x;) < f(x,), that is, xf‘ Sx%. This is true only if x; <x,. Now
consider Vf(x; )(x;—x)=3(x —xz)x;:f. Since x;<x;, 3(x —xz)xg < 0
Therefore, f{x;) < f{x;) implies that Vf(x;)(x; —x;) <0, and by the theorem
we have that f'is quasiconvex. As another illustration, let f{x;, xp) = X+ x3.
Let x; =(2,-2) and x, =(1,0)'. Note that f(x;)=0 and f(x,)=1, so that
f(x;) < f(x5). But on the other hand, V£(x,) (X, —X;) = (3,0)(1,-2) =3. By
the necessary part of the theorem, f'is not quasiconvex. This also shows that the
sum of two quasiconvex functions is not necessarily quasiconvex.

Strictly Quasiconvex Functions

Strictly quasiconvex and strictly quasiconcave functions are especially important
in nonlinear programming because they ensure that a local minimum and a local
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maximum over a convex set are, respectively, a global minimum and a global
maximum.

3.5.5 Definition

Let/: S R, where S is a nonempty convex set in R”. The function f is said to
be strictly quasiconvex if for each x;, x, € § with f(x;) # f(x,), we have

SIAx; +(1- )x5 ] < max{ f(x;), f(x5)} for each 4 € (0, 1).

Thp function f IQ r‘ﬂl!pd t‘fl'l/"f]‘l} ouasiconcove if _._f is gtric t}
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Strictly quasiconvex functions are also sometimes referred to
quasiconvex, functionally convex, or explicitly guasiconvex.

Note from Definition 3.5.5 that every convex function is strictly
quasiconvex. Figure 3.11 gives examples of strictly quasiconvex and strictly
quasiconcave functions. Also, the definition precludes any “flat spots” from
occurring anywhere except at extremizing points. This i1s formalized by the
following theorem, which shows that a local minimum of a strictly quasiconvex
function over a convex set is also a global minimum. This property is not
enjoyed by quasiconvex functions, as seen in Figure 3.10a.

AanacicOnya’y
ud l raL ¥ WAL
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J
as semi-strictly

3.5.6 Theorem

Let £ R" — R be strictly quasiconvex. Consider the problem to minimize f(x)

subject to x € §, where S is a nonempty convex set in R”. If X is a local optimal
solution, X is also a global optimal solution.

Proof

Assume, on the contrary, that there exists an X € § with f(X) < f(X). By
the convexity of S, AX+{(1-A)x € § for each 4 € (0, 1). Since X is a local mini-
mum by assumption, f(X) < f[AXx+{1- 4)X] for all A €(0, ) and for some & €

VAV

(a)

Figure 3.11 Strictly quasiconvex and strictly quasiconcave functions: (a)
qfrwﬂv auakiconvex. {b\ strictlv auasiconvey, fr-\ strictlv guasiconcave, {4
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nelther strictly quasiconvex nor quasiconcave.
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(0, 1). But because f is strictly quasiconvex and f(%)< f(X), we have that
fIA% + (1-A)X) < f(X) for each A € (0, 1). This contradicts the local optimality
of X, and the proof is complete.

As seen from Definition 3.1.1, every strictly convex function is indeed a
convex function. But every strictly quasiconvex function is not quasiconvex. To
illustrate, consider the following function given by Karamardian [1967):

1 ifx=0

f(x)_{o if x #0.

By Definition 3.5.5, fis strictly quasiconvex. However, / is not quasiconvex,
since for x; = 1 and x, = =}, f(x)=/(xy) = 0, but f[(1/2)x; +(1/2)x;] =
f(@) =1> f(x). If fis lower semicontinuous, however, then as shown below,

strict quasiconvexity implies quasiconvexity, as one would usually expect from
the word strict. (For a definition of lower semicontinuity, refer to Appendix A.)

3.5.7 Lemma

Let S be a nonempty convex set in R” and let £ S — R be strictly quasiconvex
and lower semicontinuous. Then fis quasiconvex.

Proof

Let x; and x, € S. If f(x,)# f(x;), then by the strict quasiconvexity of
£, we must have f[Ax, +(1- A)X,] < max{f(x,), f(X,)} for each 1 € (0, I).
Now, suppose that f(x,)= f(x;). To show that f is quasiconvex, we need to
show that ffAx; + (1 - A2)x,] < f(x;) for each A € (0, }). By contradiction, sup-
pose that f[ux, + {1 - u)X,]> f(x,) for some u € (0, 1). Denote ux; +(1- )X,
by x. Since f'is lower semicontinuous, there exists a A € (0, 1) such that

J(x) > fIAxy +{(1-)x] > f(x)) = f(x3)- (3.27)

Note that x can be represented as a convex combination of Ax; +(1—-4)x and x,.
Hence, by the strict quasiconvexity of fand since f{Ax; +(1-2)x] > f(x,), we
have f(x) < f[Ax, + (1 - A)x], contradicting (3.27). This completes the proof.

Strongly Quasiconvex Functions

From Theorem 3.5.6 it followed that a local minimum of a strictly quasiconvex
function over a convex set is also a global optimal solution. However, strict
quasiconveXity does not assert uniqueness of the global optimal solution. We
shall define here another version of quasiconvexity, called strong
quasiconvexity, which assures uniqueness of the global minimum when it exists.
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3.5.8 Definition

Let S be a nonempty convex set in R”, and let £ § - R. The function f'is said to
be strongly quasiconvex if for each x;, x; € §, with x; # x5, we have

SIAX +(1- x5 ] < max{f(x;), f(x; )}

for each A € (0, 1). The function fis said to be strongly quasiconcave if -f is
strongly quasiconvex. {We caution the reader that such a function is sometimes
referred to in the literature as being strictly quasiconvex, whereas a function
satisfying Definition 3.5.5 is called semi-strictly quasiconvex. This is done
because of Karamardian’s example given above and Property 3 below.)

From Definition 3.5.8 and from Definitions 3.1.1, 3.5.1, and 3.5.5, the

following statements hold true:

I.  Every strictly convex function is strongly quasiconvex.

2. Every strongly quasiconvex function is strictly quasiconvex.

3.  Every strongly quasiconvex function is quasiconvex even in the
absence of any semicontinuity assumption.

Figure 3.1la illustrates a case where the function is both strongly
quasiconvex and strictly quasiconvex, whereas the function represented in
Figure 3.114 is strictly quasiconvex but not strongly quasiconvex. The key to
strong quasiconvexity is that it enforces strict unimodality (see Exercise 3.58).
This leads to the following property.

3.5.9 Theorem

Let £ R" — R be strongly quasiconvex. Consider the problem to minimize f(x)
subject to X € S, where S is a nonempty convex set in R”. If X is a local optimal
solution, X is the unique global optimal solution.

Proof

Since X is a local optimal solution, there exists an &-neighborhood N_(X)
around x such that f(X)< f(x) for all xeSN.(X). Suppose, by
contradiction to the conclusion of the theorem, that there exists a point X € S
such that X # x and f(X) < f(X). By strong quasiconvexity it follows that

SIAx + (1= )x] < max{ f(X), f(X)} = f(X)
forall A € (0, 1). But for A small enough, Ax+(1-1)X e S "N (X), so that the

above inequality violates the local optimality of X. This completes the proof.

Pseudoconvex Functions

The astute reader might already have observed that differentiable strongly (or
strictly) quasiconvex functions do not share the particular property of convex
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functions, which says that if V/(X) =0 at some point X, X is a global minimum
of £ Figure 3.12¢ illustrates this fact. This motivates the definition of
pseudoconvex functions that share this important property with convex
functions, and leads to a generalization of various derivative-based optimality
conditions.

Let S be a nonempty open set in R”, and let £ § — R be differentiable on S. The

function f is said to be pseudoconvex if for each x;, x, € § with V/(x;)

(x, —x,)20, we have f(x;)2= f(x;); or equivalently, if f(x,)< f(x,),
V7 (x,) (x; ~%,)<0. The function f is said to be pseudoconcave if —f

pseudoconvex.
The function f is said to be strictly psendoconvex if for each distinct x,,

x, €8 satisfying V/(x,) (x, - x;) 2 0, we have f(x;)2 f(x,); or equivalently,

if for each distinct X, X, € S, f(X;) < f(x;) implies that V/(x,) (X, —x,;) <0.
The function fis said to be strictly pseudoconcave if -f is strictly pseudoconvex.

Eln sra 2 1V ithictratas o neandannnuvar Hmetinn Treane tha dafimitinn Af
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pseudoconvexity it is clear that if V/(X) = 8 at any point X, f(x) = f(X) for all
X; 50 X is a global minimum for . Hence, the function in Figure 3.12¢ is neither
pseudoconvex nor pseudoconcave. In fact, the definition asserts that if the
directional derivative of f at any point x; in the direction (x,-X;) 1is

nonnegative, the function values are nondecreasing in that direction (see
Exercise 3.69). Furthermore, observe that the pseudoconvex functions shown in
Figure 3.12 are also strictly quasiconvex, which is true in general, as shown by
Theorem 3.5.11. The reader may note that the function in Figure 3.8¢ is not
pseudoconvex, yet it is strictly quasiconvex.

k_ Inflection

point

(a) (b) ()

Figure 3.12 Pseudoconvex and pseudoconcave functions: (@) pseudoconvex,
(6) both pseudoconvex and pseudoconcave, (¢) neither pseudoconvex nor
ncmldm‘nnoave
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3.5.11 Theorem

Let S be a nonempty open convex setin R", and let /- S — R be a differentiable
pseudoconvex function on S. Then fis both strictly quasiconvex and quasiconvex.

Proof

olinys: thhot £330 ol sl ,.n:.-.n . w [ t—h t
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there exist X;, X, € § such that f(x;) = f{x,) an ( ) max{ f(x;), f(x3)},
where x' = Ax; + (1 - A)x, for some 4 € (0, 1). Without loss of generality, assume

that f(x,) < f(x,), so that

el s
asl

J(x)2 f(x9) > f(xy). (3.28)

Note, by the pseudoconvexity of /£, that V/(x") (x; —X) < 0. Now since Vf(x')’
(%, —x)<0 and X, —x"=—(1-A)x, ~x")/ 4, Vf(x)' (x;—x") >0; and hence,
by the pseudoconvexity of /, we must have f(x,)2 f{(x). Therefore, by (3.28),
we get f(X,)= f(x"). Also, since Vf{x')'(x,—X)>0, there exists a point
X = pux"+{}— u)x, with g € (0, 1) such that

JX)> f(x)= f(x3).

Again, by the pseudoconvexity of f, we have Vf(X)'(x, —%)<0. Similarly,

V/(X) (x' - %) < 0. Summarizing, we must have
VA(R) (x, - %) <0

Vr(R) (x' —%)<0.

Note that x, — X = u(X ~x")/(1— u), and hence the above two inequalities are not

compatible. This contradiction shows that fis strictly quasiconvex. By Lemma
3.5.7, then fis also quasiconvex, and the proof is complete.

In Theorem 3.5.12 we see that every strictly pseudoconvex function is
strongly quasiconvex.

3.5.12 Theorem

Let S be a nonempty open convex set in R”, and let £ S — R be a differentiable
strictly pseudoconvex function. Then fis strongly quasiconvex,

Proof
By contradiction, suppose that there exist distinct x;, X, € § and 4 € (0,
1) such that f(x) 2 max{f(x,), f(x,)}, where x = AX; +(1—- 4)x,. Since f(x;)
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< f(x), we have, by the strict pseudoconvexity of , that V/(x)'(x; —x) < 0 and
hence

V7 (x) (X, —x5) < 0. (3.29)
Similarly, since f{x,)< f(x), we have

VF(x) (x, - x,) <0. (3.30)

The two inequalities (3.29) and (3.30) are not compatible, and hence f is
strongly quasiconvex. This completes the proof.

We remark here in connection with Theorems 3.5.11 and 3.5.12, for the
special case in which f is quadratic, that f is pseudoconvex if and only if fis
strictly quasiconvex, which holds true if and only if fis quasiconvex. Moreover,
we also have that f is strictly pseudoconvex if and only if / is strongly
quasiconvex. Hence, all these properties become equivalent to each other for
quadratic functions (see Exercise 3.55). Also, Appendix B provides a bordered
Hessian determinant characterization for checking the pseudoconvexity and the
strict pseudoconvexity of quadratic functions.

Thus far we have discussed various types of convexity and concavity.
Figure 3.13 summarizes the implications among these types of convexity, These
implications either follow from the definitions or from the various results proved
in this section. A similar figure can be constructed for the concave case.

——  Strictly
convex

-
- Convex
Under differentiability
- " 1lnderi | diffarantiahi1iy
blﬂc"y LAiRELe Lo o Tiia] ¥
pseudocomex

Pseuwdoconvex

\‘/

j Strongly
guasiconvex

I

Strictly
quasiconvex

Lnder tower

\

Figure 3.13 Relationship among various types of convexity.
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Convexity at a Point

Another useful concept in optimization is the notion of convexity or concavity at
a point. In some cases the requirement of a convex or concave function may be
too strong and really not essential. Instead, convexity or concavity at a point
may be all that is needed.

3.5.13 Definition

Let S be a2 nonempty convex set in R”, and let £ § — R The following are
relaxations of various forms of convexity presented in this chapter:

Convexity at X. The function fis said to be convex at x € Sif
FIAX+(1-ARX] <A/ (X)) +(1-A) f(x)
for each A € (0, 1)and eachx € §.

Strict convexity ar X. The function fis said to be strictly convex at X € §if
SIAZ+(1-)x] < A (B + (1= 2) (%)
for each A € (0, 1)and foreachx € S, x = X.

Quasiconvexity at X . The function fis said to be quasiconvex at X € S'if
FIAR + (1= A)x] € max{ £(x), (R0}
foreach 4 € (0, 1) and each x € S.

Strict quasiconvexity at X. The function 1is said to be strictly quasiconvex at X €
S if

SIAX + (1= A)x] < max{/f(x), f (X)}

for each A € (0, 1) and each x € S such that f(x) # F(X).

Strong quasiconvexity atX . The function f is said to be strongly quasiconvex at
x eSif

fIAX+(1 = A)x] <max{f(x), f(X)}

for each A €(0,1) andeachx € §, x # x.

Pseudoconvexity at X. The function / is said to be pseudoconvex at x € S if
VA(X) (x~X) > 0 for x € S implies that 7(x)> £(X).

Strict pseudoconvexity at X. The function £ is said to be strictly pseudoconvex at
X € SIfVAX)Y (x-X)=0forx € S, x #X, implies that f(x) > f(¥).
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Various types of concavity at a point can be stated in a similar fashion.
Figure 3.14 shows some types of convexity at a point. As the figure suggests,
these types of convexity at a point represent a significant relaxation of the
concept of convexity.

S
I
1
_ T
X2 A
(&)
f
}
l _
i !
x2 xl
(b}
[
Y {
| |
| |
| 5 ‘
| | I
| ! !
. f R 1
)Cz JCl JC3

(c)

Figure 3.14 Various types of convexity at a point. () Convexity and strict
convexity: /is convex but not strictly convex at x;; fis both convex and strictly

convex at x,. () Pseudoconvexity and strict pseudoconvexity: f is pseudoconvex
but not strictly pseudoconvex at x;; f'is both pseudoconvex and strictly pseudo-
convex at x,. (¢) Quasiconvexity, strict quasiconvexity, and strong quasicon~

vexity: f is quasiconvex but neither strictly quasiconvex nor strongly
quasiconvex at x;; f'is both quasiconvex and strictly quasiconvex at x, but not

strongly quasiconvex at x,; fis quasiconvex, strictly quasiconvex, and strongly

quasiconvex at x;.
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We specify below some important results related to convexity of a

function f at a point, where £ § — R and S is a nonempty convex set in R”. Of
course, not all the results developed throughout this chapter hold true. However,
several of these results hold true and are summarized below. The proofs are
similar to the corresponding theorems in this chapter.

1.

Exercises

Let f be both convex and differentiable at X. Then f(x) > f(X)

+ VA(X) (x-X) for each x € §. If / is strictly convex, strict
inequality holds for x = X.

Let / be both convex and twice differentiabie at X. Then the
Hessian matrix H(X) is positive semidefinite.

Let /' be convex at x € §, and let X be an optimal solution to the
problem to minimize /(x) subject to x € S. Then X is a global

optimal solution.
Let fbe convex and differentiable at X € S. Then X is an optimal
solution to the problem to minimize f(x) subject to x € § if and

only if V/(X) (x-X) >0 for each x € S. in particular, if X € int
S, X 1s an optimal solution if and only if Vf(x) = 0.

Let f be convex and differentiable at X € S. Suppose that X is an
optimal solution to the problem to maximize f(x) subjectto x €

S. Then V/(x)/ (x—X) <0 for each x € §.
Let /' be both quasiconvex and differentiable at X, and let x € S
be such that f(x) < f(X). Then Vf(X)' (x -X) < 0.

Suppose that X is a local optimal solution to the problem to
minimize f(x) subject to x € S. 1if fis strictly quasiconvex at X,

x is a global optimal solution. If /is strongly quasiconvex at X, X
is the unique giobal optimal soiution.

Consider the problem to minimize f(x) subject to x € S, and let
X € S be such that V/(x)=0. If f is pseudoconvex at X, X is a

global optimal solution; and if /is strictly pseudoconvex at X, X
is the unique global optimal solution.

[3.1) Which of the following functions is convex, concave, or neither? Why?

a.
b.

N

fxq,x )=2x2 —4x1xy —8x; +3x

12 I 1+2 I 2

Fx, %)= xle-'(xl-+3x2)
f(xl,xz)z—xlz—Sx%+4x1x2 +10x; —10x,

F(xp,x0,x3) =2x%5 + 2x12 + x;% + 2x32 —5x;x3
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e. [f(x,xy,%x3)= —2xl2 ~ 3x§ ~2x32 +8x;xy + 3xx3 + 4%, X3

b
[3-2] Over what subset of {x:x >0} is the univariate function f(x)=¢ * con-
vex, wherea > Q0 and 6> 17
[3.3] Prove or disprove concavity of the following function defined over § =

U x,Y"=-1<x, (1—1(}'«(“
IR S Rl =] =

£ (%) =10-30xy - x7 )7
Repeat for a convex set § C {(x},x;): x];‘z =X}

[3.4] Over what domain is the function f(x)= xz(x2 —1) convex? Is it strictly
convex over the region(s) specified? Justify your answer.
[3.5] Show that a function £ R" — R is affine if and only if f'is both convex and

concave. [A function £ is affine if it is of the form f(x) = +¢€'x, where a is a
scalar and ¢ is an n-vector.]

[3.6] Let S be a nonempty convex set in R", and let 7 § — R. Show that /'is
Frm mwnzs mewawm L Y dlea Em bl v lialde gaeenn o - P o
CONyex |.l. d,uu Ul“.)’ ll i d”y IIILCECI A 4L, UG 10HOW “. 5 U Uy L LG, XI TN A‘k =

implies that f(2§=lijxj-)_z )jf(x -), where ZJ Ai=14,20frj=1.,
k.

[3.7] Let S be a nonempty convex set in R”, and let £ § —> R. Show that /' is
concave if and only if hyp f'is convex.

[3.8] Let f;, /5,... fz= R" —» R be convex functions. Consider the function f
defined by f(x)=X%_;&, f;(x), where &; > 0 for j = 1, 2,..., k. Show that /s
convex. State and prove a similar result for concave functions.

[3.9] Let £, f5.... fz: R" — R be convex functions. Consider the function f

defined by f(x) = max{f;(x), fo(x),..., f; (x)}. Show that f'is convex. State and
prove a similar result for concave functions.

[3.10] Let 2: R" — R be a convex function, and let g: R —> R be a nondecreasing

convex function. Consider the composite function £ R” —» R defined by f(x) =
glh(x)]. Show that f'is convex.

[3.11] Let g2 R” — R be a concave function, and let / be defined by f(x) =
1/g(x). Show that f is convex over S = {x: g(x) > 0}. State a symmetric result
interchanging the convex and concave functions.

[3.12] Let S be a nonempty convex set in R”, and let £ R” — R be defined as
follows:
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f(y) =inffly-x|:x € S}.

Note that f(y) gives the distance from y to the set S and is called the distance
Sfunction. Prove that f'is convex.

13.13] Let § = {(x

5
Evarnica 2 17 A
EACTVIOL 5,14, iU L

X)X + x5 <4}. Let [ be the distance function defined in
ha ~t
L]

[3.14] Let S be a nonempty, bounded convex set in R", and let £ R" — R be
defined as follows:

f(y)=sup{y'x:x € §}.
The function f'is called the support function of S. Prove that fis convex. Also,
show that if /(y)=y'X, where X € §, X is a subgradient of fat y.
[3.15] Let S = AU B, where

A={(x),%,):% <0,x7 +x5 <4}
Find the support function defined in Exercise 3.14 explicitly.

[3.16] Let g R™ — R be a convex function, and let h: R” — R™ be an affine
function of the form h(x) = Ax + b, where A is an m x n matrix and b is an m x

I vector. Then show that the composite function £ R" —» R defined as f(x) =

gih(x)] is a convex function. Also, assuming twice differentiability of g, derive
an expression for the Hessian of £.

[3.17] Let F be a cumulative distribution function for a random variable 4, that
is, F(y)=Prob(b < y). Show that ¢(z) = rMF (y) dv is a convex function. Is ¢
convex for any nondecreasing function F?

[3.18] A function £; R” — R is called a gauge function if it satisfies the follow-

ing equality;
fAX)=Af(x) forali xe R” andall 1> 0.

Further, a gauge function is said to be subadditive If it satisfies the following
inequality:

F(X)+ f(y)z f(x+y) forallx, y e R”.

Prove that subadditivity is equivalent to convexity of gauge functions.
[3.19] Letf: S — R be defined as



150 Chaprer 3

(nt’tx)2
B'x

where S is a convex subset of R”, @ and g are vectors in R”, and where #'x >0

f(x)=

for all x € S. Derive an explicit expression for the Hessian of £, and hence verify
that f'is convex over S.

w s

[3.20] Consider a quadratic function £ R” —» R and suppose that fis convex on
S, where S is a nonempty convex set in 7. Show that:

a. The function fis convex on M(S), where M(S) is the affine manifold

containing S defined by M(S)z{y:yzzfj‘.:l;l X zlezj = 1,
x, €S forallj, for k= 1}.

b. The function f is convex on L(S), the /inear subspace parallel to
M(S), defined by L(8)={y-x:y € M(S) and x € §}. (This result
is credited to Cottle [1967].)

[3.21] Let h: R” — R be convex, and let A be an m % n matrix. Consider the
function A: R™ —» R defined as follows:

h(y) = inf{f(x): Ax = y}.
Show that 4 is convex.

[3.22] Let S be a nonempty convex set in R”, and let £ R” — R and g:

R" - R™ be convex. Consider the perturbation function ¢: R™ -» R defined
below:

#(y) =inf{f(x):g(x) <y,x € S}.

a. Provethat ¢ is convex.
b. Showthatif y; <y,, #(y;)2d(y;y)

n

' 221 T & &2 I v 3l lassrme g emnwomo- Ol mwwr dL b bl o T, ¥ o
I_J.LJI L.tb J. n =7 UL TUWEL SUIIIWGUILITTIUDUS. SOV LIldal LG EEYEY 5

{x: f(x)<a} isclosed forall o € R.

{3.24] Let f be a convex function on R". Prove that the set of subgradients of f
at a given point forms a closed convex set.

[3.25] Let £ R” — R be convex. Show that £ is a subgradient of f at X if and

only if the hyperplane {(x,y):y = f(X)+& (x~X)} supports epi fat [¥, £(3)].
State and prove a similar result for concave functions.

[3.26] Letf R" — R be defined by f(x) = [x|. Prove that subgradients of f are
characterized as follows: If x = 0, £ is a subgradient of f at x if and only if
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|&] < 1. On the other hand, if x # 0, £ is a subgradient of fat x if and only if

€[ =1and &'x = x| Use this result to show that f is differentiable at each x = 0,
and characterize the gradient vector.

[3.27] Let f;, f5: R" = R be differentiable convex functions. Consider the

fitnotion rt’lnﬁﬂed bv fileY=mavifivy (vl T at v ha crirh that F(¥Y =
nnnnnnnnnn w 0¥ JA\X) HIGA U JJUR ) f2UA ). LAL A UL sulil idh i a)

fi(X)= £, (X). Show that £ is a subgradient of fat X ifand only if
&= AV + (1- DV (X), where 1 € [0, 1].

Generalize the result to several convex functions and state a similar result for
concave functions.

[3.28] Consider the function ¢ defined by the following optimization problem
for any u > 0, where X is a compact polyhedral set.
H(u) =~ Minimize ¢'x + u' (Ax-b)
subject to x € X,

a. Show that ¢ is concave.
b. Characterize the subgradients of & at any given u.

[3.29] In reference to Exercise 3.28, find the function 6 explicitly and describe
the set of subgradients at each point u > ¢ if

3 2] 6 -1
A= . b= . ¢=

-1 2 4 -2
X ={(x,x):0<x, <3/2, 0<x;, £3/2}.

[3.30] Consider the function @defined by the following optimization problem:
6Gy , 1) = Minimize x;(2—1)+ %, (3~uy)

subject to x{ +x3 < 4.

a. Show that & is concave.
b. Evaluate @ at the point (2, 3).
c. Find the collection of subgradients of & at (2, 3).

[3.31] Let f; § — R, where S ¢ R" is a nonempty convex set. Then the convex
envelope of f over §, denoted f5(x), x € S, is a convex function such that f¢(x)
< f(x) for all x € S; and if g is any other convex function for which g(x) <
f(x) for all x € S, f5(x)>g(x) for all x € S. Hence f5 is the pointwise
supremum over all convex underestimators of f over S. Show that min{ f(x): x
€ S} = min{ f(x): x € S}, assuming that the minima exist, and that
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x"eS: f(x")< f(x) forallx ¢ S}
c{x" €8: fg(x)< fy(x) forall x € S}.

[3-32] Let £ S — R be a concave function, where S ¢ R” is a nonempty poly-
tope with vertices x,...,x. Show that the convex envelope (see Exercise 3.31)
of fover S'is given by

Hence, show that if S is a simplex in R”, fg is an affine function that attains the

same values as f over all the vertices of S. (This result is due to Falk and
Hoffman [1976].)

[3.33] Let£ S > R and f5: § — R be as defined in Exercise 3.3}, Show that
if fis continuous, the epigraph {(x,y):y2 fs(x), x€8§, ye R} of f5 over S

1s the closure of the convex hull of the epigraph {(x,y):y= f(x), x€ 8§,

e BY oAaffavar © live an ava
FOEOIL WL UYL 0 YL AL bAaGiLlLp

£ Chwl 10T T sl
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not necessarily closed.

[3.34] Let f(x,y)=xy be a bivariate bilinear function, and let S be a polytope

in R? having no edge with a finite, positive slope. Define A = {(«, B,7) < R:
ax, + fy,+y<x,y for k=1, ., K}, where (x;,y;), =1, ..., K, are the
vertices of S. Referring to Exercise 3.31, show that if § 1s two-dimensional, the
set of extreme points (&, 5,.7.), € = 1, .., F, of A is nonempty and that
fo(x,y) = max{a,x+ B,y +y.,e=1,.. E}. On the other hand, if S is one-
dimensiona} and given by the convex hull of (x;,y,) and (x,,y;), show that
there exists a solution (&, 5,7;) to the system ax;, + Sy, +y =x,y, for k=
1, 2, and in this case, fs(x,y)=a;x+ ¥y +;. Specialize this result to verify
that if S={(x,y):a<x<bh c<y<d}, where a < b and ¢ < d, then
Sfs(x,¥)= max{dx + by -bd, cx+ay-ac}. (This result is due to Sherali and
Alameddine [1990].)

[3.35] Consider a triangle S having vertices (0, 1), (2, 0), and (1, 2) and let
f(x,¥)=2xy be a bivariate, bilinear function. Show that the convex envelope

fs of fover S (see Exercise 3.31) is given by

2
j_ Lo
fo(x,¥) = Y 2-x+y

0 for (x, ) = (2,0)

for (x, y) #(2,0) for (x. v) € S.
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Can you generalize your approach to finding the convex envelope of f over a
triangle having a single edge that has a finite, positive siope? (This result is due
to Sherali and Alameddine [1990).)

[3.36] Letf: R" — R be a differentiable function. Show that the gradient vector
is given by

(x Fx  FY
Vf(x)—L ™ J .

[3.37] Letf/ R" —» R, be a differentiable function. The /inear approximation of
fatagiven point X is given by

S+ X (x-).

If /is twice differentiable at x, the quadratic approximation of fat X is given
by

f(i)wf(i)‘(x—i)+%(x—i)*H(‘x-)(x-i).

Let f(x,,x2)=e2xf'xi —3x; + 5x,. Give the linear and quadratic

approximations of f at (1, 1). Are these approximations convex, concave, Or
neither? Why?

[3.38] Consider the function £ R" —» R, and suppose that f is infinitely
differentiable. Then show that fis strictly convex if and only if for each x and d

in R", the first nonzero derivative term of order greater than or equal to 2 in the
Taylor series expansion exists, is of even order, and is positive.

[3-39] Consider the function f. R > R, given by f(x)=x'Ax, where

2 2 3
A=] 3 1
b2 8]

What is the Hessian of /? For what values of & is f'strictly convex?

[3.40] Consider the function [f(x)= x°, defined over the set
S ={xe R:x 20} . Show that /s strictly convex over S. Noting that f“(0)=0
and f™(0) =6, comment on the application of Theorem 3.3.9.

[3.41] Let H be an » x n symmetric, positive semidefinite matrix, and suppose
that xX'Hx =0 for some x € R”. Then show that Hx = 0. (Hint: Consider the

diagonal of the quadratic form x’Hx via the transformation x = Qy, where the
g q a y
tors of H.)

g Al o o

columns of @ are the normalized eigenvect
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[3.42] Llet H be an n x »n symmetric matrix. Using the eigenvalue
characterization of definiteness, verify that H is positive definite if and only if it
is positive semidefinite and nonsingular.

[3.43] Suppose that H is an n x » symmetric matrix. Show how Theorem 3.3.12
demonstrates that H is positive definite if and only if it can be premultiplied by a
series of » lower triangular Gauss—Jordan reduction matrices L;,...,L,, to yield

- It o ibiesa S 1 aloseowto

matrix U with positive diagonal elements. (Letting
L'=L, L;, we obtain H= LU, where L is lower triangular. This is known
as the LU-decomposition of H; see Appendix A.2.) Furthermore, show that H is
positive definite if and only if there exists a lower triangular matrix L with
positive diagonal elements such that H=LL'. (This is known as the Cholesky

Jactorization of H; see Appendix A.2.)

{3.44] Suppose that S+ is closed and convex. Let £ S—-> R be

differentiable on int S. State if the following are true or false, justifying your
answer:

a. If fis convex on S, f(x)2 f(X)+V/(X)'(x-X) for all xe8§,
X €int S.
b. If f(x)2f(X)+Vf(X)(x-X) for all xeS and XcintS, fis

convex on S.
[3.45) Consider the following problem:

Minimize (x; —4)2 + (X —6)2
subject to xy > xiz
X2 <4,
Write a necessary condition for optimality and verify that it is satisfied by the
point (2, 4). Is this the optimal point? Why?
[3.46] Use Theorem 3.4.3 to prove that every local minimum of a convex

function over a convex set is also a global minimum.
[3.47] Consider the problem to minimize {f(x):x €S} and suppose that there

exists an £> 0 such that N_(X)S is a convex set and that f(X) < f(x) for al}
xe N .(X)S.
a. Show that if H(X) is positive defimte, X is both a strict and a

strong local minimum.
b. Show that if X is a strict local minimum and / is pseudoconvex on

N_(X)NS, X is also a strong local minimum.
[3.48] Letf: R™ — R be a convex function, and suppose that f(x+ Ad) > f(x)
for all 1€(0,5), where & >0. Show that f(x+Ad) is a nondecreasing
function of A. In particular, show that f(x + Ad) is a strictly increasing function

of A if f1s strictly convex.
[3.49] Consider the following problem:
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. . ]
Maximize ¢'x + —x'Hx
subjectto Ax < b

x =0,

where H is a symmetric negative definite matrix, A i1s an m * » matrix, ¢ is an n-
vector, and b is an m-vector. Write the necessary and sufficient condition for
optimality of Theorem 3.4.3, and simplify it using the special structure of this

problem.
T £l N Aancidar tha meahlam A Minimioa £f{ewY crithia~t tn - = C whara f
[=7+?V] LAJLIDIMAL LWL PLVUIGLLL W LA f \A} QUUJU\.;L WA T Y, WwWilkib

R" - R is a differentiable convex function and S is a nonempty convex set in

R" . Prove that X is an optimal solution if and only if V/(X)'(x-X)20 for

each x € §. State and prove a similar result for the maximization of a concave
function. (This result was proved in the text as Corollary 2 to Theorem 3.4.3. In
this exercise the reader is asked to give a direct proof without resorting to
subgradients.)

[3.51] A vectord is called a direction of descent of fat x if there existsa & >0

such that f(X+ Ad) < f(X) for each A€ (0,8). Suppose that f is convex. Show
that d is a direction of descent if and only if f'(X;d) <0 . Does the result hold
true without the convexity of /7
[3.52] Consider the following problem:
Maximize f(x)
subjectto Ax =Db
x 290,

where A is an m x » matrix with rank m and f'is a differentiable convex function.
Consider the extreme point (x'B,fo) =(b*,0"), where b= B 'b>0 and A =
[B, N]. Decompose V/(x) accordingly into Vg /(x) and Vu f(x). Show that

the necessary condition of Theorem 3.4.6 holds true if V7 (x) -

VBf(x)r B !N <0. If this condition holds, is it necessarily true that x is a local
maximum? Prove or give a counterexample,

If Vy/f(x)-Vzf(x))B'N£0, choose a positive component ;j and

; until 2 new extreme point 1s

reached. Show that this process results in @ new extreme point having a larger
objective value. Does this method guarantee convergence to a global optimal
solution? Prove or give a counterexample.

[3.53] Apply the procedure of Exercise 3.52 to the following problem starting
with the extreme point (1/2, 3, 0, 0):

increase its corresponding nonbasic variable x
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Maximize (x; - 2)° + (x5 — 5)?
subjectto -2x; + x; + x3 =2
2x; +3x + x4 =10
X, Xy, X3, x4 20.

T———

3.54] Consider the problem to minimize f(x) si

1D
’ J

R" — R is convex and S is a nonempty convex set in R”. The cone of feasible
directions of Sat x € § is defined by

D=1{d :thereexistsa § >0 suchthat x+ Ade S for 1€(0,5)}.

Show that X is an optimal solution to the problem ifand only if /'(x;d) >0 for
each d € D . Compare this result with the necessary and sufficient condition of

Theorem 3.4.3. Specialize the result to the case where S = R”.

[3.55] Let/: R" — R be a quadratic function. Show that f'is quasiconvex if and
only if it is strictly quasiconvex, which holds true if and onmly if it is
pseudoconvex. Furthermore, show that fis strongly quasiconvex if and only if it
is strictly pseudoconvex .

[3.56] Let ix R" > R be a quasiconvex function, and let g&¢ R—> R be a
nondecreasing function. Then show that the composite function 1 R" —» R
defined as f(x)= g[A(x)] is quasiconvex.

[3.57] Letf: § ¢ R— R be a univariate function, where S is some interval on
the real line. Define f as unimodal on § if there exists an x" € § at which f

attains a minimum and f is nondecreasing on the interval {xe S:x>x"},

whereas it is nonincreasing on the interval {xe S:x<x"}. Assuming that f

attains a minimum on S, show that /' is quasiconvex if and only if it is unimodal
onS.
[3.58] Let /1 § — R be a continuous function, where § is a convex subset of

R". Show that f is quasimonotone if and only if the level surface
{xeS:f(x)=a} isaconvexset forall a e R.
[3.59] Let ff S — R be a differentiable function, where § is an open, convex

subset of R". Show that f'is quasimonotone if and only if for every x; and x,

in S, f(x;)= f(x;) implies that Vf(xz)’(xl ~x3)20 and f(x;)< f(x;5)
implies that V/(x,) (x; —x,)<0. Hence, show that /is quasimonotone if and

only if f(x;)> f(x,) implies that Vf(x;) (x; —x,) >0 forall x; and x, in§
and for all x; = Ax; +(1-1)x,, where 0 <A <1.

e | Ny 1 . L O Loy ol T VA m e e e L e OF o
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c
subset of R". Define fas being strongly unimodal on 8 if for each x| and x, in
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S for which the function F(A)= f[x; +A(xy-x;)), 0<A<1, attains a
minimum at a point A" >0, we have that F(0)> F(A)> F(1*) for all

0 <A< A" Show that fis strongly quasiconvex on S if and only if it is strongly
unimodzl on S (see Exercise 8.10).
[3.61] Letg: S > R and &1 S — R, where S is a nonempty convex set in R".
Consider the function £ § — R defined by f(x)= g(x)/h(x). Show that [ is
quasiconvex if the following two conditions hold true:

a. gisconvexonS and g(x)>0 foreach xeS.

b. hisconcaveonS, and A(x) >0 for each x € S.

(Hint: Use Theorem 3.5.2.)
[3.62] Show that the function f defined in Exercise 3.61 is quasiconvex if the
following two conditions hold true:

a. gisconvexongS, and g(x)<0 foreach x e S.

b. hisconvex on S, and A(x) >0 foreach x e §S.

[3.63] Letg: S -» R and A: S —> R, where S is a nonempty convex set in R”,
Consider the function fi S - R defined by f(x)= g(x)(x). Show that [ is
quas"‘ nvex if the 1unuwing, two conditions hold true:

a. gisconvex, and g(x) <0 for each x e S.

b. his concave, and A(x) >0 foreach xe S.

[3.64] In each of Exercises 3.61, 3.62, and 3.63, show that / is pseudoconvex
provided that S is open and that g and # are differentiable.

[3.65] Let ¢, c, be nonzero vectors in R", and «;, «, be scalars. Let

S = {x:chx +a, > 0}. Consider the function 7:S — R defined as follows:
cix
g = 17“‘?1
JARF T ‘
sz +dy
Show that f is both pseudocomrex and pseudoconcave (Functions that are both

________________ e |
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[3.66] Consider the quadratic function £ R" -» R defined by f(x)= x'Hx.
The function fis said to be positive subdefinite if x'Hx <0 implies that Hx > 0

or Hx <0 for each x € R”. Prove that f is quasiconvex on the nonnegative
orthant, RI ={xe R":x >0} if and only if it is positive subdefinite. (This

result is credited to Martos [1969].)
[3.67] The function # defined in Exercise 3.66 is said to be strictly positive

subdefinite if x'Hx <0 implies that Hx >0 or Hx <0 for each x € R". Prove

‘ﬂwaf {1 noa r'lnr\nnunv nn 'H—n:: nnnnpno‘l‘urﬂ nr‘ﬂwﬂnf av.ﬁ]n!’llnﬂ - = n 1‘Pﬂnr‘ nﬂl I‘F
uut_)v 15 Pavuuuuu VLA UL WAL HUTIVRAUIYC UG VAVIUNLES A Ll dijiva Wilis _)’

it is strictly positive subdefinite. (This result is credited to Martos [1969].)
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[3.68] Let /2 § — R be a continuously differentiable convex function, where §
is some Open interval in R. Then show that f'is (strictly) pseudoconvex if and
only if whenever f'(x)=0 forany x € §, this implies that x is a (strict) local
minimum of fon S. Generalize this result to the multivariate case.

[3.69] Letf S — R be pseudoconvex, and suppose that for some x; and x, in

R", we have Vf(x;)(x,-x,)>0. Show that the function F(i) =

SfIx; + A(x5 —x;)] is nondecreasing for 4 >0.

[3.70] Let £ S - R be a twice differentiable univariate function, where S is
some open interval in R. Then show that f is (strictly) pseudoconvex if and only
if whenever f'(¥)=0 for any x € §, we have that either f"(X)>0 or that

f'(x)=0 and X is a (strict) local minimum of f over S. Generalize this resuit
to the multivariate case.

[3.71] Letf: R" > R” andg: R" > R* be differentiable and convex. Let &
R™% 5 R satisfy the following: If a,>a, and b,2b,, ¢(ay,by) >
#(a;,b;). Consider the function A: R" —» R defined by A(x) = ¢(f(x),8(x)).
Show the following:

a. If ¢isconvex, 4 is convex.
b. If ¢is pseudoconvex, 4 is pseudoconvex.
¢. If ¢is quasiconvex, A is quasiconvex.

{3.72] Let g, g;: R" - R, and let « €[0,1]. Consider the function G, :
R" = R defined as

]
Gy (x)= E[g;(xwr g (x)— \fgf (x)+ g5 (x) - 2 g, (x)g; (x)},

where ' denotes the positive square root.

a. Show that G,(x)2>0 if and only if g,(x)>0 and g,(x) 20, that
is, minimum {g;(x), g2(x)} = 0.

b. If g, and g, are differentiable, show that GG, is differentiable at x
for each a €[0,1) provided that g;(x), g>(x)=0.

c. Now suppose that g, and g, are concave. Show that G, is
concave for a in the interval {0, 1]. Does this result hold true for
ae(-1,0)?

d. Suppose that g; and g, are quasiconcave. Show that G, is
quasiconcave for a = 1.

e. Let gi(x)= ~xt-x3+4 and gy(x)=2x +x,-1. Obtain an
explicit expression for GG, , and verify parts a, b, and c.

This exercise describes a general method for combining two constraints
of the form g,(x) >0 and g,(x)>0 into an equivalent single constraint of the
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form G,(x)>0. This procedure could be applied successively to reduce a

problem with several constraints into an equivalent single constrained problem.
The procedure is due to Rvacev [1963].

[3.73] Let g, g2 R" > R, and let a €[0,1]. Consider the function G, :
R" — R defined by

Gy (x)= %[g;(xh g2(x) + \{gf (x)+ g5(x)~2ag, (X)gz(x)],

where denotes the positive square root.

a. Show that G, (x) >0 ifand only if maximum {g;(x), g,(x)} =0.

b. If g, and g, are differentiable, show that G, 1s differentiable at x
for each a €[0,1), provided that g,(x), g,(x)#0.

c. Now suppose that g; and g, are convex. Show that G, is convex
for e €[0,1}. Does the result hold true for « € (-1,0)?

d. Suppose that g, and g, are quasiconvex. Show that G, is
quasiconvex for a= 1.

In some antimization nrohlemes the ractriction that tha varizhla y» = ()
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or | arises. Show that this restriction is equivalent to maximum
{g(x), g2(x)} 20, where g(x)=-x" and gy(x)=—-(x-1)".
Find the function G, explicitly, and verify statements a, b, and c.
This exercise describes a general method for combining the either-or
constraints of the form g (x)=0 or g,(x)>0 into a single constraint of the
form G, (x) =0, and is due to Rvagev [1963].

3]

Notes and References

In this chapter we deal with the important topic of convex and concave
functions. The recognition of these functions is generally traced to Jensen [1903,
1906]. For earlier related works on the subject, see Hadamard [1893] and Hoélder

f1e001]
Li0o~].

In Section 3.1, several results related to continuity and directional
derivatives of a convex function are presented. In particular, we show that a
convex function is continuous on the interior of the domain. See, for example,

Rockafellar [1970]. Rockafellar also discusses the convex extensionto R" of a
convex function f2 S ¢ R" —» R, which takes on finite values over a convex

subset S of R”, by letting f(x)=o for x ¢ S. Accordingly, a set of arithmetic

operations involving o« also needs to be defined. In this case, S is referred to as
the effective domain of . Also, a proper convex function is then defined as a

ronvey fimetinn for which fivYe o far at leact ane noint v and faor which
WLl Y Wi AblliV%W Wi%Fld LAWFL Frlllw/ll J \A} e [ R F7Y Wk EW T b LN LS l.l\-'ll.lb i Y CElli%WE ANSL Frillwii

f(x) > - for all x.
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In Section 3.2 we discuss subgradients of convex functions. Many of the
properties of differentiable convex functions are retained by replacing the
gradient vector by a subgradient. For this reason, subgradients have been used
frequently in the optimization of nondifferentiable functions. See, for example,
Bertsekas [1975], Demyanov and Pallaschke {1985], Demyanov and Vasilev

[1985], Held and Karp [1970], Held et al. {1974], Kiwiel [1985], Sherali et al.
[2000], Shor [1985], and Wolfe [1976]. (See also, Chapter 8.)

[ Jy wrialSa =LA gy e SOy Sedidlplw

In Sectlon 3.3 we give some properties of dlfferentlable convex functions.
For further study of these topics as well as other properties of convex functions,
refer to Eggleston [1958], Fenchel [1953), Roberts and Varberg [1973], and
Rockafellar [1970]. The superdiagonalization algorithm derived from Theorem
3.3.12 provides an efficient polynomial-time algorithm for checking definiteness
properties of matrices. This method is intimately related with LU and Cholesky
factorization techniques (see Exercise 3.43, and refer to Section A.2, Fletcher
[1985], Luenberger [1973a], and Murty [1983] for further details).

Section 3.4 treats the subject of minima and maxima of convex functions
over convex sets. Robinson [1987] discusses the distinction between strict and
strong local minima. For general functions, the study of minima and maxima is
quite complicated. As shown in Section 3.4, however, every local minimum of a
convex function over a convex set is also a global minimum, and the maximum

AF 2 Anmiray el < Vel - Ao o

O1 @ CONnVeEX I.U.I.ILLIUI.I UVC]. a LUIIVC}( QVL ULLU]Q al.. G[I WALL LI pUl.“l. FUI arn
excellent study of optimization of convex functions, see Rockafellar {1970]. The
characterization of the optimal solution set for convex programs is due to
Mangasarian [1988]. This paper also extends the results given in Section 3.4 to
subdifferentiable convex functions.

In Section 3.5 we examine other classes of functions that are related to
convex functions; namely, quasiconvex and pseudoconvex functions. The class
of quasiconvex functions was first studied by De Finetti {1949]. Arrow and
Enthoven [1961] derived necessary and sufficient conditions for quasiconvexity
on the nonnegative orthant assuming twice differentiability. Their results were
extended by Ferland [1972]. Note that a local minimum of a quasiconvex
function over a convex set is not necessarily a global minimum. This result
holds true, however, for a strictly quasiconvex function. Ponstein [1967] intro-
duced the concept of strongly quasiconvex functions, which ensures that the
giobal minimum is unique, a property that is not enjoyed by strictly quasiconvex
functions. The notion of pseudoconvexity was introduced by Mangasarian
[1965]. The significance of the class of pseudoconvex functions stems from the
fact that every point with a zero gradient is a global minimum. Matrix theoretic
characterizations (see, e.g., Exercises 3.66 and 3.67) of quadratic pseudoconvex
and quasiconvex functions have been presented by Cottle and Ferland [1972]
and by Martos [19635, 1967b, 1969, 1975]. For further reading on this topic, refer
to Avriel et al. [1988], Fenchel [1953], Greenberg and Pierskalla [1971],
Karamardian [1967], Mangasarian {{9692], Ponstein { 1967], Schaible [198!a,b],
and Schaible and Ziemba [1981]. The last four references give excellent surveys
on this topic, and the results of Exercises 3.55 to 3.60 and 3.68 to 3.70 are
discussed in detail by Avriel et al. [1988] and Schaible [1981a,b]. Karamardian
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and Schaible [1990] also present various tests for checking generalized
properties for differentiable functions. See also Section B.2.

Exercises 3.31 to 3.34 deal with convex envelopes of nonconvex
functions. This construct plays an important role in global optimization
techniques for nonconvex programming problems. For additional information on

this subject, we refer the reader to Al-Khayyal and Falk [1983], Falk [1976],
Grotzinper ”QQ(] Horst and 'Tnu “QQﬁ] Pardzalos and Rosen 119871 thrnh

Rl dl S P T O Lo~ Uy daviion Lo~V [y & Galalinirs @Ridle AWWwoSwil | 4 S/ gy Faawi @R

[1997], and Sherali and A!ameddme [1990).
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The Fritz John and

Chapter Karush-Kuhn-
4 Tucker Optimality
Conditions

In Chapter 3 we derived an optimality condition for a problem of the foliowing
form: Minimize f(x) subjectto x € S, where f is a convex function and S is a

convex set. The necessary and sufficient condition for x to solve the problem
was shown to be

VFE) (x-x)20  forallx eS.

In this chapter the nature of the set S will be specified more explicitly in
terms of inequality and/or equality constraints. A set of first-order necessary
conditions are derived without any convexity assumptions that are sharper than
the above in the sense that they explicitly consider the constraint functions and
are more easily verifiable, since they deal with a system of equations. Under
suitable convexity assumptions, these necessary conditions are also sufficient for
optimality. These optimality conditions lead to cl/assical or direct optimization
techniques for solving unconstrained and constrained problems that construct
these conditions and then attempt to find a solution to them. In contrast, we
discuss several indirect methods in Chapters 8 through 11, which iteratively
improve the current solution, converging to a point that can be shown to satisfy
these optimality conditions. A discussion of second-order necessary and/or
sufficient conditions for unconstrained as well as for constrained problems is
also provided.

Readers who are unfamiliar with generalized convexity concepts from

Section 3.5 mav cnhc‘hhlfn anvy rpfprnnnpc to such nronerties hv rpla‘hnrl nnnupvl‘h}
UUU . J J W ud W WL yl UFVI [ L ) U

assumptions for ease in reading,
Following is an outline of the chapter.

Section 4.1: Unconstrained Problems We consider briefly optimality con-
ditions for unconstrained problems. First- and second-order conditions are
discussed.

Section 4.2: Problems Having Inequality Constraints Both the Fritz John
(FI) and the Karush-Kuhn-Tucker (KKT) conditions for problems having

165
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inequality constraints are derived. The nature and value of solutions
satisfying these conditions are emphasized.

Section 4.3: Problems Having Inequality and Equality Constraints This
section extends the results of the preceding section to problems having both
inequality and equality constraints,

Section 4.4: Second-Order Necessary and Sufficient Optimality Conditions

for Constrained Problems Similar to the unconstrained case discussed

aAm A LT Atwr mavY s S 12 L CESTu L S R e

in Section 4.1, we develop second-order necessary and sufficient optimality
conditions as an extension to the first-order conditions developed in
Sections 4.2 and 4.3 for inequality and equality constrained problems. Many
results and algorithms in nonlinear programming assume the existence of a
local optimal solution that satisfies the second-order sufficiency conditions.

4.1 Unconstrained Problems

An unconstrained problem is a problem of the form to minimize f(x) without

any constraints on the vector x. Unconstrained problems seldom arise in practi-
cal applications. However, we consider such problems here because optimality

r\nnrlihnnc: frr nnncfra1nnr] nroblems hecome a Innmn] nvfpnmnn of the conditions
WS AAE AL A%WFh WA LI L IUU A% b biv? AW WAL & W AMWILILWLL WL ML WAL ILLWALBIRS] W

for unconstrained problems. Furthermore, as shown in Chapter 9, one strategy

for solving a constrained problem is to solve a sequence of unconstrained problems,
We recall below the definitions of local and global minima for

unconstrained problems as a special case of Definition 3,4.1, where the set § is

replaced by R”.
4.1.1 Definition

Consider the problem of minimizing f(x) over R”, and let xe R". If f(X) <
f(x) for all xe R", x is called a global minimum. If there exists an &
neighborhood N, (X) around x such that f(X)< f(x) for each x e N_(X), X is

called a /ocal minimum, while if f(x) < f(x) for all xe N.(X), x # X, for some

£> 0, x is called a strict local minimum. Clearly, a global minimum is also a
local minimum.

Necessary Optimality Conditions

Given a point x in R", we wish to determine, if possible, whether or not the
point is a local or a global minimum of a function £ For this purpose we need to
characterize a minimizing solution. Fortunately, the differentiability assumption
of f provides a means for obtaining this characterization. The corollary to
Theorem 4.1.2 gives a fi rst-order necessary condition for x to be a local
Gp;imum Theorem 4.1.3 51“:3 a second-order i Usi

Hessian matrix.
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4.1.2 Theorem

Suppose that f: R" — R is differentiable at x. If there is a vector d such that

VF(x)'d <0, there exists a & > 0 such that f(x + Ad) < f(X) for each & < (0, &),
so that d is a descent direction of fat x.

Proof
By the differentiability of f at X, we must have

=t

S(X+Ad)= F(X)+ AV (X) d + A|d]|a(xX; Ad),

where a(X;Ad) —» 0 as 1 — 0. Rearranging the terms and dividing by A4, A #0,
we get

AR ”“?‘f () _ vr(xy d + o (R; Ad).

Since Vf(x)'d <0 and a(x;Ad) >0 as A — 0, there exists a &> 0 such that
Vf (XY d +d[ja(X;4d) <0 for all 1 € (0, 5). The result then follows.

Corollary

Suppose that f: R" — R is differentiable at X. If X is a local minimum,
Vf(x)=0.

Proof

Suppose that Vf(X)# 0. Then, letting d = -Vf(X), we get V/(x)'d=

A
f(x) for A € (0, 4), contradicting the assumption that X is a local minimum.
Hence, V/(X) =0.

The condition above uses the gradient vector whose components are the
first partials of f. Hence, it is called a first-order condition. Necessary conditions
can also be stated in terms of the Hessian matrix H, whose elements are the
second partials of £, and are then called second-order conditions. One such
condition is given below.

4.1.3 Theorem

Suppose that f: R" — R is twice differentiable at x. If x is a local minimum,
V/(X)=0 and H(X) is positive semidefinite.
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Proof

Consider an arbitrary direction d. Then from the differentiability of fat x,
we have

fE+Ad)= fFX)+AVS(x) d +—12—/12d‘ H(X)d + A2 d° a(x;4d), (4.1)

where a(x;Ad) = 0 as 4 — 0. Since x is a local minimum, from the corollary to

Theorem 4.1.2, we have Vf(X) = 0. Rearranging the terms in (4.1) and dividing
by A% > 0, we get

fx+ i;g—f(i) ___%dfﬂ(g)d +||d||2a(i;/1d). (4.2)

Since x is a local minimum, f(x+Ad) = f(x) for A sufficiently small. From
(4.2) it is thus clear that (1/2)d'HX) +]d] a(X;4d) 20 for 4 sufficiently

small. By taking the limit as 4 — 0, it follows that d'H(X)d = 0; and hence,
since d was arbitrary, H(X) is positive semidefinite.

Sufficient Optimality Conditions

The conditions discussed thus far are necessary conditions; that is, they must be
true for every local optimal solution. On the other hand, a point satisfying these
conditions need not be a local minimum, Theorem 4.1.4 gives a sufficient
condition for a local minimum.

4.1.4 Theorem

Suppose that f: R” — R is twice differentiable at x. If V/(X) = 0 and H(X) is
positive definite, X is 2 strict local minimum.

Proof

Since fis twice differentiable at x, we must have, for each X € R”,
— - | — — — 12 _
FX)=FX)+Vrx) (x— x)+§(x =X HX)(x-x)+[x-x|  a(x;x-X), (4.3)

where a(X;x—X) — 0 as x —» X. Suppose, by contradiction, that x is not a strict
local minimum; that 1s, suppose that there exists a2 sequence {x,} converging to
x such that f(x,) < f(X), x; # x, for each £, Considering this sequence noting

1. | X ol St ..I — _“

that V/(x)=0 and that f(x;)< f(x), and ing xk-—x);uxk—xu by d,
(4.3) then implies that
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;—dgn(i)dk +a(X;x, —x)<0  for each L. (4.4)

But ld; || = I for each k; and hence there exists an index set .#'such that {d; } 4

converges to d, where |d” = [. Considering this subsequence and the fact that

~
k.
4
1
2
3
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™
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AT v, N sy ac L A at 0
a\x;X; —X)—>V a5 K€.,7 approacnes «, (4.4) uupm;a that a v,
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This contradicts the assumption that H(X) is positive definite since |d|| = ]
Therefore, X is indeed a strict local minimum.

Essentially, note that assuming f to be twice continuously differentiabie,
since H(X) is positive definite, we have that H(x) is positive definite in an &
neighborhood of X, so fis strictly convex in an gneighborhood of x. Therefore,
as follows from Theorem 3.4.2, X is a strict local minimum, that is, it is the
unique global minimum over ¥, (X) for some &£ > 0. In fact, noting the second
part of Theorem 3.4.2, we can conclude that x is also a strong or isolated focal
minimum in this case.

In Theorem 4.1.5, we show that the necessary condition Vf(x) = 0 is also

sufficient for x to be a global mimmum if /' is pseudoconvex at x. In particular,

F Y = N and ¥ vy jo nncitiva comirdafinita far all X £ g ranvay and
il ¥i\Ay L - F UL Y | llkA} 1> PUQILI\"Q P LI N FULE L FRY LR RV« ¥ 5‘, 13 VWliy¥eA, alid

therefore also pseudoconvex. Consequently, x is a global minimum. This is also
evident from Theorem 3.3.3 or from Corollary 2 to Theorem 3.4.3.

4.1.5 Theorem

Let f: R" — R be pseudoconvex at x, Then X is a global minimum if and only
if VF(x) =0.

Proof
By the corollary to Theorem 4.1.2, if X is a global minimum, V/(x) = 0.
Now suppose that Vf(X) = 0, so that Vf(X)'(x—X) = 0 for each x € R". By the

[N

pseudoconvexity of fat X, it then follows that f(x) > f(X) for each x € R”", and
the proof is complete.

Theorem 4.1.5 provides a necessary and sufficient optimality condition in
terms of the first-order derivative alone when f is pseudoconvex. In a similar
manner, we can derive necessary and sufficient conditions for local optimality in
terms of higher-order derivatives when f is infinitely differentiable, as an
extension to the foregoing results. Toward this end, consider the following result
for the anivariate case.



170 Chapter 4

4.1.6 Theorem

Letf: R — R be an infinitely differentiable univariate function. Then x e R 1s a

local minimum if and enly if either £/(¥) =0 for all j =1, 2,..., or else there
exists an even »n > 2 such that f{")(f) > () while f(”(f) =0foralll <j<n,

where £ denotes the jth-order derivative of £

Proof
ko Lrayranr that + 10 m | T s 119 f-l'-' wmrl Anmler i F f{:L \__ f{:\:}
¥F i RIBVY LIGL A 1D G WO lll I.I llu]ll j il lu Ulll] i1 J \A T f‘} ‘, \A} ol
0 for all sufficiently small values of [A}. Using the infinite Taylor series repre-

sentation of f(x + A), this holds true if and only if

@ D@ 05 Tz
2! 3! 41 -

for all ]h[ small enough. Similar to the proof of Theorem 3.3.9, it is readily veri-

fied that the foregoing inequality holds true if and only if the condition of the
theorem 1s satisfied, and this completes the proof.

Before proceeding, we remark here that for a local maximum, the condi-
tion of Thecrem 4.1.6 remains the same, except that we require f {")(E ) <0in

lieu of f (")(BE) > 0. Observe also, noting Theorem 3.3.9, that the above resuit

essentially asserts that for the case under discussion, x is a local minimum if and
only if fis locally convex about x. This result can be partially extended, at least
in theory, to the case of multivariate functions. Toward this end, suppose that

x € R" is a local minimum for f: R® — R Then this holds true if and only if
f(X+Ad) > f(X) for all de R” and for all sufficiently small values of |A|.

Assuming fto be infinitely differentiable, this asserts that for all d € R”, =1,

we must equivalently have

2
S &+ Ad)— £(%) =AVf<i)'d+%a’H<z)d

ZZZf;k(K) d, dy +

for all -6 <1 <4, for some & > 0. Consequently, the first nonzero derivative
term, if it exists, must correspond to an even power of 4 and must be positive in
value. _

Note that the foregoing concluding statement is not sufficient to claim
local optimality of x. The difficulty is that it might be the case that this
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statement holds true, implying that for any d € R”, "dn = 1, we have f(x+4d) >

f(x) for all -64 <1 <84 for some 65 > 0, which depends on d, but then, &,

might get vanishingly small as d varies, so that we cannot assert the existence of
a 6 > 0 such that f(X+ Ad) = f(x) for all -6 <4 <4. In this case, by moving

along curves instead of along straight lines, improving values of f might be

PR T I DS I SN NI I TN PR (RN I VL FNRR SR P SRR T |
4LCC551DIC 1T UIC lMIIedldle neignporinood o1 X, it Ul Omner n4dna, 4 vaild
sufficient condition by Theorem 4.1.5 is that Vf(X) = 0 and that f is convex (or

pseudoconvex) over an g-neighborhood about X, for some £ > 0. However, this

Pl =TT

might not be easy to check, and we might need to assess the situation
numerically by examining values of the function at perturbations about the point
x (refer also to Exercise 4.19).

To 1liustrate the above point, consider the following example due to the

Italian mathematician Peano. Let f(x[,x,) = (x% - X Mxy —2x;) = 21vc,2 — 3x,x§ +

x5. Then we have, at X = (0,0),

0 4 0
Vi (0) = [0} H(0) = [0 0} S122€0) = £512(0) = f551(0) =6, f555,(0) =24,

and all other partial derivatives of f of order 3 or higher are zeros. Hence, we
obtain by the Taylor series expansion

/13 4

_ A2 2
FR+Ad) - f(X) = 7(4d{2)+?(-!8d1d22)+§(24d§)

2
= 232[d,~%d§] —%A“d;‘.

Note that for any d = (d),d,)’, [d] = 1, if 4, # 0, the given necessary condition
hoids true because the second-order term 1s positive. On the other hand, 1f
dy = 0, we must have d, # 0, and the condition holds true again because the first

nonzero term is of order 4 and is positive. However, X =(0,0)' is not a local

minimum, as evident from Figure 4.1. We have f0, 0) = 0, while there exist
negative values of fin any eneighborhood about the point (0, 0). In fact, taking

d = (sin@,cos ), we have f(X+Ad)- f(X)= 2sin® 4% — 3sin@ cos’ O1° +
cos* @1%; and for this to be nonnegative for all —&, <A <8y, &y >0, we

observe that as & —» 07, we get 55 — 07 as well (see Exercise 4.11), although at 8
=0 we get 5y = o, Hence, we cannot derive a § > 0 such that f(X + Ad) - f(X)

>0, forallde R and -6 < A <8, s0X is not a local minimum.
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X3 A

/ > X

0,0\

f <0 R
/fx2=2xl[f50]

Figure 4.1 Regions of zero, positive, and negative values of
f(x,x3) = (Jcé2 ~x1) (x5 —2xp).

To afford further insight into the multivariate case, let us examine a
situation in which /i R" — R is twice continuously differentiable, and at a given
point X € R" | we have that V/(X) = 0 but H(X) is indefinite. Hence, there exist
directions d; and d, in R” such that d{H(X)d| > 0 and d5H(X)d, < 0. Defining
F(;;dj)(/l) =f(X+4d ;)= Fd! (4), say, for j = 1, 2, and denoting derivatives by
primes, we get

(A)=Vf(X+id;)'d, and Fy (A)=d H(X+ad;)d; forj=1,2
(A4) = Vf( ;)4 L (4)=d;H( jd; J=L2.

!

d,

Hence, for j = 1, we have Fy t 0)=0, Fé’l (0) > 0; and moreover, by continuity of
the second derivative, Ky (1) >0, for || sufficiently small. Hence, Fy (1) is
strictly convex in some &-neighborhood of A = 0, achieving a strict local
minimum at 4 = 0. Similarly, for / = 2, noting that F3_(0)=0 and F{‘{z (0) <0,
we conciude that Fy, (A) is strictly concave in some g-neighborhood of A4 = 0,

achieving a strict focal maximum at A = 0. Hence, as foretold by Theorem 4.1.3,
X = 0 is neither a local minimum nor a local maximum. Such a point X is called
a saddle point (or an inflection point), Figure 4.2 ilustrates the situation.
Observe the convex and concave cross sections of the function in the respective
directions d; and d, about the point x at which V/(X) = 0, which gives the
function the appearance of a saddle in the vicinity of x.
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Figure 4.2 Saddle point at x.

4.1.7 Examples

Example 1: Univariate Function To illustrate the necessary and sufficient

conditions of this section, consider the problem to minimize f(x)=(x*-1)’.
First, let us determine the candidate points for optimality satisfying the first-
order necessary condition that V£ (x) = 0. Note that V/(x) = f'(x) = 6J‘.'(Jr2 - I)2
= 0 when x = 0, 1, or -1. Hence, our candidate points for iocal optimality are x
=0, 1, or -}. Now Iet us examine the second-order derivatives. We have

)
= 6. Since H is positive definite at x = 0, we have by Theorem 4.1.4 that x = 0
is a strict Jocal minimum. However, at x = +1 or —[, H is both positive and
negative semidefinite; and although it satisfies the second-order necessary
condition of Theorem 4.1.3, this is not sufficient for us to conclude anything
about the behavior of f at these points. Hence, we continue and examine the
third-order derivative f"(x)= 48Jc(x2 ~1) +48x° + 24x(x2 —1). Evaluating this
at the two candidate points X = +} in question, we obtain f"(I) = 48 > 0 and
F7(-1) = —48 < 0. By Theorem 4.1.6 it follows that we have neither a local

minimum nor a local maximum at these points, and these points are merely
inflection points.

TS ' hY b I | 2 1\2 TY 1Y — 7S A TTL M

H(x)= f"(x)=24x (x 1)+0(x —1)*, and hence H(1) = H(-1) = 0 and H(

Example 2: Multivariate Funetion Consider the bivariate function f{(x;,x,)

= x? + x% Evaluating the gradient and the Hessian of £, we obtain

l:ﬁx] 0 }
and H(x) = .

Vf(x)= 0 6,

2
!
2
X2
The first-order necessary condition Vf(X) = 0 vields X =(0,0)" as the single

candidate point. However, H(x) is the zero matrix; and although it satisfies the
second-order necessary condition of Theorem 4.1.3, we need to examine higher-

nrdor dosiirs rmwislea Annesliigciua ctatarmant alant tha mwnint T MNMafininog
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Fizay(A) = f(R+ Ad) = Fy(4), say, we have Fj(1)=Vf(x+id)'d, Fj(1) =
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d'H(x+ Ad)d, and FJ(1) =

i

6, fr22(x) = 6, and £, (x) = 0 otherwise, we obtain F;(0)=6d; + 6d;. Since

2

TMM

dldjdk-fyk (i‘f‘/‘id). Noting that fi”(X) =

T M

there exist directions d for which the first nonzero derivative term at A = 0 is
FJ(0), which is of odd order, X = (0,0)’ is an inflection point and is therefore
neither a local minimum nor a local maximum. In fact, note that F3(1) = 6.&(0‘,3
+ dg) can be made to take on opposite signs about 4 = 0 along any direction d

for which df +d3 #0; so the function switches from a convex to a concave
function, or vice versa, about the point 0 along any direction d. Observe also
that H is positive semidefinite over {x:x; 20, x, 20}; and hence, over this
region, the function is convex, yielding X = (0,0)" as a global minimum. Simi-

larly, X = (0,0)’ is a global maximum over the region {x:x; <0, x, <0}.

4.2 Problems Having Inequality Constraints
In this section we first develop a necessary optimality condition for the problem
to minimize f(x) subject to x € § for a general set S. Later, we let § be more

specifically defined as the feasible region of a nonlinear programming problem
of the form to minimize f(x) subjectto g(x) <fand x € X.

Geometric Optimality Conditions

In Theorem 4.2.2 we develop a necessary optimality condition for the problem
to minimize f(x) subject to x € S, using the cone of feasible directions defined

below.

4.2.1 Definition

Let S be a nonempty set in R”, and let X e ¢l §. The cone of feasible directions
of S at x, denoted by D, is given by

D={d:d=0,and X+ Ad e S for all 1€ (0,5) for some §> 0}.

Each nonzero vector d € D is called a feasible direction. Moreover, given a func-

tion £ R" — R, the cone of improving directions at X, denoted by F, is given by

F={:f(x+Ad)< f(X) forall A€(0,0) forsome 6> 0}.

Each direction d € F is called an improving direction, or a descent direction, of f
at x.

From the above definitions, it is clear that a small movement from x
along a vector d € D leads to feasible points, whereas a similar movement along
a d € F vector leads to solutions of improving objective value. Furthermore,
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timization deals with the pxuu €11 O1 MiinimizZing Or max imiz-
ing a function in the absence of any restrictions. In this chapter we discuss both
the minimization of a function of one variable and a function of several
variables. Even though most practical optimization problems have side restric-
tions that must be satisfied, the study of techniques for unconstrained
optimization is important for several reasons. Many algorithms solve a con-
strained problem by converting it into a sequence of unconstrained problems via
Lagrangian multipliers, as illustrated in Chapter 6, or via penalty and barrier
functions, as discussed in Chapter 9. Furthermore, most methods proceed by
finding a direction and then minimizing along this direction, This line search is
equivalent to minimizing a function of one variable without constraints or with
simple constraints, such as lower and upper bounds on the variables. Finaily,
several unconstrained optimization techniques can be extended in a natural way
to provide and motivate solution procedures for constrained problems.
Following is an outline of the chapter.

Section 8.1: Line Search Without Using Derivatives We discuss several
procedures for minimizing strictly quasiconvex functions of one variable
without using derivatives. Uniform search, dichotomous search, the golden
section method, and the Fibonacci method are covered.

Section 8.2: Line Search Using Derivatives Diftferentiability is assumed,
and the bisection search method and Newton’s method are discussed.

Section 8.3: Some Practical Line Search Methods We describe the popular

qnad‘raht‘-ﬁf line search method and present tha 10 rule for nerforminge
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acceptable, inexact line searches.

Section 8.4: Closedness of the Line Search Algorithmic Map We show
that the line search algorithmic map is closed, a property that is essential in
convergence analyses. Readers who are not interested in convergence analyses
may skip this section.

Section 8.5: Multidimensiona}l Search Without Using Derivatives = The cyclic
coordinate method, the method of Hooke and Jeeves, and Rosenbrock’s
method are discussed. Convergence of these methods is also established.

Section 8.6: Multidimensional Search Using Derivatives We develop the
steepest descent method and the method of Newton and analyze their con-
vergence properties.

Section 8.7: Modification of Newton’s Method: Levenberg-Marquardt and
Trust Region Mecthods We describe different variants of Newton’s

-1 .1 Al o ¥ oL Rt T T en s & e
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which ensure the global convergence of Newton’s method. We also discuss
some insightful connections between these methods.

Section 8.8: Methods Using Conjugate Directions: Quasi-Newton and
Conjugate Gradient Methods The important concept of conjugacy is
introduced. If the objective function is quadratic, then methods using conju-
gate directions are shown to converge in a finite number of steps. Various

- FY RS AR AVWALFAS LiiWhd AW LEAX A TR ek Ny Al LWFEAL AiLWFR L%/l 4L W ¥ Wl Wl
quﬂm Np\ufnnf\mrlahla matrino and r-nn_}ugﬂfn grad 1ient methode are covered

based on the concept of conjugate directions, and therr computational per-
formance and convergence properties are discussed.

Section 8.9: Subgradient Optimization Methods We introduce the exten-
sion of the steepest descent algorithm to that of minimizing convex, non-
differentiable functions via subgradient-based directions. Variants of this
technique that are related to conjugate gradient and variable metric methods
are mentioned, and the crucial step of selecting appropriate step sizes in
practice is discussed.

8.1 Line Search Without Using Derivatives

One-dimensional search is the backbone of many algorithms for solving a
nonlinear programming problem. Many nonlinear programming algorithms
proceed as follows. Given a point x;, find a direction vector d; and then a

suitable step size A;, yielding a new point x; , =x, + 4;d,;; the process is
then repeated. Finding the step size A; involves solving the subproblem to
minimize f(x; +Ad;), which is a one-dimensional search problem in the
variable A. The minimization may be over all real A4, nonnegative 4, or A such
that x, + Ad, is feasible.

Consider a function 8 of one variable A to be minimized. One approach to
minimizing & is to set the derivative #’ equal to 0 and then solve for 4. Note,

llUWt:VCI that 6 is uauauy defined lmpuully in terms of a xuncuonj of several
variables. In particular, given the vectors x and d, 8(4)= f(x+ Ad). If fis not

differentiable, then & will not be differentiable. If f'is differentiable, then 8'(4)
= d'Vf(x + Ad). Therefore, to find a point A with #'(A) = 0, we have to solve

the equation d'Vf(x+ Ad) = 0, which is usually nonlinear in A. Furthermore, A
satisfying 8'(1) = 0 is not necessarily 2 minimum; it may be a local minimum, a
local maximum, or even a saddle point. For these reasons, and except for some
special cases, we avoid minimizing 6 by letting its derivative be equal to zero.
Instead, we resort to some numerical techniques for minimizing the function 6.
In this section we discuss several methods that do not use derivatives for
minimizing a function & of one variable over a closed bounded interval. These

methods fall under the categories of simultaneous line search and sequential line
search problems. In the former case, the candidate points are determined a priori,
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whereas in the sequential search, the values of the function at the previous iterations
are used to determine the succeeding points,

Interval of Uncertainty

Consider the line search problem to minimize 8(4) subject to a < 2 £ b. Since

the exact location of the minimum of £ over [4, b] is not known, this interval is

called the interval of uncertainty. During the search procedure if we can exclude
portions of this interval that do not contain the minimum, then the interval of
uncertainty is reduced. In general, [q, b] is called the inferval of uncertainty if a
minimum point A lies in [a, 4], although its exact value is not known.

Theorem 8.1.1 shows that if the function 8 is strictly quasiconvex, then

the interval of uncertainty can be reduced by evaluating & at two points within
the interval.

8.1.1 Theorem

Let & R — R be strictly quasiconvex over the interval [a, b]. Let A, ¢ € [a, b] be
such that 4 < z. If 8(4) > O(u), then 8(z) > 6(y) forallz € [a, A). If B(4) <

O(u), then 6(z) > O(A) forallz e (4, b.

Proof

Suppose that 8(A) > 8(u), and let z € [a, A). By contradiction, suppose
that 8(z) < 6(u). Since A can be written as a convex combination of z and g,
and by the strict quasiconvexity of 4, we have

O(A) <max{f(z), O(u)} = 0(u),

contradicting #(A) > 6(u). Hence, 8(z) > 6(u). The second part of the theorem
ron h ¥

& TV
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From Theorem 8.1.1, under strict quasiconvexity if 8(1) > 8(u), the new

intarval of uncertaintv 1e [2 Al Oin the nther hand if &A1Y < (1) the new
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interval of uncertainty is [a, ). These two cases are illustrated in Figure 8.1.

Literature on nonlinear programming frequently uses the concept of strict
unimodality of 8to reduce the interval of uncertainty (see Exercise 3.60). In this
book we are using the equivalent concept of strict quasiconvexity. (See
Exercises 3.57, 3.60, and 8.10 for definitions of various forms of unimodality
and their relationships with different forms of quasiconvexity.)

We now present several procedures for minimizing a strictly quasiconvex
function over a closed bounded interval by iteratively reducing the interval of
uncertainty.
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&(4) A1)

6(4) g(A)

a A yri b a A H b

New interval New interval

Figure 8.1 Reducing the interval of uncertainty.

Example of a Simultaneous Search: Uniform Search

Uniform search is an example of simultaneous search, where we decide before-
hand the points at which the functional evaluations are to be made. The interval

of uncertainty [a, b;] is divided into smaller subintervals via the grid points
ay+ k0 for k= 1,.., n, where b, =g +(n+1)J, as illustrated in Figure 8.2. The

function 4 is evaluated at each of the » grid points. Let A bea grid point having
the smallest value of & If #is strictly quasiconvex, it follows that 2a minimum of

flies in the interval [j.m 5, A+ d1.

Choice of the Grid Length 8

We see that the interval of uncertainty (g, 5] is reduced, after »n functional
evaluations, to an interval of length 24. Noting that » = [(& —a; /811, if we
desire a small final interval of uncertainty, then a large number n of function

PR DL U I DI . VISP -UNNRY IPIN-JUNY . WIS RN IR E
Cvaludliully HiUSL DC dUe. UIIC lUbllllquU LHIAL I DI UMCU O TCULLE LG
computational effort is to utilize a large grid size first and then switch to a finer
grid size.

a2 ):—6 ,?: /i-H‘S bl

Figure 8.2 Uniform search
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Figure 8.3 Possible intervals of uncertainty.

Sequential Search

As may be expected, more efficient procedures that utilize the information
generated at the previous iterations in placing the subsequent iterate can be
devised. Here, we discuss the following sequential search procedures: dichoto-
mous search, the golden section method, and the Fibonacci method.

Dichotomous Search

Consider & R — R to be minimized over the interval [, b ]. Suppose that §is

strictly quasiconvex. Obviously, the smallest number of functional evaluations
that is needed to reduce the interval of uncertainty is two. In Figure 8.3 we
consider the location of the two points 4 and z. In Figure 8.3a, for 6= g,

note that #(4) < &(sq); and hence, by Theorem 8.1.1, the new interval of
uncertainty is {q, #]. However, for 8= &,, note that 6(4) > 8(); hence, by
Theorem 8.1.1 the new interval of uncertainty is {4, b;]. Thus, depending on
the function 4, the length of the new interval of uncertainty is equal to z4 —a, or
b= 4.

Note, however, that we do not know, a priori, whether 8(A4;) < 6(y;) or
8(4) > 6(4)." Thus, the optimal strategy is to place A and g in such a way

as to guard against the worst possible outcome, that is, to minimize the
maximum of g — a and 5 - A. This can be accomplished by placing 4

and g at the midpoint of the interval {ay, 5 ]. If we do this, however, we would
have only one trial point and would not be able to reduce the interval of

* If the equality 6(4) = O(y) is true, then the interval of uncertainty can be

reduced further to [4;, z4]. It may be noted, however, that exact equality is quite
unlikely to occur in practice.



348 Chaplter 8

uncertainty. Therefore, as shown in Figure 835, A4 and g4 are placed

symmetrically, each at a distance £> 0 from the midpoint. Here, £> 0 is a scalar
that is sufficiently small so that the new length of uncertainty, £+ (B —a;)/2, is

close enough to the theoretical optimal value of (b, —a)/2 and, in the meantime,
would make the functional evaluations #(4;) and () distinguishable.

In dichotomous search, we place each of the first two observations, 4
and g, symmetrically at a distance £ from the midpoint (¢ +&)/2. Depending
on the values of #at 4 and g, a new imterval of uncertainty is obtamed. The
process is then repeated by placing two new observations.

Summary of the Dichotomous Search Method

Following is a summary of the dichotomous method for minimizing a strictly
quasiconvex function & over the interval {a;, & ].

Initialization Step Choose the distinguishability constant, 2> 0, and
the allowable final length of uncertainty, £ > 0. Let [ay, 5] be the initial interval
of uncertainty, let £ = 1, and go to the Main Step.

Main Step

I If b —a; < ¢, stop; the minimum point lies in the interval {a;, 1.
Otherwise, consider 4; and x4, defined below, and go to Step 2.

=ak +bk _e ﬂk=ak+bk s

A
k 2 2

2. If 0(4,) <8(uy), let ai,, =a; and b,y = . Otherwise, let a,
= A4 and b, = b,. Replace kby £+ |, and go to Step 1.

Note that the length of uncertainty at the beginning of iteration &k + |
is given by

1 |
(Bys1 — py1) =57(b| —“1)+2€(1 _5"‘_)

This formula can be used to determine the number of iterations needed to
achieve the desired accuracy. Since each iteration requires two observations, the
formula can also be used to determine the number of observations.

Golden Section Method

To compare the various line search procedures, the following reduction ratio
will be of use:
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length of interval of uncertainty after v observations are taken
length of interval of uncertainty before taking the observations ’

Obviously, more efficient schemes correspond to small ratios. In dichotomous

v/2 we now describe

search, the reduction ratio above is approximately (0.5)
the more efficient golden section method for minimizing a strictly quasiconvex

function, whose reduction ratio is given by (0.618)" .

At a general iteration % of the golden section method, let the interval of
uncertainty be [a;,5,]. By Theorem 8.1.1, the new interval of uncertainty

(@410 br.y ] is given by [A,, b ] if 8(4,)>O() and by [ay, g, ] if 6(4) <
8(4;). The points A, and g are selected such that the following hold true.
I. The length of the new interval of uncertainty b,,; —a;,; does not

depend on the outcome of the Ath iteration, that is, on whether
8(A ) > 0(uy) or 8(A4) <8(y;). Therefore, we must have b, — 4,

= —ay. Thus, if A is of the form
A = a +(1—a)b —ay), (8.1)
where o € (0,1), g, must be of the form
M =a, +ob, —ayp) (8.2)
so that
bt —apy = alby —ap).

2. As A, and ., are selected for the purpose of a new iteration,
either 4, ., coincides with g, or g, ., coincides with A,. If this can

be realized, then during iteration &4 + [, only one extra observation is
needed. To illustrate, consider Figure 8.4 and the following two
cases.

Case 1: O(4,)>6(y;). In this case, a,,, =4 and b, =b,. To satisfy
Ay .1 = My, and applying (8.1) with k replaced by k + 1, we get

M = A =@ v (=a)(bpy —agy) = 4 +(L-a)b, - 4).

® > - ')
ay A Hy by
Case I: [ e . ]
Q41 At Hrt T
Case 2; - *— o
e - J; - F yn = }l- =
O Eh S S 2 Yk+1

Figure 8.4 Golden section rule.
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Substituting the expressions of 4, and g, from (8.1) and (8.2) into the above

equation, we get a’ +a—1=0.

Case 2: O(4)<0(u,). In this case, a,,y=a, and b, , = ;. To satisfy
Hi 11 = 4, and applying (8.2) with k replaced by £ + 1, we get

g = M =Gy talb g —apy) =a +a(yy —a,).

2

Noting (8.1) and (8.2), the above equation gives a“ +a —1=10. The roots of the

equation at+a—-1=0 are =~ 0.618 and @ = —1.618. Since & must be in the

interval (0, 1), then & = 0.618. To summarize, if at iteration £, x4, and A, are

chosen according to (8.1) and (8.2), where a = 0.618, then the interval of
uncertainty is reduced by a factor of 0.618. At the first iteration, two
observations are needed at A, and z4, but at each subsequent jteration only one

evaluation is needed, since either A, .y = f; Or ., = 4.

Summary of the Golden Section Method

Following is a summary of the golden section method for minimizing a strictly
quasiconvex function over the interval [a;, b ].

Initialization Step  Choose an allowable final length of uncertainty £ >
0. Let {4, b;] be the initial interval of uncertainty, and let 4, = a; + (1-a) (b — a;)
and gy =a) +a(b —ay), where a = 0.618. Evaluate 6(4;) and 8(z4), letk=1,
and go to the Main Step.
Main Step
. If b —a, <{, stop; the optimal solution lies in the interval [a,, b, ].
Otherwise, if 8(4;) > @(x;), go to Step 2; and if 8(4;) < 8(y;), go

to Step 3.
2. Leta, . =4, and b, ., = b;. Furthermore, let 4, , = 1, , and let g,
H +1 FEK3 K

Y+l P+l
= gy +a(b,,y —a;yy). Evaluate 6(y, ) and go to Step 4.
3. Let gy =a; and by = y;.. Furthermore, let g, ., = 4, and let 4,

= ay g+ (1 —a)(byy —agyy). Evaluate 8(4; ;) and go to Step 4.
4. Replace kby £+ | and go to Step 1.

8.1.2 Example

Consider the following problem:

AVERaa LA RE R e

subjectto —3< A <5.
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Clearly, the function 8 to be minimized is strictly quasiconvex, and the initial
interval of uncertainty is of length 8. We reduce this interval of uncertainty to
one whose length is at most 0.2, The first two observations are located at

A =-3+0382(8)=0.056, g =-3+0.618(8) =1944.

Note that 8(4;) < 8(y;). Hence, the new interval of uncertainty is [-3, 1.944].

The process is repeated, and the computations are summarized in Table 8.1. The
values of @that are computed at each iteration are indicated by an asterisk. After
eight iterations involving nine observations, the interval of uncertainty is [-1.112,
—0.936], so that the minimum can be estimated to be the midpoint —1.024. Note
that the true minimum is in fact —1.0.

Fibonacci Search

The Fibonacci method is a line search procedure for minimizing a strictly
quasiconvex function & over a closed bounded interval. Similar to the golden
section method, the Fibonacci search procedure makes two functional evalua-
tions at the first iteration and then only one evaluation at each of the subsequent
iterations. However, the procedure differs from the golden section method in
that the reduction of the interval of uncertainty varies from one iteration to
another .

The procedure is based on the Fibonacci sequence {F,}, defined as

follows:

Fv+l = Fv +Fv-ls y= 1,2,...

8.3
S (8.3)

The sequence is therefore 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... . At
iteration %, suppose that the interval of uncertainty is {a;, b, ]. Consider the two

points A; and g given below, where # is the total number of functional evalu-
ations planned.

Fy kA

A =ap+ b —ay), k=1l.,n-1 (8.4)

[
T n—-k+l1

Table 8.1 Summary of Computations for the Golden Section Method

Iterationk g, by A Hy 0(4)  O(uy)
-3.000 5.000 0.056 1.944 0.115* 7.667*
—3.000 1944 1112 6.056 -0.987* 0.115

-3.000 0.056  --1.832 -1.112 -0.308* 0987
—1.832 0.056 -1.112 —0.664 —0.987 —0.887*
-1,832 -0.664 1384 -1.112  —0.853* —0.987

-1.384 0664 —1.112 —0.936 —0.987 —0.996*
-1.112 0664 —0.936 —0.840 -0.9% —0.974*

—1.112 —{.840 -1.0186 —0.936 -1.000% -0.996
—1.112 —(3.936

OO0 = N A b W N
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F,
W =ay +—"E (b —a),  k=l,.,n- 1. (8.5)

n—k+!

By Theorem 8.1.1, the new interval of uncertainty {a,,,, #;,;] is given

by [A..b,] if (&) > 8(y) and is given by [ay, g, 1 if 68(4,) < 8(y). In
the former case, noting (8.4) and letting v = n — k in (8.3), we get

bl =l = by — A4

Fr g
= b, —a, ~EL (B —qp) (8.6)
n—k+1
Fh—k
= (bk —ak ).
Fn~k+1
In the latter case, noting (8.5), we get
F;~k
by -G = -9 = (O —a;)- (8.7)
n—k+l1

Thus, in either case, the interval of uncertainty is reduced by the factor
Pk Fukar-

We now show that at iteration k + 1, either A ., = or gy, =4, so
that only one functional evaluation is needed. Suppose that 8(4,) > 8(u,).
Then, by Theorem 8.1.1, a;,; =4, and b, = b,. Thus, applying (8.4) with %
replaced by & + 1, we get

Fu-k-2

iy = Gy t (bea1 —a4y)

n—k

F,
= A+ 2E2 (b A
n—k

Substituting for 4, from (8.4), we get

Ay =a +

(by —a) +
n—k+l1 n—k

Fuxa Fok-2 [l Rk }(bk ).

Fn——k+l

Letting v = » — k in (8.3), it follows that 1-(F,_;_1/Fy_ys1) = Froi/Fpark a1
Substituting in the above equation, we get

Fn—-k—l +Fn

A1 =a; + =2 (b - ).

n~k+!

Now let v=y— k-1 in (8.3), and noting (8.5) it follows that
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Apa=a;+ (by —a@) = py.

n=k+1
Similarly, if 8(4;) < 8(u,), the reader can easily verify that g ., = 4,. Thus,

in either case, only one observation is needed at iteration 4 + .
To summarize, at the first iteration, two observations are made, and at
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iteration n — 2, we have completed » — | functional evaluations. Furthermore, for
k=n—1, it follows from (8.4) and (8.5) that A, = g, ; = (1/2¥ayy +6,).

1t
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Apy = Hin-2 OF Hyy = Ayp, theoretl a
to be made at this stage. However, in order to reduce the interval of uncertainty
further, the last observation is placed slightly to the right or to the left of the
midpoint A,_; =4,_;, so that (1/2)(b, —a,_,) is the length of the final

interval of uncertainty [a,,, 5,].

Choosing the Number of Observations

Unlike the dichotomous search method and the golden section procedure, the

Fibonacci method requires that the total number of observations » be chosen
bhaforehand, This is because nlacement of the observations is mvpn by (8.4) and
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(8.5) and, hence, is dependent on n From (8.6) and (8.7), the length of the
interval of uncertainty is reduced at iteration £ by the factor £,,_;/F,_; ;. Hence,

at the end of n — | iterations, where » total observations have been made, the
length of the interval of uncertainty is reduced from b —aq to b, — a, = (b -

a,)/F,,. Therefore, n must be chosen such that (& —~a,)/F,, reflects the accuracy
required.

Summary of the Fibonacci Search Method

The fn"nunng is 2 summary of the Fibonacci search method

is a summary of the Fibonacci search m

strictly quasiconvex function over the interval [ay, & ].

Initialization Step  Choose an allowable final length of uncertainty ¢ >
0 and a distinguishability constant ¢ > 0. Let [, ] be the initial interval of
uncertainty, and choose the number of observations » to be taken such that F,, >
(b —a)/t. Let A4 = o +(Fpa/Fy)B —a)) and gy = a +(Fp/F, )b —ay)
Evaluate 8(4) and €(y;), let k=1, and go to the Main Step.

Main Step

1. If 8(A;) > 8(yy), goto Step 2; and if @A) < 8(x;), go to Step 3.

2. Let g, =4 and b, =b,. Furthermore, let A, =z, , and let
Hig1 = G t (Fn—k-—I/Fn-—k )(bfﬁ-l —a; )} Hk=n-2, go to Step 5;
otherwise, evaluate 8(4, ;) and go to Step 4.
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3. Let a, =a;, and b,,, = y;. Furthermore, let x4, , =4, and let
Al = G+ Pk / By Wbgyy =0k 4y)- Ik =n—2, go to Step
5; otherwise, evaluate €(A,,,) and go to Step 4.

4. Replace kby k + | and go to Step 1.

5. Let A4, =4, and u, =4, +& If 6(4,)>6(y,), let a, = 4, and
b, =b,_,. Otherwise, if 8(4,)<8(u,), let a, =a, , and b, = 4,.
Stop; the optimal solution lies in the interval [a,, b, ].

8.1.3 Example
Consider the following problem:

Minimize 1% +24
subjectto —-3<A<5.

Note that the function is strictly quasiconvex on the interval and that the true
minimum occurs at A = —1. We reduce the interval of uncertainty to one whose
length is, at most, 0.2. Hence, we must have ¥, > 8/0.2 = 40, so that n = 9. We

adopt the distinguishability constant £ = 0.01.
The first two observations are located at

F 2

A =-3+=L(8)=0.054545, i = —3+—2(8) = 1.945454,
Fy g

Note that 8(4) < 8(4). Hence, the new interval of uncertainty is {-3.000000,

1.945454]. The process is repeated, and the computations are summarized in
Table 8.2. The values of gthat are computed at each iteration are indicated by an
asterisk. Note that at k =8, A4, = 4 = A,_,, so that no functional evaluations

are needed at this stage. For k=9, 4, = 4, =-0.963636and g4 = A, + &=
—0.953636. Since 8(x; ) > 8(4;), the final interval of uncertainty {ag, bg] is
[-1.109091, —0.963636], whose length ¢ is 0.145455. We approximate the mini-

mum to be the midpoint --1.036364. Note from Example 8.1.2 that with the same
number of observations » = 9, the golden section method gave a final interval of
uncertainty whose length is 0.176.

Comparison of Derivative-Free Line Search Methods

Given a function @that is strictly quasiconvex on the interval [q;, ], obviously
each of the methods discussed in this section will yield a point 4 m a finite
number of steps such that IA— A I < ¢, where ¢ is the length of the final interval

nd 2 G the minim 1m nnint over the |nfnﬂ:a| In r\cﬂlr‘nlﬂr nl\}'n‘r'l
ll“ L [ ripyy lJU P Dluul“l, 5

frncartain
i llv"lmll

u:

the length of the final interval of uncertainty, which reflects the desired degree
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Table 8.2 Summary of Computations for the Fibonacci Search Method

teration g b Aoomo 0GR 6
1 —3,000000 5.000000 0.054545 1.945434 0.112065* 7.675699*
2  -3.000000 1945454 -—1.109091 0.054545 -0.988099* 0.112065
3 -3.000000 0.054545 -1.836363 -1.109091 -0.300497* -0.988099
4 1836363 0.054545 —1.109091 -0.672727 -0.988099 —.892892*
5 -1.836363 0672727 -1.399999 -1.109091 -0.840001* -0.988099
6 -1.399999 -0.672727 -1.109091 -0.963636 -0.988099 —0.998677*
7  —1.109091 -0.672727 -0.96363¢ —0.818182 -0.998677 —.966942*
8§ —1.109091 -0.818182 0963636 —0.963636 -0.998677 —0.998677
9  —1.109091 -0.963636 -—0.963636 —0.953636 -—0.998677 —.997850*

of accuracy, the required number of observations » can be computed as the
smallest positive integer satisfying the following relationships.

Uniform search method: nz h-a _
£/2
Dichotomous search method: 1/2)"? < ,
-
Golden section method: 0618 < £
b -a
Fibonacci search method: F,> b ;a,

From the above expressions, we see that the number of observations needed is a
function of the ratio (& —a;)/¢. Hence, for a fixed ratio (& —a)/¢, the smailer
the number of observations required, the more efficient is the algorithm. It
should be evident that the most efficient algorithm is the Fibonacci method,

followed bv the oolden cactinn nrocedire the dichontoamone cearch mathnd and
- A A L vy J [ S ¥ L bv uuuuuuuuuuuuu AW WAL Ly v MW LIRL AL A S Sl e lAlULllUu, Lill%d

finally the uniform search method.

Also note that for » large enough, 1/F,, is asymptotic to (0.618)"_1, SO

that the Fibonacci search method and the golden section are almost identical. It
is worth mentioning that among the derivative-free methods that minimize strict
quasiconvex functions over a closed bounded mterval, the Fibonacci search
method is the most efficient in that it requires the smallest number of
observations for a given reduction in the length of the interval of uncertainty.

General Functions

The procedures discussed above all rely on the strict quasiconvexity assumption.
In many problems this assumption does not hold true, and in any case, it cannot
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be verified easily. One way to handle this difficulty, especially if the initial
interval of uncertainty is large, is to divide it into smaller intervals, find the
minimum over each subinterval and choose the smallest of the minima over the
subintervals. (A more refined global optimization scheme could also be adopted;
see the Notes and References section.) Alternatively, one can simply apply the
method assuming strict quasiconvexity and allow the procedure to converge to

.- = .
coama In(‘al minimiim enlnflnn
WAL LAN AW WERAE SLLRIIRALAVFLLL TSV ELERLWS L,

8.2 Line Search Using Derivatives

L] L]
rodimo section W rh nrenoa

In the preceaing secuon 5 ine search procéequres tna
functional evaluations. In this section we discuss the bisection search method
and Newton’s method, both of which need derivative information.

D
'.!

b T t o

-

Mo
i

Bisection Search Method

Suppose that we wish to minimize a function & over a closed and bounded
interval. Furthermore, suppose that & is pseudoconvex and hence, differentiable.
At iteration k, let the interval of uncertainty be [aq,, b, ]. Suppose that the
derivative #'(4;) is known, and consider the following three possible cases:

1. If ﬂ’(J \ _ﬂ ﬂ'\pn h\; ﬂ'le neea

point,
2. If 6'(4) > 0, then, for A> A, we have 6'(4; A~ 4;) > 0; and by

the pseudoconvexity of & it follows that &(1)=8(4,). In other
words, the minimum occurs to the left of 4., so that the new interval
of uncertainty {a; ., b;,y] is given by {a;, 4, 1.

3. If @'(4) <0, then, for A < A, 8'(4)XA-4) > 0, so that H(1) >
6(J4). Thus, the minimum occurs to the right of 4, so that the new

interval of uncertainty [a, ,,, 5, ,,] isgiven by [4,, 5. ].

i

The position of A; in the interval [a;, b; ] must be chosen so that the maximum
possible length of the new interval of uncertainty is minimized. That is, 4, must

2l

be chosen so as to minimize the maximum of A, —a; and 4, — 4,. Obviousiy,
the optimal location of A, is the midpoint (1/2)(a; +5;).

To summarize, at any iteration &, & is evaluated at the midpoint of the
nterval of uncertainty. Based on the value of &', we either stop or construct a
new interval of uncertainty whose length is half that at the previous iteration.
Note that this procedure is very similar to the dichotomous search method
except that at each iteration, only one derivative evaluation is required, as
opposed to two functional evaluations for the dichotomous search method.
However, the latter is akin to a finite difference derivative evaluation.
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Convergence of the Bisection Search Method

Note that the length of the interval of uncertainty after » observations is equal to

(172" (& -~ ), so that the method converges to a minimurn point within any
desired degree of accuracy. In particular, if the length of the final interval of
uncertainty is fixed at ¢, then » must be chosen to be the smallest integer such

that (1/2)" < ¢/(b —ay).

Summary of the Bisection Search Method

We now summarize the bisection search procedure for minimizing a
pseudoconvex function &over a closed and bounded interval.

Initialization Step  Let [a, b;] be the initial interval of uncertainty,
and let ¢ be the allowable final interval of uncertainty. Let »# be the smallest
positive integer such that (1/2)" <£/(b —a)). Let k = 1 and go to the Main
Step.

Main Step

1. Let A, =(1/2)(a, +b;) and evaluate 9°(4). If 6'(4,) =0, stop; 4,
is an optimal solution. Otherwise, go to Step 2 if 8'(4,) > 0, and go
to Step 3 if 9'(4;) <0,

2. Let gy, =a; and b, = A4;. Goto Step 4.

3. Leta =4 and b, =b,. Goto Step 4.

4, If k = n, stop, the minimum lies in the interval {a,,;, b,,1]
Otherwise, replace k by & + | and repeat Step 1.

8.2.1 Example

Consider the following problem:

Minimize A2 +24
subjectto -3<1<6,

Suppose that we want to reduce the interval of uncertainty to an interval whose
length ¢ is less than or equal to 0.2. Hence, the number of observations »

satisfying (1/2)" < £/(b; —ay) = 0.2/9 = 0.0222 is given by n = 6. A summary of

the computations using the bisection search method is given in Table 8.3. Note
that the final interval of uncertainty is [-1.0313, —0.8907], so that the minimum
could be taken as the midpoint, —0.961.
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Table 8.3 Summary of Computations for the Bisection Search Method

Iterationk &, by Ay 0'(4)

1 -3.0000 6.0000 1.5000 3.0000
2 -3.0000 1.5000 —0.7500 0.5000
3 -3.0000 -0.7500 —1.8750 -1.7500
4 -1.8750  -0.7500 ~1.3125 —0.6250
5
6
7

-1.3125  0.7500 —1.0313 —0.0625
-1.0313  —0.7500 -0.8907 0.2186
-1.0313  0.8907

Newton’s Method

Newton’s method is based on exploiting the quadratic approximation of the
function @at a given point A;. This quadratic approximation q is given by

, Py
9A) = OCh) + 'R XA )+ 0"y )(A = 4)’.
The point A, is taken to be the point where the derivative of ¢ is equal to zero.
This ylelds 9'(/1* Y+ 9'(2* )(j'k+1 - lk) = (), so that

9'(A)
8"(4)

A’k+! = }“k - (88)

The procedure is terminated when |2.k - }{k| < g, Or when |9'(lk )| < &, where
€ Is a prespecified termination scalar.

Note that the above procedure can only be applied for twice differentiable
functions, Furthermore, the procedure is well defined only if 87(4,)+#0 for

each &

8.2.2 Example
Consider the function &;

423324 ifaixo0
HD=1 3 4
42° ¢34 ifa<o.

Note that € is twice differentiable everywhere. We apply Newton’s method,
starting from two different points. In the first case, A = 0.40; and as shown in
Table 8.4, the procedure produces the point 0.002807 after six iterations. The
reader can verify that the procedure indeed converges to the stationary point A =
0. In the second case, A; = 0.60, and the procedure oscillates between the points
0.60 and —-0.60, as shown in Table 8.5.
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Table 8.4 Summary of Computations for
Newton’s Method Starting from 4; = 0.4

Iterationk A4, O(4) () A1

0.400000 1.152000 3.840000 0.100000
0.100000 0.108000  2.040000 0.047039
0.04705% 0.025324  1.049692  0.022934

0.022934 0.0061687 0.53148] 0.011331
0.11331 0.001523 0267322  0.005634

Ansraa FeF el
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Convergence of Newton’s Method

The method of Newton, in general, does not converge to a stationary point
starting with an arbitrary initial point. Observe that, in general, Theorem 7.2.3
cannot be applied as a result of the unavailability of a descent function.
However, as shown in Theorem §.2.3, if the starting point is sufficiently close to
a stationary point, then a suitable descent function can be devised so that the
method converges.

8.2.3 Theorem

Let & R — R be continuously twice differentiable. Consider Newton's algorithm
defined by the map A(A) = A - 8'(1)/8"(1). Let 1 be such that §'(1) = 0 and
9"(1) # 0. Let the starting point 4 be sufficiently close to A so that there
exist scalars &y, kp > 0with kk, < such that

_,I_ <k
72

B(A)-0'(A)~ 8" (A)(A - A
, PD-rD-eRd-1

(A -1) 2

for each A satisfying |A —2 ‘ < ’/ll =) ’ Then the algorithm convergesto A.

Table 8.5 Summary of Computations for Newton’s
Method Starting from 4 = 0.6

Iteration % Ak '(4) 8"(4;) A+

I 0.600 1,728 1.440 —0.600
2 —.600 1.728 —-1.440 0.600
3 0.600 1.728 1.440 —0.600
4 —0.600 1.728 —1.440 0.600
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Proof

Let the solution set Q={A}, and let X = {ﬂ:llmzlslzﬁ—ﬂ}. We
prove convergence by using Theorem 7.2.3. Note that X is compact and that the
map A is closed on X, We now show that a(A) = {Z.— El is indeed a descent

function. Let 4 € X and suppose that A+ 4. Let le A(4). Then, by the
definition of A and since 8'(1) =0, we get

~

9(1) (2)-6'(2)]

9,(/1)[9(1) F'(A) - 6"(AXA - A)].

Noting the hypothesis of the theorem, it then follows that
{9 (1) —8'(A)—8"(AXA - A)l
[Z-4

PERIE |4- 2| < by, |2 2] <|2- 2],

Therefore, @ is indeed a descent function, and the result follows immediately by
the corollary to Theorem 7.2.3.

8.3 Some Practical Line Search Methods

In the preceding two sections we presented various line search methods that
either use or do not use derivative-based information. Of these, the golden
section method (which is a limiting form of Fibonacci’s search method) and the
bisection method are often applied in practice, sometimes in combination with
other methods. However, these methods follow a restrictive pattern of placing
subsequent observations and do not accelerate the process by adaptively
exploiting information regarding the shape of the function. Although Newton’s
method tends to do this, it requires second-order derivative information and is
not globally convergent. The quadratic-fit technique described i the discussion
that follows adopts this philosophy, enjoys global convergence under appropri-
ate assumptions such as pseudoconvexity, and is a very popular method.

We remark here that quite often in practice, whenever ill-conditioning
effects are experienced with this method or if it fails to make sufficient progress
during an iteration, a switchover to the bisection search procedure is typically
made, Such a check for a possible switchover is referred to as a safeguard
technique
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Quadratic-Fit Line Search

Suppose that we are trying to minimize a continuous, strictly quasiconvex
function 8(4) over A > 0, and assume that we have three points 0< 4y < 4y < /3
such that & > 8, and 6, <8, where §; =8(4;) forj=1, 2, 3. Note that if 6 =
&, = 6, then, by the nature of §, it is easily verified that these must all be mini-
mizing solutions (see Exercise 8.12). Hence, suppose that in addition, at ieast
one of the inequalities 8 > 6, and &, < & holds true. Let us refer to the
conditions satisfied by these three points as the three-point pattern (TPP). To
begin with, we can take 4, = 0 and examine a trial point i, which might be the

step length of a line search at the previous iteration of an algorithm. Let 6 =
9()1). If 5291, we can set Ay = A and find Ay by repeatedly halving the
interval [4, A;] until a TPP is obtained. On the other hand, if # < 6, we can

set 4 = A and find A; by doubling the interval {4, A,] until a TPP is
obtained.

Now, given the three points (1;, 8;), j =1, 2, 3, we can fit a quadratic

j2 Y
rrrsrre mmmgmeim ey thiecale themen mivimte mmed G d Jtm st tem o A which must lie in
(VVI v l)a s LIV gll [H] L1 l)Ul Iy alid LG LD Hnimiinzery A, wWiliv]l 11Iuat 1 111
(4, 43) by the TPP (see Exercise 8.11). There are three cases to COnSldcl'.

Denote 8 = 6(1) and let Anew denote the revised set of three points (4;, 45,
A3) found as follows:

Case 1: A > Ay (see Figure 8.5). If @ >0, then we let A, = (4, 4, 4). On
the other hand, if 9 <6,, we let 4., =(4, 4, 4). (Note that in case
@ =8, either choice is permissible.)

Case 2: A < A5. Similar to Case 1, if o > 8,, we let Ay, = (4, A A3); and if
8 <6, welet Ay, =(4, 1, ).

()

A

Figure 8.5 Quadratic-fit line search.
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Case 3: 1 =4,. In this case, we do not have a distinct point to obtain a new
TPP. If 43 ~ 4| <& for some convergence tolerance ¢ > 0, we stop with 4,
as the prescribed step length. Otherwise, we place a new observation
point A at a distance &2 away from A, toward 4 or 13, whichever is

further. This yields the situation described by Case 1 or 2 above, and
hence, a new set of points defining A,,,, may be obtained accordingly.

Again, with respect to A, if 6 = 6 = & orif (3-A4)<¢ {orif

O 1IN =N in tha Aiffarantialhla Aaca nr 1F
\ } WO MW WAL A Wl LA AW wladw, W1 Ll

as an acceptable step length in an inexact line search as described next below
holds true], then we terminate this process. Otherwise, 4., satisfies the TPP,

and the above procedure can be repeated using this new TPP.
Note that in Case 3 of the above procedure, when 1 = A, the step of
placing an observation in the vicinity of 4, is akin to evaluating #'(4,) when &

is differentiable. In fact, if we assume that & is pseudoconvex and continuously
twice differentiable, and we apply a modified version of the foregoing procedure
that uses derivatives to represent limiting cases of coincident observation values

as AdAacerihad in Fvarcice 17 wa can use Thanram 7 ') 3 to demonetrate
S Wl AL Al Al Wl W wF, 1 -J YW [ L A LWL Will Tl W ELAWFE L VA R

convergence to an optimal solution, given a starting solution (4;, 4;, A3) that
satisfies the TPP.

Inexact Line Searches: Armijo’s Rule

Very often in practice, we cannot afford the luxury of performing an exact line
search because of the expense of excessive function evaluations, even if we
terminate with some small accuracy tolerance ¢ > (. On the other hand, if we
sacrifice accuracy, we might impair the convergence of the overall algorithm
that iteratively employs such a line search. However, if we adopt a line search
that guarantees a sufficient degree of accuracy or descent in the function value
in a well-defined sense, this might induce the overall algorithm to converge.
Below we describe one popular definition of an acceptable step length known as
Ammijo’s rule and refer the reader to the Notes and References section and
Exercise 8.8 for other such exact line search criteria.

Armijo’s rule is driven by two parameters, 0 < £ < | and a > |, which
manage the acceptable step length from being too large or too small,
respectively. (Typical values are ¢ = 0.2 and @ = 2.) Suppose that we are

minimizing some differentiable function £ R” — R at the point Xe R” in the
direction d € R", where Vf(X)'d < 0. Hence, d is a descent direction. Define
the line search function 8: R —» R as 6(1) = f(x+ Ad) for 2 > 0. Then the
first-order approximation of # at A = 0 is given by 6(0) + A0'(0) and is
depicted in Figure 8.6, Now define
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6(4)
A

Acceptable step length

| e
i |

. / X
N

6(A)

First-order approximationat 2 =0

Figure 8.6 Armijo’s rule,

6(1) = &0) + 2e6'(0)  for 1> 0.

A step length A is considered to be acceptable provided that 9()‘:) < @(I)_
However, to prevent A from being too small, Armijo’s rule also requires that

Had)> Hal ). This gives an acceptable range for 4, as shown in Figure 8.6.
Frequently, Armijo’s rule is adopted in the following manner. A fixed-

step-length parameter A is chosen. If (1) < (1), then either A is itself selected
as the step size, or A is sequentially doubled (assuming that « = 2) to find the
largest integer ¢ > 0 for which (2 1) < 6(2 7). On the other hand, if 8(1) >
6(2), then 7 is sequentially halved to find the smallest integer ¢ > 1 for which

9()‘7./'2") < H:(.Z_ZZ’ ). Later, in Section 8.6, we analyze the convergence of a
steepest descent algorithm that employs such a line search criterion.

8.4 Closedness of the Line Search Algorithmic Map

In the preceding three sections we discussed several procedures for minimizing
a function of one variable. Since the one-dimensional search is a component of
most nonlinear programming aigorithms, we show in this section that line search
procedures define a closed map.

Consider the line search problem to minimize #(2) subject to A € L,



364 Chapter 8

M(x, d) = {y:y=x+ Ad for some 1 € Land f(y)< f(x+Ad) foreach A € L}.

Note that M is generally a point-to-set map because there can be more than one
minimizing point y. Theorem 8.4.1 shows that the map M 1s closed. Thus, if the
map D that determines the direction d is also closed, then, by Theorem 7.3.2 or
its corollaries, if the additional conditions stated hold true, the overall

ATEES A wansdw wes

8.4.1 Theorem

Let £ R” - R, and let L be a closed interval in R Consider the line search map
M: R"xR" - R" defined by

M(x,d)={y:y=x+ Ad for some 1 € Land f(y)< f(x+Ad) for each A € L}.
If fis continuous at x and d # @, then M is closed at (x, d).

Proof

Suppose that (x;,d;) — (x, d) and that y, — y, where y, € M(x,,
d; ). We want to show thaty € M(x, d). First, note that y, = x, + 4, d,, where 4,
e L. Since d # 0, d, #0 for & large enough, and hence 2, = [y, —x;|/]ds].
Taking the limit as k — o, then 4; — 4, where 4 =|ly —x||/||d|, and hence, y = x
+ Ad. Furthermore, since 4, € L for each k, and since L is closed, 1 € L.
Now let 2 € L and note that f(y; )< f(x; + Ad;) for all & Taking the limit as

& — w0 and noting the continuity of £, we conclude that f(y) < f(x+ Ad). Thus,
y € M(x, d), and the proof is complete.

In nonlinear programming, line search is typically performed over one of
the following intervals:

L={A:4A€R}
L={A:420}
L={A:a<A<b}.

In each of the above cases, L is closed and the theorem applies.

In Theorem 8.4.1 we required that the vector d be nonzero. Example
8.4.2 presents a case in which M is not closed if d = 0. In most cases the
direction vector d is nonzero over points outside the solution set Q. Thus, M is
closed at these points, and Theorem 7.2.3 can be applied to prove convergence.
8.4.2 Example

222pA%

Consider the following problem:
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Minimize (x— 2)4.

Here f(x)=(x—2)*. Now consider the sequence (x,, d;) = (i/k, 1/k). Clearly,
x, converges to x = 0 and d}, converges to d = 0. Consider the line search map
M defined in Theorem 8.4.1, where L ={1:120}. The point y; is obtained

by solving the problem to minimize f (X ‘I'A.Uk} subject to A > 0. The reader

can verify that y, =2 for all £, so its limit y equals 2. Note, however, that M(0,
0) = {0}, so that y ¢ M(0, 0). This shows that M is not closed.

8.5 Multidimensional Search Without Using Derivatives

In this section we consider the problem of minimizing a function f of several
variables without using derivatives. The methods described here proceed in the
following manner. Given a vector x, a suitable direction d is first determined,
and then f is minimized from x in the direction d by one of the techniques
discussed earlier in this chapter.

Throughout the book we are required to solve a line search problem of
the form to minimize f(x+ Ad) subject to A € L, where L is typically of the
foom L=R, L={A:A>0}or L={A:a < A<b}. In the statements of the
algorithms, for the purpose of simplicity we have assumed that a minimizing
point A exists. However, this may not be the case. Here, the optimal objective
value of the line search problem may be unbounded, or else the optimal
objective value may be finite but not achieved at any particnlar A. In the first
case, the original problem is unbounded and we may stop. In the latter case, A

could be chosen as A such that f(x +Ad) is sufficiently close to the value inf{ f(x
+ Ad). Ae l},

Cyclic Coordinate Method

This method uses the coordinate axes as the search directions. More specifically,
the method searches along the directions d,,...,d,,, where d; is a vector of zeros

P " 4‘,‘_ a1 a2t tha 'c-l... P - 'T“I.. us ,.l,“.-.... L se mwnde diwnnds e tha voriahla
ACEpL 10T & 1 al Uie jill pOSition. 1nus, 40ng e scarcn arection d ;, e variame
x; is changed while all other variables are kept fixed. The method is iliustrated

schematically in Figure 8.7 for the problem of Example 8.5.1.

Note that we are assuming here that the minimization is done in order
over the dimensions 1,..., n# at each iteration. In a variant known as the Aitken
double sweep method, the search is conducted by minimizing over the
dimensions 1,..., # and then back over the dimensions n — 1, n - 2,..., |, This
requires n — 1 line searches per iteration. Accordingly, if the function to be
minimized is differentiable and its gradient is available, the Gauss-Southwell
variant recommends that one select that coordinate direction for minimizing at
each step that has the largest magnitude of the partial derivative component.
These types of sequential one-dimensional minimizations are sometimes
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referred to as Gauss-Seidel iterations, based on the Gauss-Seidel method for
solving systems of equations.

Summary of the Cyclic Coordinate Method

We summarize below the cyclic coordinate method for minimizing a function of
several variables without using any derivative information. As we show shortly,
if the function is differentiable, the method converges to a stationary poimnt.

As discussed in Section 7.2, several criteria could be used for terminating
the algorithm. In the statement of the algorithm below, the termination criterion
ﬁx +1 — Xi ii < ¢ is used. Obviously, any of the other criteria could be used to stop
the procedure.

Initialization Step Choose a scalar £> 0 to be used for terminating the
algorithm, and let dy,...,d, be the coordinate directions. Choose an initial point

Xy, let y; =x, let k=j =1, and go to the Main Step.

Main Step
1. Let A; be an optimal solution to the problem to minimize f(y; + 4d;)

subjectto A € R, and let y;;, =y; +4;d;. Ifj <n, replace j by j +
1, and repeat Step 1. Otherwise, if / =n, go to Step 2.

2. Let Xgyy =Ypuy- If [Xeq1— X[ <&, then stop. Otherwise, let y, =
Xg41, letj=1, replace kby £ + |, and go to Step 1.

8.5.1 Example

Consider the following problem:
Minimize (x;—2)* +(x —2x,)%.

Note that the optimal solution to this problem is (2, 1) with objective vaiue equai
to zero. Table 8.6 gives a summary of computations for the cyclic coordinate
method starting from the initial point (0, 3). Note that at each iteration, the

vectors v~ and va are ohtained bv nerformine a line csearch in the directione (1
vectors y, and yj are by performing a line search in the Qirections (1,

R AL & W

0) and (0, 1), respectively. Also note that significant progress is made during the
first few iterations, whereas much slower progress is made during later
iterations. After seven iterations, the point (2.22, 1.1}), whose objective value is
(.0023, 1s reached.

In Figure 8.7 the contours of the objective function are given, and the
points generated above by the cyclic coordinate method are shown. Note that at
later iterations, slow progress is made because of the short orthogonal
movements along the valley indicated by the dashed lines. Later, we analyze the
convergence rate of steepest descent methods. The cyclic coordinate method
tends to exhibit a performance characteristic over the n coordinate line searches
similar to that of an iteration of the steepest descent method.
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Table 8.6 Summary of Computations for the Cyclic Coordinate Method

X4

Iteration & 1650 j d; Y A Y
I (0.00,3.00) 1 (1.0,0.0) (0.00,3.00) 3.13 (3.13, 3.00)
52.00 2 (0.0,1.0) (3.133.00) -1.44  (3.13,1.56)
2 (.13,156) 1 (1.0,00) (3.13,1.56) -050  (2.63, 1.56)
1,63 2 (0.0,1.0) (2.63,1.56) 025  (2.63, 1.31)
3 (263,131) 1 (10,000 (263.131) -0.19 (244,131
0.16 2 (0.0,1.0) (2.44,131) 009 (244, 122)
4 (2.44,122) 1 (1.0,00) (2.44,122) —0.09 (235,122
0.04 2 (00,100 (235122 005 (2.35,1.17)
5 235117 | (1.0,00) (235 1.17) 006 (229, 1.17)
0.015 2 (0.0,1.0) (229,1.17) 003  (2.29,1.14)
6 (229, 1.14) 1 (1.0,00) (229, 1.14) 004  (2.25,1.14)
0.007 2 (00,1.0) (225, 1.14) 002 (225, 1.12)
7 (225, 1.12) 1 (1.0,00) (225 1.12) —003 (222, 1.12)
0.004 2 (00,1.0) (222,1.12) 001 (222, 1.11)

Convergence of the Cyclic Coordinate Method

Convergence of the cyclic coordinate method to a stationary point follows
immediately from Theorem 7.3.5 under the following assumptions:

1. The minimum of falong any line in R” is unique.

2. The sequence of points generated by the algorithm is contained in a
compact subset of R”.

Note that the search directions used at each iteration are the coordinate vectors,
so that the matrix of search directions D = I. Obviously, Assumption ] of
Theorem 7.3.5 holds true.

As an alternative approach, Theorem 7.2.3 could have been used to prove
convergence after showing that the overall algorithmic map is closed at each x
satisfying Vf(x)+# 0. In this case, the descent function « is taken as fitself, and

the solution set is Q = {x: Vf(x) =0}.

Acceleration Step

We learned from the foregoing analysis that when applied to a differentiable
function, the cyclic coordinate method will converge to a point with zero
gradient. In the absence of differentiability, however, the method can stall at a
nonoptimal point. As shown in Figure 8.8a, searching along any of the
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Figure 8.7 Cyclic coordinate method.

coordinate axes at the point x, leads to no improvement of the objective

function and results in premature termination. The reason for this premature
termination is the presence of a sharp-edged valley caused by the
nondifferentiability of £ As illustrated in Figure 8.84, this difficulty could
possibly be overcome by searching along the direction x, —x;.

The search along a direction x; 1 —x, is frequently used in applying the
cyclic coordinate method, even in the case where f is differentiable. The usual
rule of thumb is to apply it at every pth iteration. This modification to the cyclic
coordinate method frequently accelerates convergence, particularly when the
sequence of points generated zigzags along a valley. Such a step is usually
referred to as an acceleration step or a pattern search step.

Method of Hooke and Jeeves

The method of Hooke and Jeeves performs two types of search: exploratory
search and pattern search. The first two iterations of the procedure are illustrated
in Figure 8.9. Given x;, an exploratory search along the coordinate directions

produces the point x,. Now a pattern search along the direction x, ~x, leads to
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) ) e

1
Xg

A\

3
Search stalls at x, ! Search continued along the
direction x5 —x;

() (&)

Figure 8.8 Effect of a sharp-edged valley.

the point y. Another exploratory search starting from y gives the pomt x3. The
next pattern search is conducted along the direction x3—x,, yielding y’. The
process is then repeated.

Summary of the Method of Hooke and Jeeves Using Line Searches

As originally proposed by Hooke and Jeeves, the method does not perform any
line search but rather takes discrete steps along the search directions, as we
discuss later. Here we present a continuous version of the method using line
searches along the coordinate directions d,,...,d,, and the pattern direction.

’ ? Exploratory search along the

P coordinate axes
-~
”
«

Figure 8.9 Method of Hooke and Jeeves.
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Initialization Step  Choose a scalar £> 0 to be used in terminating the
algorithm. Choose a starting point x,, let y; =x;, let k=j =1, and go to the

Main Step.
Main Step

1. Let 4; be an optimal solution to the problem to minimize f(y, +

Ad;) subjectto 2 € R, and let y; ) =y;+4,d;. Ifj<n, replace j
by j + 1, and repeat Step 1. Otherwise, if j = », let X4, = Ypup. If

Ixk:1 — x| < &, stop; otherwise, go to Step 2.

-

2. Letd= x;, —x4, and let 1 be an optimal solution to the problem

H

to minimize f(x;,; +Ad) subjectto 4 € R Let y; = x; +4d, let
j=1, replace kby £+ 1, and go to Step 1.

8.5.2 Example

Consider the following problem:
Minimize (x - 2)* +(x —2x,)°.

Note that the optimal solution is (2.00, 1.00) with objective value equal to zero.
Table 8.7 summanzes the computations for the method of Hooke and Jeeves,
starting from the initial point (0.00, 3.00). At each iteration, an exploratory
search along the coordinate directions gives the points y, and y3, and a pattern
search along the direction d = x;,; —x; gives the point y,;, except at iteration &
= 1, where y; = x,. Note that four iterations were required to move from the
initial point to the optimal point (2.00, 1.00) whose objective value is zero. At
this point, [[x5—x4[ = 0.045, and the procedure is terminated.

Figure 8.10 illustrates the points generated by the method of Hooke and
Jeeves using line searches. Note that the pattern search has substantially
improved the convergence behavior by moving along a direction that is aimost
parallel to the valley shown by dashed lines.

Convergence of the Method of Hooke and Jeeves

Suppose that /is differentiable, and let the solution set 2 = {x : V/(x) = 0}. Note

that each iteration of the method of Hooke and Jeeves consists of an application
of the cyclic coordinate method, in addition to a pattern search, Let the cyclic
coordinate search be denoted by the map B and the pattern search be denoted by
the map C. Using an argument similar to that of Theorem 7.3.5, it follows that B
is closed. If the minimum of f along any line is unique and letting a = £, then
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Table 8.7 Summary of Computations for the Method of Hooke 2and Jeeves Using Line Searches

Iteration &k Xk
£raton

ALYE

1 {0.00, 3.00)
52.00

2 (3.13, 1,56)
1.63

3 (2.70, 1.35)
.24

4 (2.04, 1.02)

{.000003

5 (2.00, 1.00)

0.00

Yy d; A

U (0.00,300) (1.0,00)  3.13
(3.13,300y (00, 1.0) —1.44
{282,170y (1.0,0.0) —0.12
270,170y {00,1.0)  —0.35
(2.06,1.04) (1.0,00) 002
204,104y {00, 1.0) -0.02
(2.00,1.00) (1.6,68)  0.00
(2.00,1.00) (0.0,1.0) 0.00

¥rn d ;E

(3.13,3.00 _ _

oy WA

{3.13,156) (3.13,144) 0.10

{2.70, 1.70) — —
(270, 135) (-0.43,-021) 1.50

(2.04, 1.04) — —
{(2.04,1.02) (-0.66,-0.33) 0.06

(2.00, 1.00 — —
{2.00, 1.00)

YS+j'd

(2.82, 1.70)

(2.06, 1.04)

(2.00, 1.00)
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Figure 8.10 Method of Hooke and Jeeves using line searches. Method of
Hooke and Jeeves with Discrete Steps

a(y) < a(x) for x¢ Q. By the definition of C, a(z) < a(y) for z e C(y).
Assuming that A = {x: f(x) < f(x,)}, where x; is the starting point, is com-
pact, convergence of the procedure is established by Theorem 7.3 4.

Methed of Hooke and Jeeves with Discrete Steps

As mentioned earlier, the method of Hooke and Jeeves, as originally proposed,
does not perform line searches but, instead, adopts a simple scheme involving
functional evaluations. A summary of the method is given below.

Initialization Step  Let d,,...,d, be the coordinate directions. Choose

a scalar £> 0 to be used for terminating the algorithm. Furthermore, choose an
initial step size, A > g, and an acceleration factor, a > 0. Choose a starting point
X, let y; =x;, letk=j=1, and go to the Main Step.

Main Step
I If f(y;+Ad;) < f(y;), the trial is termed a success; let y,, =

y; +4d;, and go to Step 2. If, however, f(y, +Ad;) > f(y;), the
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trial is deemed a failure. In this case, if f(y; —Ad;) < f(y;), let

Y;.1=Y;—Ad;, and go to Step 2; if f(y;-Ad;) > f(y;), let
Yia =Y, and go to Step 2.

2. [Ifj <n,replacej byj + 1, and repeat Step 1. Otherwise, go to Step 3
if f(¥ns) < f(xi), andgoto Step4if f(v,,1) > f(x;)-

3. Let x4, = ¥, andlet y; = x3 .y + @(x;,;—x;). Replace kby k
+ |, letj=1,and go to Step 1.

4. I A< g stop; x; is the prescribed solution. Otherwise, replace A by A/2,

Lety, = x;, X4, = X;, replace kby £+ 1, let j = 1, and repeat Step 1.

The reader may note that steps 1 and 2 above describe an exploratory
search. Furthermore, Step 3 is an acceleration step along the direction x; . —x; .

Note that a decision whether to accept or reject the acceleration step is not made
unti}l after an exploratory search is performed. In Step 4, the step size A is
reduced. The procedure could easily be modified so that different step sizes are
used along the different directions. This is sometimes adopted for the purpose of
scaling.

8.5.3 Example

Consider the following problem:
Minimize (x;-2)% +(x - 2x)>.

We solve the problem using the method of Hooke and Jeeves with
discrete steps. The parameters « and A are chosen as 1.0 and 0.2, respectively.
Figure 8.11 shows the path taken by the algorithm starting from (0.0, 3.0). The
points generated are numbered sequentially, and the acceleration step that is
rejected is shown by the dashed lines. From this particular starting point, the
optimal solution is easily reached.

To give a more comprehensive illustration, Table 8.8 summarizes the
computations starting from the new initial point (2.0, 3.0). Here (S) denotes that
the trial is a success and (F) denotes that the trial is a faifure. At the first itera-
tion, and at subsequent iterations whenever f(y3) > f(x,), the vector y, is

taken as x;. Otherwise, y; = 2x, ., —x;. Note that at the end of iteration k =

10, the point (1.70, 0.80) is reached having an objective value 0.02. The
procedure is stopped here with the termination parameter £ = 0.1. If a greater
degree of accuracy is required, A should be reduced to 0.05.

Figure 8.12 illustrates the path taken by the method. The points generated
are again numbered sequentially, and dashed lines represent rejected accelera-
tion steps.
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Table 88 Summary of Computations for the Method of Honke and Jeeves with Discrete Steps

. Xy Ly Yy “““d; . L
Neration & A ] d
f0x) ! S ) / Fly,+Ad)) Sy, —Ad))
: 0.2 (2.00, 3 00) 1 (200,300)  (10,00) (2.20, 3.00)
16.00 16,00 14.44(8)
2 (2.20,3 00} (0.0, 1.0} {2.20,3.20) {220, 2 80)
14,44 17.64(F) 11 56(8)
2 0.2 (2.20,2.80) : (2.40,2.60} (£.0, 0.0) (2,60, 2.60)
1156 7.87 6.89(5)
2 (260,260 (0.0, 10) (260,280) (260,240
6.8 9.13(F) 4.97(8)
3 0.2 (2.60, 240) | (3.00, 2.00) (1.0, 0.0} (3.20, 2.00) (2.80, 2.00)
4.97 2.00 2.71(F) I BS(S}
2 (2.80,2.00) (0.6,1.0) (2.80,2.20) (2.80, 1.80)
1.85 19%F} 1.65(8)
4 02 (2.80, 1.80) 1 (3.00,120) (LG, 0.0) (320,120) (280,120
1.05 1.36 2.71(F} 0.57(8)
2 {2.80, 1.20) (0.0, 1.0} (2.80, 1.40) o
0.57 0.41(8)
5 0.2 (2.80. 1.40} I (2.80,1.00) (10,00} (300, 100)  (260,1.00)
0.41 1.05 2.00(F) 0.49(S)
2 (2.60, 1.OO) (0.0, 1.0) (2.60, 1.20} —
(.49 0.17(3)

(continued)
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0.2

0.2

02

0.1

(2.60, 1.20)
0.17

(2.20, 1.00)
0.04

(1.60, 0.80)
0.03

{1.60, 0,80}
003

(1.70, 0.80)
0.02

(2.40, 1.00)
0.19
(2.20, 1.00)
0.04
(1.80, 0.80)
0.04
(1.60, 0.80)
0.03

(1.00, 0.60)
0.67

(1.20, 0.60)
0.41

(1.6, 0.80)
003

(1.70, ¢.80)
0.02
(1.80, 0.80)
0.04
(1.70, 0.80)
0.02

(1.0, 0.0)

(0.0, 1.0

(1.0, 0.9)

(1.0, 0.0)

(0.0, 1.0)

(1.0, 0.0)

(0.0, 1.0)

{1.0,0.0)

(0.0, 1.0)

(2.60, 1.00)
0.49(F)
(2.20, 1.20)
0.04(F)
(2.00, 0.80
0.16(F)
(1.60, 1.00)
0.19(F)
(1.20, 0.60)
0.41(8)
(1.20, 0.80)
0.57(F)
(1.70,0.80)
0.02(8)
(1.7, 0.50)
0.02(F)
(1.99, 0.80)
0.09(F)
(1.70,0.50)
0.02(F)

(2.2, 1.00)
0.04(S)
(2.20, 0.80)
0.36(F)
(1.60, 0.80)
0.03(8)
{1.60, 0.60)
0.19(F)

(1.20, 0.40)
0.57(F)

{1.70, 0.70)
0. 10(F)
(1.70, 0.80)
0.02¢8)
(1.70, 0.70)
0.10(F)
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0 |
0 !

Figure 8.11 Method of Hooke and Jeeves using discrete steps starting from
(0.0, 3.0). (The numbers denote the order in which points are generated.)

Method of Rosenbrock

As originally proposed, the method of Rosenbrock does not employ line
searches but rather takes discrete steps along the search directions. We present
here a continuous version of the method that utilizes line searches. At each
iteration, the procedure searches iteratively along n linearly independent and
orthogonal directions. When a new point is reached at the end of an iteration, a
new set of orthogonal vectors is constructed. In Figure 8.13 the new directions

are denoted by d, and d,.
Construction of the Search Directions
Let d,,..,d, be linearly independent vectors, each with a norm equal to 1.

Furthermore, suppose that these vectors are mutually orthogonal; that is, d{d ; =

0 for i #j. Starting from the current vector x;, the objective function f is
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40

Figure 8.12 Method of Hooke and Jeeves using line searches. (The
numbers denote the order in which points are generated.)

minimized along each of the directions iteratively, resulting in the point x; ;. In
particular, x; ., — x; = Zj?:l A;d;, where A, is the distance moved along d .

The new collection of directions El .

B 1
procedure, Or orthogonalization procedure, as follows
o 7 & F ol bt el
[ . =
dj if X.J 0
dj = n .
Z.A,-d,v if j,j #(
=]
b, =4 j (8.9)
J '3 T . :
a; -2 (a,d)d, j=2
L i=1
— bj.-
d, =

bl
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Figure 8.13 Rosenbrock’s procedure using discrete steps.

Lemma 8.54 shows that the new directions established by the
Rosenbrock procedure are indeed linearly independent and orthogonal.

8.5.4 Lemma

Suppose that the vectors d,,..,d, are linearly independent and mutually
orthogonal. Then the directions d_la---"—ln defined by (8.9) are also linearly
independent and mutually orthogonal for any set of 4, ..., 4,. Furthermore, if 4,

=0, then d; =d .

0= 3 um Z#ﬂﬁzﬂ(z“]

Jj=1 Jjel Jjel I=j

jel jel rEJ(j)
Since d;,...,d,, are linearly independent, x; = 0 forj € /and AiZies(nth =0
forj ¢ I But A; # 0 forj & I, and hence, 2ied(j)H: = 0foreachj ¢ I By the

definition of J(j), we therefore have g4 =-.- = u, =0, and hence, a,,...,a, are
linearly independent.
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To show that by,..,b, are linearly independent, we use the following
induction argument. Since b, =a, #0, it suffices to show that if by,..,b, are
linearly independent, then by,...,b;, b; . are also linearly independent. Suppose

that ):’;.;ia ;b =0. Using the definition of by, in(8.9), we get

;
J=1
| aa(akad,)] (8.10)
= Z|a- b, +ay qapy
= b,

From (8.9) it follows that each vector b; is a linear combination of ay,...,a,.

Since ay,...,a;,; are linearly independent, it follows from (8.10) that e, = 0.
Since by,..., b, are assumed linearly independent by the induction hypotheses,
from (8.10) we get a; —ahl(aiﬂajﬂ”bj” =0forj=1,.., & Since a; =0,
a; = 0 for each j. This shows that by,...,b,, are linearly independent. By the
definition of d ;» linear independence of al,_-.,a,, is immediate.

Now we establish the orthogonality of by,...,b, and hence the orthogo-
nality of d,,...d,. From (8.9), bjb, = 0; thus, it suffices to show that if
by,..,b; are mutually orthogonal, then by,...b;, b,,, are also mutually

orthogonal. From (8.10) and noting that bjfi ; =0 for i #j, it follows that

k
bt =5 z<aa+ldndf]

=1

= bj-akH —(aiHaj)b;Ej = 0.

Thus, by,...,b;; are mutually orthogonal.
To complete the proof, we show that d j=4d;if 4; =0.From (8.9), if 4;
=}, we get
Jl | _
b, =d, - —@d’b))d, @.11)
= [
Note that b, is a linear combination of ay,...,a;, so that b, =%!_, 5, a,. From
(8.9), it thus follows that
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;]

b= 2% ﬁ:‘rdr + Z_ﬁfr( ) ’Isds]s (8.12)
re’e resf s=r

where & = {r:r<i, A, =0} and . % ={r:r<i, A #0}. Consideri<jand

note that dj-dv =0 forvej. Forr e .»#, r <i<j and hence d}-d,. =0 Forr ¢

#, d4(T, Ad) = Ad’d, = A;. By assumption, 4;

; = 0, and thus muiti-

plying (8.12) by d’;, we get d’jbi = 0 for i <j. From (8.11) it follows that b ; =

d ;, and hence, d j = d,. This completes the proof.

From Lemma 8.54, if 4 ; = 0, then the new direction d j is equal to the
old direction d,;. Hence, we only need to compute new directions for those

indices with 4 j# 0.

Summary of the Method of Rosenbrock Using Line Searches

We now summarize Rosenbrock’s method using line searches for minimizing a
function f of several variables. As we shall show shortly, if £ is differentiable,
then the method converges to a point with zero gradient.

Initialization Step Let £ > 0 be the termination scalar. Choose
d,,...,d,, as the coordinate directions. Choose a starting point x;, let y; = x,, &

=j =1, and go to the Main Step.
Main Step
1. Let A; be an optimal solution to the problem to minimize f(y,

1.! hY .. Py r I | e v — -. . 1 A | 2 e,
AR ;) SuDject t 0 A€ R and lJIj‘+l— j P oAUy A f < A, TEPiace j
by j + |, and repeat Step |. Otherwise, go to Step 2.
2. Let xp =y, If ||"1c+1 — Xy H < g then stop; otherwise, let y, =
Xz.1, Feplace Kby £+ 1, letj= |, and go to Step 3.
3. Form a new set of linearly independent orthogonal search directions
by (8.9). Denote these new directions by d,,....d and go to Step 1.

8.5.5 Example

Consider the following problem:
Minimize (x, — 0* ¢ (x; —2x )2.

We solve this nrnhlem hv the method of Rosenbrock usine line searches

A ASE AR e R ARGIRALL L WSS WOl Adiile Swial WiieS.

Table 8.9 summarizes the computations starting from the point (0 00, 3.00). The
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Table 8.9 Summary of Computations for the
Method of Rosenbrock Using Line Searches

Iteration Xk Y; d. 1. ¥+
J |
k f(xg) flyy) f(¥ja)

1 (0.00,3.00) 1t (0.00,3.00) {1.00,0.00) 3.13 (3.13, 3.00)
52.00 52.00 9.87

2 (3.13,3.00) (0.00,1.00) —144  (3.13,1.56)
9.87 1.63

2 B3, 156) 1 (3.13,1.56) (091,042 —034  (2.8,1.70)
1.63 1.63 0.79

2 (2.82,170) (-0.42,-0.91) 0.51  (2.16,1.24)
0.79 0.16

3 (2.61,124) 1 (2.61,1.24) (-0.85-0.52) 0.38 (2.29, 1.04)
0.16 0.16 0.05

2 (2.29,1.04) (0.52,-085) -0.10  (2.24, 1.13)
0.05 0.004

4 @24,113) 1 (224,1.13) (096,028 004 (2.0, 1.12)
0.004 (0.004 0.003

2 (220,1.12) (028,-096) 0.02  (2.21,1.10)
0.003 0.002

point y, is obtained by optimizing the function along the direction d, starting
from y;, and y; is obtained by optimizing the function along the direction d,
starting from y,. After the first iteration, we have 4 = 3.13 and A4, =-1.44.

TIlcinag 2 00 tha nawy ana I Adirantinnea are N0 NAMN and 7N AD NOIN Al

A
USINE (0.7), Ul NCW S8arin GireClions arc (V.7 1, —u.4es) and (—v 424, —u.71 ). Aller

four iterations, the point (2.21, 1,10) is reached, and the corresponding objective

function value is 0.002. We now have ”x4 —x3|| = (1.15, and the procedure is

ot a
lUPPW;

In Figure 8.14 the progress of the method is shown. It may be interesting
to compare this figure with Figure 8.15, which is given later for the method of
Rosenbrock using discrete steps.

Convergence of the Method of Rosenbrock

Note that according to Lemma 8.5.4, the search directions employed by the
method are linearly independent and mutually orthogonal, and each has norm |.
Thus, at any given iteration, the matrix D denoting the search directions satisfies

D'D =1. Thus, det[D] = 1 and hence Assumption 1 of Theorem 7.3.5 holds true.
By this theorem it follows that the method of Rosenbrock using line searches
converges to a stationary point if the following assumptions are true;
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1. The minimum of falong any line in R" is unique.
2. The sequence of points generated by the algorithm is contained in a

compact subset of R”,

Rosenbrock’s Method with Discrete Steps

As mentioned earlier, the method proposed by Rosenbrock avoids line searches.
Instead, functional values are made at specific points. Furthermore, an
acceleration feature is incorporated by suitably increasing or decreasing the step
lengths as the method proceeds. A summary of the method is given below.

Initialization Step Let £ > 0 be the termination scalar, leta > 1 be a

chosen expansion factor, and let #e{-1,0) be a selected contract

Choose dy,...,d, as the coordinate directions, and let Aj,...,A, > 0 be the initial
step sizes along these directions. Choose a starting point x;, let y; = x,, k=j=

LiletA; = A j foreach j, and go to the Main Step.

Main Step
i Iff(yj +Ad ;) <f(yj), the jth trial is deemed a success; set Y =

y;+4A,d;, and replace A; by aA;. If, on the other hand, f(y; +
Ad;) > f(y;), the trial is considered a failure; sety s,y = y;, and

v j?
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replace A; by BA;. Ifj < n, replace j by j + 1, and repeat Step 1.
Otherwise, if j = », go to Step 2.

2. If f(y,41) < f(y)), that is, if any of the » trials of Step 1 were
successful, let y; = y,4, setj = 1, and repeat Step 1. Now consider
the case f(y,,1) = f(¥;), that is, when each of the last » trials of
Step 1 was a failure. If f(y,.) < f(xg), that is, if at least one
successful trial was encountered in Step 1 during iteration 4, go to Step
3. If f(y,+1) = f(xg), that is, if no successful trial is encountered,

stop with x, as an estimate of the optimal solution if IAfl <¢g forj;
otherwise, let y; = y,,.1, letj =1, and go to Step 1.

3. Let Xy = Yoo If K4y —Xg ] < &, stop with x4, as an estimate of
the optimal solution, Otherwise, compute 4...., 4,, from the relationship

Xpog —Xg = Z'}:de;‘s form a new set of search directions by (8.9)

and denote these directions by d;,...,d,,, let A = A I, for each J, let

Y| = Xz, Teplace by £+ 1 letj= 1, and go to Step |.

Note that discrete steps are taken along the » search directions in Step |.
If a success occurs along d;, then A; is replaced by aA;; and if a failure

occurs along d, then A; is replaced by AA;. Since 8 < 0, a failure results in

reversing the jth search direction during the next pass through Step 1. Note that
Step 1 is repeated until a failure occurs along each of the search directions, in
which case, if at least one success was obtained during a previous loop at this
iteration, a new set of search directions is formed by the Gram-Schmidt
procedure. If the loops through the search directions continue to result in
failures, the step length shrinks to zero.

8.5.6 Example

Consider the following problem:
Minimize (x;—2)* +(x ~2x,)%.

We solve this problem by the method of Rosenbrock using discrete steps
with Ay = Ay, = 0.1, a = 2.0, and § = -0.5. Table 8.10 summarizes the

computations starting from (0.00, 3.00), where (S) denotes a success and (F)
denotes a failure, Note that within each iteration the directions d; and d, are

fixed. After seven passes through Step | of Rosenbrock’s method, we move
from xj = (0.00, 3.00) to x5 = (3.10, }1.45). At this point, a change of directions
is required. In particular, (x, — x;) = A4d; + Apd,, where 4 =3.i0and 4, =
—1.55. Using (8.9), the reader can easily verify that the new search directions are
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given by (0.89, —0.45) and (-0.45, —0.89), which are used in the second iteration.
The procedure is terminated during the second iteration,

Figure 8.15 displays the progress of Rosenbrock’s method, where the
points generated are numbered sequentiajly.

8.6 Multidimensional Search Using Derivatives

In the preceding section we described several minimization procedures that use
only functional evaluations during the course of optimization. We now discuss

some methods that use derivatives in determining the search directions. In
particular, we discuss the steepest descent method and the method of Newton.

Method of Steepest Descent

The method of steepest descent, proposed by Cauchy in 1847, is one of the most
fundamental procedures for minimizing a differentiable function of several
variables. Recall that a vector d is called a direction of descent of a function fat
x if there exists 2 > 0 such that f(x + Ad) < f(x) forall A € (0, 8). In

particular, if “mz ot [f(x+Ad) — f(x)]/A < 0O, then d is a direction of
—

descent. The method of steepest descent moves along the direction d with |df =
1, which minimizes the above limit. Lemma 8.6.1 shows that if fis differentiable
at X with a nonzero gradient, then ~Vf(x)/ HVf (x)u is indeed the direction of

steepest descent. For this reason, in the presence of differentiability, the method
of steepest descent is sometimes called the gradient method, it is also referred to
as Cauchy's method.

X al
39

Figure 8.15 Rosenbrock’s procedure using discrete steps. (The numbers
denote the order in which points are generated.)
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8.6.1 Lemma

Suppose that £ R” —» R is differentiable at x, and suppose that Vf(x) # 0. Then
the optimal solution to the problem to minimize f'(x;d) subject to ﬂd" <l]is
given by d = -VF(x)/[Vf(x)f; that is, —V/(x)/|[V/(x)| is the direction of
steepest descent of fat x.

Table 8.10 Summary of Computations for
Rosenbrock’s Method Using Discrete Steps

Iteration Xk : Yi A d. yj+a,d;
k S(xg) Sy ;) ! ! fly;+A,d))
1 (0.00,3.00) 1 (0.00,3.00) 0.0 (1.00,0.00) (0.10, 3.00)

52.00 52.00 47.84(8)
2 (0.10,3.00)  0.10  (0.00, 1.00) (0.10, 3.10)
47.84 50.24(F)

I (0.10,3.00) 020  (1.00,0.00) (0.30, 3.00)
47.84 40.84(S)

2 (0.30,3.00) —0.05  (0.00, 1.00) (0.30, 2.95)
40.84 39.7K(S)

I (030,295 040  (1.00,0.00) (0.70, 2.95)
39.71 29.90(S)

2 (0.70,295) -0.10  (0.00, 1.00) (0,70, 2.85)
29.90 27 86(S)

I (0.70,2.85) 0.80 (1.00,0.00) (1.50, 2.85)
27.86 17.70(S)

2 (1.50,2.85) -020  (0.00, 1.00) (1.50, 2.65)
17.70 14.50(S)

1 (1.50,265) 160  (1.00,0.00) (3.10, 2.65)
14.50 6.30(S)

2 (3.10,265) -040  (0.00, 1.00) (3.10, 2.25)
6.30 3.42(8)

I (3.10,225) 320  (1.00,0.00) (6.30, 2.25)
3.42 345.12(F)

2 (3.10,225) —0.80  (0.00,1.00) (3.10, 1.45)
3.42 1.50(5)

(continued)
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Table 8.10 (continued)
Iteration Xk Yj AL d. y;+a,d;
J J
k S (xi) /&y fly;+48,d;)
(3.10, 1.45) -1.60  (1.00, 0.00) (1.50, 1.45)
1.50 2.02(F)
(3.10,1.45) —1.60  (0.00, 1.00)  (3.10,-0.15)
.50 13.02(F)
2 (3.10, 1.45) (3.10,1.45) 0.10  (0.89,-0.45) (3.19, 1.41)
1.50 1.50 2.14(F)
(3.10,145) 010 (-045-089)  (3.06, 1.36)
.50 1.38(S)
(3.06,136) —0.05 (0.89,-045)  (3.02,138)
138 1.15(S)
(3.02,138) 020 (-045,-089)  (2.93,1.20)
1.15 1.03(S)
(293,120) —0.10 (0.89,-0.45)  (2.84, 1.25)
1.03 0.61(S)
(2.84,125) 040 (-045,-089)  (2.66,0.89)
0.61 0.96(F)
(2.84,1.25) 020  (0.89,-0.45)  (2.66, 1.34)
0.61 0.19(S)
(2.66,1.34) 020 (-0.45,-089) (275, 1.52)
0.19 0.40(F)
Proof

From the differentiability of fat x, it follows that

i, - Jf{
f'(x;d)=lim

e

L oAAY
"" /

J

e
La

L=Vf(x)'d.

a0t

A

Thus, the problem reduces to minimizing Vf(x)'d subject to ”d" < {. By the
Schwartz inequality, for [ldff < 1 we have

V/(w'd 2 —|vyof jaf > - [vr e,

with equality holding throughout if and only if d = d = —Vf(x)/[V/(x)|. Thus,

d is the optimal solution, and the proof is complete.
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Summary of the Steepest Descent Algorithm

Given a point x, the steepest descent algorithm proceeds by performing a line
search along the direction —Vf(x)/ HVf (x)" or, equivalently, along the direction

-V/(x). A summary of the method is given below.

Initialization Step Let £ > 0 be the termination scalar. Choose a
starting point x;, let k= 1, and go to the Main Step.

Main Step
If HVf (xk)||<f;, stop; otherwise, let d;, = —Vf(x;), and let 4, be an

optimal solution to the problem to minimize f(x; + Ad;) subject to 1>
0.Let x;,; = x; + 4,d;, replace kby & + |, and repeat the Main Step.

8.6.2 Example
Consider the following problem:
Minimize (x; —2)* + (x —2x,)%.
We solve this problem using the method of steepest descent, starting with
the point (0.00, 3.00). A summary of the computations is given in Table 8.11.
After seven iterations, the point xg = (2.28, 1.15)" is reached. The algorithm is

terminated since [[V/(xg)| = 0.09 is small. The progress of the method is shown
in Figure 8.16. Note that the minimizing point for this problem is (2.00, 1.00).

Convergence of the Steepest Descent Method
Let Q= {X:Vf(X) =0}, and let f'be the descent function. The algorithmic map

Y = -~

is A = MD, where D(x) = [x, V/(x)] and M is the line search map over the

closed interval [0, «). Assuming that f is contlnuousl differentiable, D is

continuous Furthermore, M is closed by Theorem 8.4.1. Therefore, the
ﬂ!n tk A IS nlnsnrl I'\y ("nr'nnaﬂ; 0 tn T"\nnrnm 7 '2 ‘) EI“QI]\J |'Fv z Y

EUII ll]lll\d lllu]-l LR Asurl Wwilll F E T S I -TY

then Vf (xyd < 0, where d = -V/(x). By Theorem 4.1.2, d is a descent
direction, and hence f(y) < f(x) for y € A(x). Assuming that the sequence

generated by the algorithm is contained in a compact set, then by Theorem 7.2.3,
the steepest descent algorithm converges to a point with zero gradient.

Zigzagging of the Steepest Descent Method

The method of steepest descent usually works quite well during early stages of
the optimization process, depending on the point of initialization, However, as a

b[dllUﬂdl’y pUll'll 1S dppl’UdLﬂEﬂ the mcmou llbl.ldlly behaves pUUfly ldKl]’lg bIﬂdll
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Figure 8.16 Methed of steepest descent.

Table 8.11 Summary of Computations for the Method of Steepest Descent

Iteration

k

Xt

vV
f(xg) 7 %)

v/ de =-Vrexg)

Ay

X1+l

1

(0.00, 3.00) (—44.00, 24.00)

52.00

2.70, 1.51) (0.73, 1.28)
0.34

(2.52,1.20) (0.80,-0.48)
0.09

(2.43,1.25) (0.8, 0.28)
0.04

(2.37, 1.16) (0.30,~0.20)
0.02

(2.33, 1.18)  (0.08, 0.12)
0.01

(2.30, 1.14) (0.15,-0.08)
0.009

(2.28, 1.15)  (0.05, 0.08)
0.007

50.12

1.47

0.93

0.33

0.36

0.14

0.17

0.09

(44.00,-24.00) 0.062 (2.70, 1.51)

(—0.73, —1.28}

(~0.80, 0.48)

(—0.18, -0.28)

(<030, 0.20)

(-0.08, —0.12)

(-0.15, 0.08)

0.24

0.11

0.31

0.12

0.36

0.13

(2.52, 1.20)

(2.43, 1.25)

(237, 1.16)

(233, 1.18)

(2.30, 1.14)

(2.28, 1.15)
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nearly orthogonal steps. This zigzagging phenomenon was encountered in
Example 8.6.2 and is illustrated in Figure 8.16, in which zigzagging occurs
along the valley shown by the dashed lines.

Zigzagging and poor convergence of the steepest descent algorithm at
later stages can be explained intuitively by considering the following expression
of the function /:

flxg + M) = f(x)+AVF(x) d+ Ad|a(xy; Ad),

where a(x; Ad)—> 0 as Ad > 0, and d is a search direction with |d| = 1. If
X; is close to a stationary point with zero gradient and f is continuously
differentiable, then ”Vf (xg )|| will be smaill, making the coefficient of 2 in the

term AVf(x;)'d of a small order of magnitude. Since the steepest descent
method employs the linear approximation of fto find a direction of movement,
where the term Z.Hd”a(x x> Ad) is essentially ignored, we should expect that the

directions generated at late stages will not be very effective if the latter term
contributes significantly to the description of f, even for relatively small values
of A.

As we shall iearn in the remainder of the chapter, there are some ways to
overcome the difficulties of zigzagging by deflecting the gradient. Rather than
moving along d = -Vf(x), we can move along d = -DVf(x) or along d =

-Vf(x) + g, where D is an appropriate matrix and g is an appropriate vector.
These correction procedures will be discussed in more detail shortly.

Convergence Rate Analysis for the Steepest Descent Algorithm

In this section we give a more formalized analysis of the zigzagging
phenomenon and the empirically observed slow convergence rate of the steepest

descent aleorithm. This analvsis will also afford memhtq into nossihle ways of

w e iiAL AL Liallayuoio CanShs daiav’aha TRAVY pPRAGS LI L

allewatmg this poor algorlthmlc performance.
Toward this end, let us begin by considering a bivariate quadratic

function f(x;,x;) = (1/2)(_1:1 +axn] where a > |. Note that the Hessian

matrix to this function is H = diag{1, a}, with eigenvalues | and a. Let us define
the condition number of a positive definite matrix to be the ratio of its largest to
smallest eigenvalues. Hence, the condition number of H for our example is a.
The contours of f are plotied in Figure 8.17. Observe that as a increases, a
phenomenon that is known as i/l-conditioning, or a worsening of the condition
number results, whereby the contours become increasingly skewed and the
graph of the function becomes increasingly steep in the x, direction relative to

the X direction.
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Figure 8,17 Convergence rate analysis of the steepest descent algorithm.

Now, given a starting point X = (x;, X, Y, let us apply an iteration of the steepest

descent algorithm to obtain a point Xpey = (Xinew» ¥2new ) - Note that if x; = 0

]

r v. =N than
i A U,l.llul.}

0) in one step. Hence, suppose that x; # 0 and x, # 0. The steepest descent
direction is given by d = —Vf(x) = —(x;, @x,), resulting in X, = X + Ad,
where A solves the line search problem to minimize ()= f(x + Ad) =

(1/2)[xf(1 - A +ax§ (1— @A)’ subject to A > 0. Using simple calculus, we
obtain

2 2.2
1= x! +arx, ’
XI + xz
SO
2 .2 ) z |
x _|a na@-1) yxnl-a) (8.13)
new 2,32 " 2, 32} '
X1 +a X3 XI + X3
Observe that Xjpew Xpew = ~a? (x2/x;). Hence, if we begin with a solution x"

having xl(]/xz = K # 0 and generate a sequence of iterates {xk}, k=1, 2,..,
using the steepest descent algorithm, then the sequence of values {x{‘/xé‘ }

alternate between the values K and —a2/K as the sequence {xk} converges 1o
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8.17. Note that as the condition number a increases, this zigzagging
phenomenon becomes more pronounced. On the other hand, if a = 1, then the

. . ¥ - - . »
contours of fare circular, and we obtain x! = x* in a single iteration.

To study the rate of convergence, let us examine the rate at which

{f (xk )} converges to the value zero. From (8.13) it is easily verified that

K+l 2 2 k
f(x : ) _ 2K;,a'§a—'2) . where K =L, (8.14)
&%)y (K +a ) (K +a) X3

Indeed, the expression in (8.14) can be seen to be maximized when K% = a*

(see Exercise 8.19), so that we obtain

6 _@-1y?
fx5y @+

(8.15)

Note from (8.15) that {f (xl’r )} — 0 at a geometric or linear rate bounded by the

ratio (& —1)%/(a + I)2 < 1, In fact, if we initialize the process with xlolxg =K=
1. H y2 _

ki k2 _ 2
a, 7.116 1, sifice J\k — - ffu = v Freen nbn-un fona B

3 e :.l’\-‘
UV (5CC igu

(8.14) that the convergence ratio f(x"‘*l)/f(xk) is precisely (o — 1)2/(a'+l)2.
Hence, as a approaches infinity, this ratio approaches | from below, and the rate
of convergence becomes increasingly slower.

The foregoing analysis can be extended to a general quadratic function

F(x) = ¢'x+(1/2)x'Hx, where H is an » x n, symmetric, positive definite
matrix. The unique minimizer x* for this function is given by the solution to the

system Hx* = —¢ obtained by setting Vf(x*) = 0. Also, given an iterate x,

the optimal step length A and the revised iterate x;_; are given by the following
generalization of (8.13), where g; = Vf(x;) = ¢+ Hx,

1= Ek8k

== and Xpe) = X4 — A8 (8.16)
g Hg;

Now, to evaluate the rate of convergence, let us employ a convenient measure
for convergence given by the following error function:

e(x)=%(x—x')’H(x—x')=f(x)+;—x"Hx*, (8.17)

where we have used the fact that Hx =

¢. Note that e(x) differs from f(x) by

e = v T Fan
L A A . lliI ldw
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 (glHg, )Y, H 'g;) (@+1)

where a is the condition number of H. Hence, {e(x;)} — 0 at a lmear or

! 2 2
e(Xp) = {1 (2484 }(xk) G 1)2 e(xp),  (8.18)

geometric convergence rate bounded above by (a - I)2/ (a+ 1)2; s0, as before,
we can expect the convergence to become increasingly slower as a increases,
depending on the initial solution x,.

For continuously twice differentiable nonquadratic functions /* R” - R, a

similar result is known to hold. In such a case, if x* is a local minimum to
which a sequence {x,} generated by the steepest descent algorithm converges,

and if H(x") is positive definite with a condition number a, then the
corresponding sequence of objective values {f(x,)} can be shown to converge

linearly to the value f(x*) at a rate bounded above by (& — I)zl(a‘ + 1)2.

Convergence Analysis of the Steepest Descent Algorithm
Using Armijo’s Inexact Line Search

In Section 8.3 we introduced Armijo’s rule for sclecting an acceptable, inexact
step length during a line search process. It is instructive to observe how such a
criterion still guarantees algorithmic convergence. Below, we present a
convergence analysis for an inexact steepest descent algorithm applied to a

function £ R" -» R whose gradient function Vf(x) is Lipschitz continuous with

constant G > 0 on S(xg) = {x: f(x)< f(xy)} for some given x; e R". That
is, we have [V/(x)-V/(y)] < Gfx-y| for all x, y e S(xg). For example, if
the Hessian of f at any point has a norm bounded above by a constant G on
convS(xp) (see Appendix A for the norm of a matrix), then such a function has
Lipschitz continuous gradients. This follows from the mean value theorem,
noting that for any x # y € S(xg), [V/(x)-V/ )| = [H&Xx-y)| < G|x-y].
The procedure we analyze is the often-used variant of Armijo’s rule
described in Section 8.3 with parameters 0 < £ < 1, « = 2, and a fixed-step-length

parameter A, wherein either A itself is chosen, if acceptable, or is sequentially

halved until an acceptable step length results. This procedure is embodied in the
following result.

8.6.3 Theorem

Let £ R" —» R be such that its gradient Vf(x) is Lipschitz continuous with

]
v
=
a.
o
o
A
3]
A
&
<
o
=
<
=
o)
2
»

some fixed-step-length parameter
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X, define the search direction d, = —-Vf(x,), and consider Armijo’s function
B(2) = 6(0) + A6'(0), A > 0, where (1) = f(x; +Ad,), 12> 0, is the line
search function. If d; = 0, then stop. Otherwise, find the smallest integer £ > 0

for which @(A/2') < 5(1/2’) and define the next iterate as x;; = x; + A,d;,

[ P = j_f‘jt MNirmuz; c1rvrvmon $had atavéima writh onrns TFarads w o this mrmeadiiea
¥WIilCL '« = LML o INUYY DUPLAJAL LLIAL OLALLEE VYILILD DV i all AO, LD pPIvvLu il v
produces a sequence of iterates xj, Xp, X,,.. . Then either the procedure

terminates finitely with Vf(x;) = 0 for some X, or else an infinite sequence

{x;} is generated such that the corresponding sequence {Vf(x;)} — 0.

Proof

The case of finite termination is clear. Hence, suppose that an infinite
sequence {x,} is generated. Note that the Armijo criterion 9(1/2’) < é(i"/zf)

is equivalent to 8(1/2") = f(x,y) < O(A/2") = B(0)+(A&/2)WVf (x,)' d; =
fxi)—(Aer2)|[Vf (x4 )||2 . Hence, 1> 0 is the smallest integer for which

f(xm)—f(xk)s‘z—";‘9||Vf(xk)||2. (8.19)

Now, using the mean value theorem, we have, for some strict convex
combination X of x, and x;,,, that

SGea) = f(xg) = HdLVS(R)
= — AV () IV (3 )= VS (3 ) + VS (%)]
= A VI + V7 ) [V () - VAR
< A VO + 4 or ) [V ) -V G-

But by the Lipschitz continuity of Vf, noting from (8.19) that the descent
nature of the algorithm guarantees that x, € S(xq) for all &, we have

IVFa)-VI&)] < Glxi ~x| < Glxy ~xpall = GV (x;)f. Substituting
this above, we obtamn
~A AG
FGr)— ) S= 4 vl (1- 4G) = —2,—l|Vf(xk W (l —?]. (8.20)

Consequently, from (8.20), we know that (8.19) will hold true when ¢ is

increased to no larger an integer value than is necessary to make 1 - (1G/2") >
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&, for then (8.20) will imply (8.19). But this means that | — (AG/27y <g; that
is, Ag/2' > £(l — €)/2G. Substituting this in (8.19), we get

S ga)~ f(xg) <————= g) "Vf( )“

Hence, noting that {f(x;)} 1s a monotone decreasing sequence and soO has a

limit, taking limits as ¢ — o, we get
0< ~£(l—£) . "Vf( )-n
€ ——= lim X ,
R
which implies that {Vf(x;)} — 0. This completes the proof.

Method of Newton

In Section 8.2 we discussed Newton’s method for minimizing a function of a
single variable. The method of Newton is a procedure that deflects the steepest
descent direction by premultiplying it by the inverse of the Hessian matrix. This
operation is motivated by finding a suitable direction for the quadratic

TSI -y Loven rntrovin wmoth e thha amdtem o n 1Zem e e S o 6D e

applumulal.luu to the function rather than by uuumg a linear approxXimation to
the function, as in the gradient search. To motivate the procedure, consider the
following approximation g at a given point X;:

g(x) = f(xk)wf(xk)‘(x—xk)%(x—xk)' HOx )(x - %),

where H(x,) is the Hessian matrix of fat x;. A necessary condition for a
minimum of the quadratic approximation g is that Vg(x) = 0, or Vf(x;,) +
H(x; }x -x;) = 0. Assuming that the inverse of H(x;) exists, the successor
point x, ., isgiven by

Xpa1 =X — HOG) T VA (xg). (8.21)
Equation (8.21) gives the recursive form of the points generated by Newton’s
method for the multidimensional case. Assuming that Vf(x) = @, that H(X) is
positive definite at a local minimum X, and that f is continuously twice
differentiable, it follows that H(x, ) is positive definite at points close to X, and
hence the successor point X, is well defined.

It is interesting to note that Newton’s method can be interpreted as a
steepest descent algorithm with affine scaling. Specifically, given a point x, at

iteration k, suppose that H(x;) is positive definite and that we have a Cholesky

factorization (see Appendix A.2) of its inverse given by H(x, )_1 = LI/, where
L is a lower triangular matrix with positive diagonal elements. Now, consider
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the affine scaling transformation x = Ly. This transforms the function f(x) to
the function F(y) = f[Ly], and the current point in the y space is y; = =L x ke

Hence, we have VF(y;) = L'VfILy,] = L'Vf(x,). A unit step size along the
negative gradient direction in the y space will then take us to the point y;, =

—_ :"?f{v Trarmalatina thio tn tha ~n oW N . LS Y79
k I.J VJ \J\k} llmlblalllls WUllo W LIV YUV, IR Ve

by premultiplying throughout by L produces precisely Equatlon (8.21) and
hence yields a steepest descent interpretation of Newton’s method. Observe that
this comment alludes to the benefits of using an appropriate scaling
transformation. Indeed, if the function f was quadratic in the above analysis,
then a unit step along the steepest descent direction in the transformed space
would be an optimal step along that direction, which would moreover take us
directly to the optimal solution in one iteration starting from any given solution.
We also comment here that (8.21) can be viewed as an application of the
Newron—Raphson method to the solution of the system of equations Vf(x) = 0
Given a well-determined system of nonlinear equations, each iteration of the
Newton—Raphson method adopts a first-order Taylor series approximation to
this equation system at the current iterate and solves the resulting linear system

to determine the next iterate. Applying this to the system Vf(x) =0 at an iterate
X, the first-order approximation to Vf(x) is given by Vf(x;) + H(x; )}(x —x; ).
Setting this equal to zero and solving produces the solution x = X, as given by
(8.21).

8.6.4 Example

Consider the following problem:
... 4 2
Minimize (x; —2)" +(x —2x,)".
The summary of the computations using Newton’s method is given in Table
8.12. At each iteration, x;, is given by x; 4 = xk—H(xk)_lVf(xk). After

siX iterations, the point x, = (1.83, 0.91)" is reached. At this point, !!V’f ( x?)!! =

0.04, and the procedure is terminated. The points generated by the method are
shown in Figure 8.18.

In Example 8.6.4 the value of the objective function decreased at each
iteration. However, this will not generally be the case, so f cannot be used as a
descent function. Theorem 8.6.5 indicates that Newton’s method indeed
converges, provided that we start from a point close enough to an optimal point.

Order-Two Convergence of the Method of Newton

In general, the pomnts generated by the method of Newton may not
converge. The reason for this is that H(x; ) may be singular, so that x,_, is not
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Table 8.12 Summary of Computations for the Method of Newton

i Vi(x;)
k Sy

1 (0.00, 3.00) ( 44.0,24.0)
52.00

2 (0.67, 0.33) (-9.39,.0.04)
3.13

3 (.11, 0.56) (-2.84, —0.04)
0.63

4 (1.41,0.70) (-0.80, —0.04)
0.12

5 (1.61, 0.80) (022, -0.04)
0.02

6 (1.74, 0.87) (-0.07, 0.00)
0.005

7 (1.83, 0.9 (0.0003, - 0.04)

0.0609

Hx;) H(xz)™ “HE) TV ) Yk
T50.0 —4.0 T80 40 (067,-267)  (0.67,033)
[--4.0 s.o} EL.O 500
2323 40] 1 80  40] (0.4, 0.23) (1.11,0.56)
| 40 80] 169.84]4.0 2323
11.50 —4.0) 1780 4.0 (0.30, 0.14) (141, 0.70)
{—4.0 8.0 %[4.0 11.50 |
[6.18 ~4.0] 1 T80 4.0 (0.20,0.10) (1.61, 0.80)
4.0 80] 334440 6.8
[3.83 4.0 1 {8.0 4.0] (0.13,0.07) (1.74, 0.87)
4.0 80 14.64]4.0 383
"2.81 -4.0} 1 ]80 4.0] (0.09,0.04) (1.83,091)
|-4.0 8.0 6.48]4.0 2.81]
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W N

0
Figure 8.18 Method of Newton,
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well defined. Even if H(x,)™! exists, S (X)) is not necessarily less than f(x, ).
However, if the starting point is close enough to a point X such that Vf(X) =0
and H(X) is of full rank, then the method of Newton is well defined and
converges to X. This is pro
assumptions of Theorem 7.2.3 hold true, where the descent function a is given

cimd len Thanmetw © £ € e alirmssiiome #laae 11 41
Yeou I T HGUICHTI 0,0.0 DY HIIUWIlIE Lildal dAdll LIS

by a(x) = ||x —i”

8.6.5 Theorem
Let £ R" — R be continuously twice differentiable. Consider Newton’s
algorithm defined by the map A(x) = x — H(x)"Vf(x). Let X be such that

Vf(X) = 0 and H(i)_l exists. Let the starting point x; be sufficiently close to
X so that this proximity implies that there exist 4, 4, >0 with kk; ""1 -iu <1
such that
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1. "H(i)““* <k

and by the Taylor series expansion of Vf,
2. v/ @)~ VFx)- HXYE - x)| <k X - x

2

for each x satisfying !!x —~i” < !!"1 +i!!. Then the algorithm converges superline-

arly to X with at least an order-two or quadratic rate of convergence.

Proof

[et the solution set 2 ={X} and let X = {x :||x— i” < Hxl - i"}. We prove
convergence by using Theorem 7.2.3. Note that X is compact and that the map A
given via (8.21) is closed on X. We now show that o(x) = ||[x—X|| is indeed a

descent function. Let x € X, and suppose that x # X. Lety € A(x). Then, by the
definition of A and since Vf(X) =0, we get

y =X =(x-%)~ H(x) " [V/(x) - V/(%)]

= H(x) '[V/(0)- v/(x)- Hx)X - x)].
Noting | and 2, it then follows that

Iy =% = Heo ™ 19/ - v/ - HEOE %)
< [reolv - vre0 - BEOE-x)|
< kky |x =% < bk, fx; - X]fx - %]
< "x - iﬂ

This shows that a is indeed a descent function. By the corollary to Theorem
7.2.3, we have convergence to X. Moreover, for any iterate x; € X, the new
. . . — —2
iterate y = x, ,; produced by the algorithm satisfies ka e x“ < hky lek - x"

from above. Since {x;}-» X, we have at least an order-two rate of convergence.

8.7 Modification of Newton’s Method: Levenberg—Marquardt
and Trust Region Methods

In Theorem 8.6.5 we have seen that if Newton's method is initialized close
enough to a local minimum X with a positive definite Hessian H(X), then it

converges quadratically to this solution. In general, we have observed that the

t See Appendix A.l for the norm of a matrix.
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method may not be defined because of the singularity of H(x,) at a given point
X;, or the search direction d; = “H(x;) 'Vf(x;) may not be a descent

direction; or even if Vf(x k)’d & <0, aunit step size might not give a descent in
/- To safeguard against the latter, we could perform a line search given that d,

is a descent direction. However, for the more critical issue of having a well-
defined algorithm that converges to a point of zero gradient irrespective of the
starting solution (i.e., enjoys global convergence), the following modifications
can be adopted.

We first discuss a modification of Newion’s method that guarantees
convergence regardless of the starting point. Given x, consider the direction d =
-BVf(x), where B is a symmetric positive definite matrix to be determined

later. The successor point is y = x + j,d, where 4 isan optimal solution to the
problem to minimize f(x + Ad) subjectto A > 0.

We now specify the matrix B as (el + H)_l, where H = H(x). The scalar

£> 0 1s determined as follows. Fix & > 0, and let £ > 0 be the smallest scalar that
would make all the eigenvalues of the matrix (¢l + H) greater than or equal to 6.
Since the eigenvalues of &l + H are all positive, &l + H is positive definite and

invertible. In particular, B = (¢l +H)™' is also positive definite. Since the
eigenvalues of a matrix depend continuously on its elements, ¢ is a continuous
function of x, and hence the point-to-point map D: R” — R"x R" defined by
D(x) = (x, d) is continuous. Thus, the algorithmic map is A = MD, where M is
the usual line search map over {A: 41> 0}.

Let Q= {X:Vf(x)=10}, and let x ¢ Q. Since B 1s positive definite, d =
~BVf(x)#0; and, by Theorem 84.1, it follows that M is closed at (x, d).
Furthermore, since D is a continuous function, by Corollary 2 to Theorem 7.3.2,

A = Almond Aawrne a el an

= RATY ~ ’, 1l + ¥y
fg ¥ IVAIAF |5 WIUDCU UYT] LT UUIH.}JICAIICIII. Vi ak.

To invoke Theorem 7.2.3, we need to specify a continuous descent
function. Suppose that x¢ (2, and let y € A(x). Note that Vf(x)'d =

-Vf(x)) BVf(x) < 0 since B is positive definite and Vf(x) = 0. Thus, d is a
descent direction of f at x, and by Theorem 4.1.2, f(y) < f(x). Therefore, fis

indeed a descent function. Assuming that the sequence generated by the
algorithm is contained in a compact set, by Theorem 7.2.3 it follows that the
algorithm converges.

It should be noted that if the smallest eigenvalue of H(X) is greater than

or equal to g, then, as the points {x;} generated by the algorithm approach x,

g; will be equal to zero. Thus, d; = -H(x k)"lVf (x; ), and the algorithm
reduces to that of Newton and, hence, this method also enjoys an order-two rate

of convergence.
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This underscores the importance of selecting & properly. If & 1s chosen to
be too small to ensure the asymptotic quadratic convergence rate because of the
reduction of the method to Newton’s algorithm, ill-conditioning might occur at
points where the Hessian is (near) singular. On the other hand, if & is chosen to
be very large, which would necessitate using a large value of ¢ and would make
B diagonally dominant, the method would behave similar to the steepest descent

aigorithm, and only a linear convergence rate would be realized.
The foregoing algorithmic scheme of determining the new iterate x; _;

from an iterate x; according to the solution of the system

[Skl + H(xk)](xkﬂ — xk) = —Vf(xk) (8.22)

in lieu of (821) is generally known as a Levenberg—Marquardt method,
following a simular scheme proposed for solving nonlmear least squares
problems. A typical operational prescription for such a method is as follows.
(The parameters 0.25, 0.75, 2, 4, etc., used below have been found to work well
empirically, and the method is relatively insensitive to these parameter values.)
Given an iterate x; and a parameter ¢, > 0, first ascertain the positive

definiteness of g I1+H(x;) by attempting to construct its Cholesky
factorization LL' (see Appendix A.2). If this is unsuccessful, then muitiply &
by a factor of 4 and repeat until such a factorization is available. Then solve the
system (8.22) via LI (Xp41 — Xz )Y =-Vf(x, ), exploiting the triangularity of L
to obtain x;,,. Compute f(x;,,) and determine R, as the ratio of the actual
decrease f(X;) — f(Xi41) in fto its predicted decrease q(x;) — g(X;,;) as
foretold by the quadratic approximation q to f'at x = x;. Note that the closer R;

is to unity, the more reliable is the quadratic approximation, and the smaller we
can afford ¢ to be. With this mofivation, if R, <0.25, put g, = 4g,; if R, >

NT75 nut £, . = &, {2 ntharwica nat £, . = £ Furtharmare incace R, <
W F iy lll‘l I.Jk+l Ukl Ay WARLLAL FY Ludb, l.l“t uk+l Uk - A4 Wil LiLlnR IIIUIU’ 1id Wlhod b ,l\k —_—
so that no improvement in f is realized, reset x; ., = x;; or else, retain the

computed x; ;. Increment &k by | and reiterate until convergence to a point of
zero gradient is obtained.

A scheme of this type bears a close resemblance and relationship to frust
region methods, or restricted step methods, for minimizing /. Note that the main
difficulty with Newton’s method is that the region of trust within which the

quadratic approximation at a given point x; can be considered to be sufficiently

reliable might not include a point in the solution set. To circumvent this
problem, we can consider the frust region subproblem:

Minimize {q(x):xe Q;}, (8.23)

where g is the quadratic approximation to fat x = x, and Q, is a trust region

defined by €2, = {x: Hx—xk" <A, } for some trust region parameter A, > 0.
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« norm is used instead, the method 1s also

known as the box-step, or hypercube, method.) Now let x;,, solve (8.23) and,

as before, define R, as the ratio of the actual to the predicted descent. If R, is

too small relative to unity, then the trust region needs to be reduced; but if 1t s
sufficiently respectable in value, the trust region can actually be expanded The

. R [N P . J —

fﬁ“ﬁwiﬁg ib t l)’plbdl plebllpl.]U[l lUl Uclllllllg uk_l_] lUI I..IIC nexi !lcldllUIl
where again, the method is known to be relatively insensitive to the specified
parameter choices. If Ry < 0.25, put Ay = ||"k+1 - xk||/4. If R, >0.75 and

”x kil — Xk “ = A, that is, the trust region constraint is binding in (8.23), then put
Apy = 24A,. Otherwise, retain A, = A,. Furthermore, in case R, <0 so

that fdid not improve at this iteration, reset x;.; to x; itself. Then increment &

by | and repeat until a point with a zero gradient obtains. If this does not occur
finitely, it can be shown that if the sequence {X;} generated is contained in a

compact set, and if f is continuously twice differentiable, then there eXists an
accumulation point x of this sequence for which Vf(x) = 0 and H(X) is

positive semidefinite. Moreover, if H(X) is positive definite, then for %

enfhciantly laraa tha trict raoian haund 3 inartive and hanca tha mathnd
wIhildlW IUIILIJ ALAR U’, LALR Lt ual. F s U&lull AL AN lﬂ LARLAN/L L '\J, £4) k%l llLlllU\-!, LLIW- ARLASLILILIWA

reduces to Newton’s method with a second-order rate of convergence (see the
Notes and References section for further details).

There are two noteworthy pomts in relation to the foregoing discussion.
First, wherever the actual Hessian has been employed above in the quadratic
representation of f; an approximation to this Hessian can be used in practice,
following quasi-Newton methods as discussed in the next section. Second,
observe that by writing & = x~x; and equivalently, squaring both sides of the

¥

constraint defining 3, , we can write (8.23) explicitly as follows:

~

( , , S b
Minimice { (& +%6‘H(xk 35 : %“5“‘ < %a; D

The KKT conditions for (8.24) require a nonnegative [.agrange multiplier 1 and

a primal feasible solution & such that the following holds true in addition to the
complementary slackness condition:

[H(x;) + ATS =~V/(x;).

Note the resemblance of this to the Levenberg—Marquardt method given by
(8.22). In particular, if Ay = —[H(x; )+ &1 Vf(x,) in (8.24), where H(x,) +
&1 1s positive definite, then, indeed, it is readily verified that § = x;,; —x;

given by (8.22) and A = &, satisfy the saddle point optimality conditions for
(8.24) (see Exercise 8.29). Hence, the levenberg—Mamuardt scheme described

above can be viewed as a trust region type of method as well
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Finally, let us comment on a dog-leg trajectory proposed by Powell,
which more directly follows the philosophy described above of compromising
between a steepest descent step and Newton’s step, depending on the trust

region size A,. Referring to Figure 8.19, let xf?, and x}jﬂ, respectively,

denote the new iterate obtained via a steepest descent step, (8.16), and a Newton
step, (8.21) ( XD is sometimes also called the Cauchy poinf). The piecewise

it A N, S of S TR
linear curve defined by the line segments joining x, to XEE] and xf?l to X?H

is called the dog-leg trajectory. It can be shown that along this trajectory, the
distance from x; increases monotonicaily while the objective value of the
quadratic model falls. The proposed new iterate x; . is taken as the (unique)
point at which the circle with radius A, and centered at X, intercepts this
trajectory, if at all, as shown in Figure 8.19, and is taken as the Newton iterate

"kN+| otherwise. Hence, when A, is small relative to the dog-leg trajectory, the

method behaves as a steepest descent algorithm; and with a relatively larger A,

it reduces to Newton’s method. Again, under suitable assumptions, as above,
second-order convergence to a stationary point can be established. Moreover,
the algorithmic step is simple and obviates (8.22) or (8.23). We refer the reader
to the Notes and References section for further reading on this subject.

8.8 Methods Using Conjugate Directions: Quasi-Newton and
Conjugate Gradient Methods

In this section we discuss several procedures that are based on the important
concept of conjugacy. Some of these procedures use derivatives, whereas others
use only functional evaluations. The notion of conjugacy defined below is very
useful in unconstrained optimization. In particular, if the objective function is
quadratic, then, by searching along conjugate directions, in any order, the
minimum point can be obtained in, at most, n steps.

Figure 8.19 Dog-leg trajectory.
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8.8.1 Definition
Iet H be an n x »n symmetric matrix. The vectors d,,..,d, are called H-
conjugate or simply corjugate if they are linearly independent and if d{Hd; =

Ofori#j
It is instructive to observe the significance of conjugacy to the minimiza-

tion of quadratic functions, Consider the quadratic function f(x) = ¢'x +(1/2)x'Hx,
where H is an » x n symmetric marrix, and suppose that d,,..,d, are H-

cnninoata Airartinne nu tha lnaar indansndanca nf thaca r‘lr‘lﬂhnn vartnro
Uull u&uw LAl WWLLILFIAY . il llllvm lllu P luullvy i W O MRl WRRILFE LATL ISy I”

given a starting point X;, any point x can be uniquely represented as x = x; +
’J'=1 A;jd;. Using this substitution we can rewrite f(x) as the following

function of A:

p n p | n ’ n
Cx|+z.ﬂ.jcdj+5 XI-*-Z;LJdJ Hxl+}§l‘1‘jd} .

J=l J=i

Using the H-conjugacy of d,,...,d,, this simplifies equivalently to minimizing

F(A)= }:1:(: (x1+/1jdj)+ (x,+.ﬂ.d )H(xl+ -dj)}
J=1

Observe that F is separable in 4,...,4, and can be minimized by minimizing
each term in [+] independently and then composing the net result. Note that the
minimization of each such term corresponds to minimizing f from x; along the

direction d ;. (In particular, if H is positive definite, the minimizing value of 4;
is given by /1'; = —[c'd_,—+x§Hd_,-]/dfdej for j = 1,.., n. Alternatively, the

foregoing derivation readily reveals that the same minimizing step lengths /?.}, J

= l,..., n, result if we sequentially minimize f from x, along the directions
dy,...,d, in any order, leading to an optimal solution.

The following example illustrates the notion of conjugacy and highlights
the foregoing significance of optimizing along conjugate directions for quadratic
functions.

8.8.2 Example

Consider the following problem:

Minimize ~12x, + 4x12 +4x% +4x;x;.

Note that the Hessian matrix H is given by
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-3

We now generate two conjugate directions, d; and d,. Suppose that we choose

di = (1, 0). Then d = (a, b) must satisfy 0 = d{Hd, = 8a — 4b. In particular,

we may choose 2= 1| and b = 2 so that dfz = (1, 2). It may be noted tha
conjugate directions are not unique.

If we minimize the objective function /starting from xi = (~1/2, 1) along
the direction d,, we get the point x5 = (1/2, 1). Now, starting from x, and

minimizing along d,, we get x5 = (1,2). Note that x; is the minimizing point.
The contours of the objective function and the path taken to reach the
optimal point are shown in Figure 8.20. The reader can easily verify that starting

from any point and minimizing along d; and d,, the optimal point is reached
in, at most, two steps. For example, the dashed lines in Figure 8.20 exhibit the
path obtained by sequentially minimizing along another pair of comugate
directions. Furthermore, if we had started at x; and then minimized along d,
first and next along d,, the optimizing step lengths along these respective
directions would have remained the same as for the first case, taking the iterates

from x, to x5 = (0, 2) to x;.

/ / x3 =(1, 2)
x5 = {0, 2)

A/ 7/

[/

X2

Figure 8.20 lllustration of conjugate directions.
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Optimization of Quadratic Functions: Finite Convergence

Example 8.8.2 demonstrates that a quadratic function can be minimized in, at
most, »n steps whenever we search along conjugate directions of the Hessian
matrix. This result is generally true for quadratic functions, as shown by
Theorem 8.8.3. This, coupled with the fact that a general function can be closely
represented by its quadratic approximation in the vicinity of the optimal point,
makes the notion of conjugacy very useful for optimizing both quadratic and
nonquadratic functions. Note also that this result shows that if we start at x,,

then at each step £ = 1,..., », the point x;_, obtained minimizes f over the linear
subspace containing x, that is spanned by the vectors d,,...,d;. Mor¢over, the
gradient Vf(x, ), if nonzero, is orthogonal to this subspace. This is sometimes

called the expanding subspace property and is illustrated in Figure 8.21 for & =
1, 2.

8.8.3 Theorem

Let f(x) = ¢/x+(1/2)x'Hx, where H is an n x # symmetric matrix. Let d,...,d,,
be H-conjugate, and let x, be an arbitrary starting point. For &k = 1,..., n, let 4,
be an optimal solution to the problem to minimize f(x; + Ad;) subjectto A €
R,andlet x; ., = x; + A, d;. Then, for k= 1,..., n, we must have:
L Vf(xp)d; =0forj=1,., k
2. V() dg = V() 4y
X, .y is an optimal solution to the problem to minimize f(x) subject
to x—x; € L(d,,....d;), where L(d,,...,d; ) is the linear subspace
formed by d,,...,d;; that is, L(d,,..,d;) = {Z’;=l Hijd;:ueR for

eachj}. In particular, x,,,, is a minimizing point of fover R".

d \
—13 {2 X2 ’Vf’(izl
/ )

V/(x3) /

{

Figure 8.21 Expanding subspace property.
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Proof
To prove Part |, first note that f(x; +Ad ;) achieves a minimum at A;

only if VF(x;+4;d;)d; =0;thatis, Vf(x ;) d; =0. Thus, Part | holds true
for j = k. For j <k, note that

. . )
Vf(xk+1)=c+ij+l ——C+HX.}-+I+H[ h 11,le
i=j+1

(8.25)

e

= Vf(x)+ H(. ¥ ;L,-d,-J.

i=j+1

By conjugacy, d;Hd j =0fori=j+1,., k Thus, from (8.25) it follows that

Vf(x;,1) d;=0, and Part 1 holds true.
Replacing £ by & — | and letting j = 0 in (8.25), we get
k—1

VF(x;) = Vf(x,)+H( ¥ ;t,-d,-J for k > 2.

i=l

Multiplying by d}, and noting that diHd; =0 fori=1,.., k-1 shows that Part
2 holds true for £ > 2. Part 2 holds true trivially for £ = 1.
To show Part 3, since dﬁde = for i #j, we get

k
S (X)) = ST+ (X —xl)]—f["l + 2 lJ'dJ}
. -fl=‘ . (8.26)
= f(xl)+Vf(xl)'[ 2 Ad; +5 2 A}d;-de‘
J=1 ; J=1

Now suppose that x~x; € L(d;,..,d;), so that x can be written as x, +
Tk #;d;. As in (8.26), we get

k k
fx) = f(x)+VF(x,) ( '):1 ﬂjdj]+2l ?:1 ﬂj’fd;-de. (8.27)
}_—_ J:

To complete the proof, we need to show that f(x) > f(x,,;). By contradic-
tion, suppose that f(x) < f(x;,;). Then by (8.26) and (8.27), we must have
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Jude,Hd

II ko

k 1
Vf(xl)r[Zﬂde‘] 5
Jj=l

(8.28)
| X L X 2y
<V | T A4, [+= 5 A2 Hd,.
j=1 2_]':[

By the definition of A;, note that f(x; + 4,d;) < f(x; + u;d;) for each .

Therefore,

|
f(xj-)+/1ij(xj)’dj+ Z.szHd < f) V(x4 pzd’Hd

By Part 2, Vi(x j)’d ;= v (xl)(d j» and substituting this in the inequality

above, we get
|
}Lij(xl)'dj+21 -d’; ;Hd _,uJVf(xl) d;+— ,ujd Hd ;. (8.29)

Summing (8.29) for j = 1,..., & contradicts (8.28). Thus, x;,; is a minimizing
point over the manifold x; + L(d,,..,d;). In particular, since d;,..,d, are

linearly independent, L(d,,..,d,) = R", and hence, x,,; is a minimizing

point of fover R”, This completes the proof,

Generating Conjugate Directions

In the remainder of this section we describe several methods for generating
conjugate directions for quadratic forms. These methods lead naturally to
powerful algorithms for minimizing both quadratic and nonquadratic functions.
In particular, we discuss the classes of quasi-Newton and conjugate gradient
methods.

Quasi-Newton Methods: Method of Davidon—Fletcher—Powell

This method was proposed by Davidon [1959] and later developed by Fletcher
and Powell [1963]. The Davidon—Fletcher-Powell (DFP) method falls under the
general class of quasi-Newton procedures, where the search directions are of the

foom d; = -D ij (y), in lieu of —-H'l(y)Vf (y), as in Newton’s method. The
negative gradient direction is thus deflected by premultiplying it by —D;, where
D;
of the Hessian matrix, The positive definiteness property ensures that d; is a

is an » x n positive definite symmetric matrix that approximates the inverse

descent direction whenever Vf(y) = 0, since then d'.Vf(v)} < 0. For the
\JSF ] ] j JATF '

purpose of the next step, D, is formed by adding to D; two symmetric
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matrices, each of rank one. Thus, this scheme is sometimes referred to as a rank-
two correction procedure. For quadratic functions, this update scheme is shown
later to produce the exact representation of the actual inverse Hessian within »
steps. The DFP process is also called a variable metric method because it can be
interpreted as adopting the steepest descent step in the transformed space based

on the Cholesky factorization of the positive definite matrix D, as discussed in
Section 8.7, where this transformation varies with D j from iteration to iteration.

The quasi-Newton methods in which the quadratic approximation is permitted to
be possibly indefinite are more generally called secant methods.

Summary of the Davidon-Fletcher—Powell (DFP) Method

We now summarize the Davidon—Fletcher-Powell (DFP) method for
minimizing a differentiable function of several variables, In particular, if the
function is quadratic, then, as shown later, the method yields conjugate
directions and terminates in one complete iteration, that is, after searching along
each of the conjugate directions as described below.

Initialization Step  Let £ > 0 be a termination tolerance. Choose an
initial point x; and an initial symmetric positive definite matrix D,. Let y, =
X, let k=j=1, and go to the Main Step.

Main Step

1. If I}Vf (y j)“< & stop; otherwise, let d ; = —D ;Vf(y ;) and let A; be

an optimal solution to the problem to minimize f(y j v Ady)
subjectto A>0.Let y; ) =y, + Ayd;. Ifj<n,gotoStep2. Ifj =

n,let y; = Xz, = Ypu, Teplace kby &+ 1, letj = |, and repeat Step
1.
2, Construct D, as follows:

! !
_p PP _Dse,4,D,

D, =D+ , , (8.30)
P/, 4;D,a,
where
p;=Aid; =y -y; (8.31)
q; = V(¥ ) -V ). (832)

Replace j by j + 1, and go to Step 1.

We remark here that the inner loop of the foregoing algorithm resets the
procedure every n steps (whenever j = n at Step 1). Any variant that resets every
n' < n inner iteration steps is called a partial quasi-Newton method. This strategy
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can be useful from the viewpoint of conserving storage when n' << n, since
then, the inverse Hessian approximation can be stored implicitly by, instead,
storing only the generating vectors p j and q; themselves within the inner loop

iterations.

8.8.4 Example

Consider the following problem:
Minimize (x —2)* + (x, - 2x,)’.

A summary of the computations using the DFP method is given in Table 8.13.
At each iteration, for j = 1, 2, d; is given by —D;Vf(y;), where D, is the
identity matrix and D, is computed from (8.30), (8.31), and (8.32). At Iteration
k= 1, we have p; = (2.7, ~1.49Y and q, = (44.73, —22.72)’ in (8.30). At
Iteration 2 we have p, = (0.1, 0.05) and q, = (0.7, 0.8)', and finally, at
Iteration 3 we have p; = (-0.02, 0.02) and q; = (-0.14, 0.24)'. The point
Y j+1 is computed by optimizing along the direction d ; starting from y ; forj=

I, 2. The procedure is terminated at the point y, = (2.115, 1.058)" in the fourth
iteration, since HVf (y> )" = 0.006 is quite small. The path taken by the method is
depicted in Figure 8.22.

Lemma 8.8.5 shows that each matrix D; is positive definite and d ; is a

direction of descent.
8.8.5 Lemma

Let y; € R”, and let D; be an initial positive definite symmetric matrix. For j =

Lw mylety ;. = y;+4;d;, where d; = -D;Vf(y;), and 4; solves the prob-

75
lem to minimize f(y; + Ad;) subject to A > 0. Furthermore, forj = 1,.., n -1,
let D,y be given by (8.30), (8.31), and (8.32). If Vf(y;} # 0 forj = 1,.., n,
D;,..,D, are symmetric and positive definite so that d,..,d, are descent
directions.
Proof

We prove the result by induction. Forj = 1, D; is symmetric and positive

definite by assumption. Furthermore, V7 (y;)'d; = —Vf(y;) D,Vf(y;) <0,

since D). is nositive definite, Ry Theorem 4.1.2. 4. is a2 descent direction, We
LA "l dd LI ALL ¥ W ok ' A BN ANy “: FRNRL LW F R ] Fa & [ LT R L WL WRsLAIViAy Ty

pu [P T ui i W e
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Table 8.13 Summary of Computations for the Davidon—-Fletcher—Powell Method

Iteration Xk

k S{x)

1 (0.00, 3.00)
52.00

2 (2.55, 1.22)
0.1036

3 (2.27, 1.11)
0.008

4 (2.12,1.0%)
0.0005

l

—

1

S

fy )

(0,00, 3.00)
52.00

(2.70, 1.51)
0.34

(2.55,122)
0.1036

(2.45,127)
0.0490

(227, 1.11)
0.008

(225, 1.13)
0.004

(2.12,1.0%)
0.0005

(4400,2400) 5012 ro
lo1
(.73, 1.28) 147 Tp250
L0.33 0.
(0.89,-0.48) 099 10
01
(0.18,036) 040 0.65 0.
10.45 0
(0.18,-020) 027 10
01

(0.04,0.04)  0.06 .3

.3
(0.05,-0.08)  0.09 [10
{01

0.006

(2.115, 1.058) (0.004, 0.004)

0.0002

Vi) vy Dy

d;

Ay

Yl

g7 (067, 131)
1

] (-0.89, 0.44)
4 ] (-0.28,..0.25)

4
] (0.18, 0.20)
3

} (44.00, 24.00) 0.062 (2.70, 1.51)
3

022 (255,122
0.11 (245, 127)
064 (227, 1.11)
0.10 (225, 1.13)
266 (212, 1.05)
010 (2.115,1.058)
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Figure 8.22 Davidon—Fletcher-Poweil method.

shall assume that the result holds true for j < 7 — | and then show that it holds
for j + 1. Let x be a nonzero vector in R"; then, by (8.30), we have

symmetric matrix D” 2 such that D ;
Then x Djx = a'a, qj-DJ-qj = b'b, and x l)jqj =a'b. Substitutmg in (8.33), we
get

_@'ae'h)-@by’ | &P, )

x'D
j+X
b’'b pj-qj

(8.34)
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By the Schwartz inequality, (@'a)b’'p) > (a’b)z. Thus, to show that x‘D HX 2
0, it suffices to show that p'jqj >0 and that b‘'b > 0. From (8.31) and (8.32) it
follows that

pa; = A,d V(Y ;) - V(Y )l

The reader may note that d;Vf(y;,)) = 0, and by definition, d; =

-D;Vf(y;). Substituting these in the above equation, it follows that

pla; =4 Vf(y,;) D, Vr(y,). (8.35)
Note that Vf(y;) # 0 by assumption, and that D; is positive definite, so that
Vi(y j YD AZ40 j) > 0. Furthermore, d ; is a descent direction and, hence, A;>
0. Therefore, from (8.35), p;q j > 0. Furthermore, q; # 0 and, hence, b'b =
q’ijqj > Q.

We now show that x'D ;,;x > 0. By contradiction, suppose that x'D ;,,x
= 0. This is possible only if (a’a}(b’b) = (a’b)® and pix = 0. First, note that
@'a)(b'b) = (a'b)® only if a = Ab; that is, D'/*x = D!/ %q,. Thus, x = Aq;.
Since x # 0, we have 4 # 0. Now 0 = pf,,x = Ap'jq j contradicts the fact that
pgqj >0 and A #0. Therefore, x’Dij > 0, so that D is positive definite.

Since Vf(y;+) =0 and since D, is positive definite, V£ (y ;) d

= _Vf(Y_}'+1 )i D}'+1Vf(yj+l) < (, By Theorem 4.1.2, then, dj+1 is a descent
direction. This completes the proof.

Quadratic Case
If the objective function f is quadratic, then by Theorem 8.8.6, the directions
dy,-...d, generated by the DFP method are conjugate. Therefore, by Part 3 of

Theorem 8.8.3, the method stops after one complete iteration with an optimal
solution. Furthermore, the matrix D, ,, obtained at the end of the iteration is

precisely the inverse of the Hessian matrix H.

8.8.6 Theorem

Let H be an » x n symmetric positive definite matrix, and consider the problem

to minimize f(x) = c'x+(1/2)x'Hx subject to x € R". Suppose that the
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problem is solved by the DFP method, starting with an initial point y, and a
symmetric positive definite matrix D,. In particular, forj=1,.., n, let 4 Y be an

optimal solution to the problem to minimize f(y; + Ad;) subjectto 1> 0, and
let y;u = y; + 4;d;, where d; = —D,Vf(y;) and D; is determined by
(8.30), (8.31), and (8.32). If Vf(y;) #0 for each j, then the directions dy,....d,

i

are H-conjugate and D, ,, = H™!. Furthermore, y,,, is an optimal solution to
the problem.

Proof

We first show that for any j with 1 <j < n, we must have the following
conditions:

1. d;,...d j are linearly independent.

2. d'Hd, =0fori#k; i k<j. (8.36)

3. D;,Hp, = p; or, equivalently, D;,,Hd; = d; for | <& <},
where p;, = A4, d,.

We prove this result by induction. For j = 1, parts 1 and 2 are obvious. To
prove Part 3, first note that for any 4, we have

Hp;, =H4d ) =H{y; s ~¥) =V i) V) =q,.  (8.37)

In particular, Hp, = q,. Thus, letting j = 1 in (8.30), we get

¢ t
PPy Dyqiq;D
DzHPr(Dﬁ o —L I]QI—PI
Py q41Dq,
so that Part 3 holds true for j = 1.
Now suppose that Parts 1, 2, and 3 hold true for j < » -1, To show that
they also hold true for ; + 1, first recall by Part 1 of Theorem 8.8.3 that

Ty 1

It“rl A Y Fad - PR e a1 . 1 ad 1 al : ol oY P ] L | E o
d;Vf(y;+1) =0 for i <j. By the induction hypothesis of Part 3, d, = D;, Hd;

for i <j Thus, for i <j we have
0=diVf(yjn)+d;HD;  Vf(y ;1) = ~diHd .

In view of the induction hypothesis for Part 2, the above equation shows that
Part 2 also holds true forj + 1.
Now, we show that Part 3 holds true forj + 1. Letting £ <j + 1 yields

{ !
Pj+1Pj+1 Dj+1qj+1qj+1Dj+! 1

D,,,Hp, - (D,.-H + Hp,.  (838)

P14 sl YR PRT PR
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Noting (8.37) and letting k= + 1 in (8.38), it follows that D, ,Hp;,; = p;,y.
Now let £ <. Since Part 2 holds true forj + 1,

P Hps = 4 dj1d} Hdg =0, (8.39)

Noting the induction hypothesis for Part 3, (8.37), and the fact that Part 2 holds
true for j + 1, we get
;1P ;11 Hpy = q4pg = P Hpy = 404 dj Hd, =0, (8.40)

Substituting (8.39) and (8.40) in (8.38), and noting the induction hypothesis for
Part 3, we get
D;,,Hp, =D, Hp; =py

Thus, Part 3 holds true for j + 1.
To complete the induction argument, we only need to show that Part 1

holds true for j + 1. Suppose that ¥'7%'e,d; = 0. Multiplying by d;,;H and

noting that Part 2 holds true for j + 1, it follows that a,, d jnHd;y =0. By
T e - Y ST v\ o N and bs emma 385 D e mngitivae Aafinita on
dd>duiiipuvil, ¥ \yj_!_l) ~ U, diiu U}' Ul llla 0.4.J7, u}+l 10 PUDILLY S Melinliw, oV

that d ;) = -D;,V/(y;,4) # 0. Since H is positive definite, dJHHdﬁl #0,

and hence, a4 j
are linearly independent by the induction hypothesis, a; =0 fori= 1,..., /. Thus,

dy,..,d;, are linearly independent and Part 1 holds true for j + 1. Thus, Parts

= 0. This in turn implies that Z{:I a,d; = 0; and since dy,...,d

1, 2, and 3 hold true. In particular, the conjugacy of d,,..,d,, follows from Parts
1 and 2 by letting j = n.
Now, let j=nin Part 3. Then D, ,Hd, = d; fork=1,., n IfweletD

be the matrix whose columns are d,,...d,, then D, ,;HD = D. Since D is
invertible, D,,;H = I, which is possible only if D,,, = H'. Finally, y,,, is

an optimal solution by Theorem 8 8.3.

Insightful Derivation of the DFP Method

At each step of the DFP method we have seen that given some approximation
D; to the inverse Hessian matrix, we computed the search direction d; =

-D;V/(y,) by deflecting the negative gradient of fat the current solution y,

using this approximation D ; in the spirit of Newton’s method We then

performed a line search along this direction, and based on the resulting solution

w .. and tha oradiant Y at t+hic nnnnf nhtainad an imAdatad
JJ+1 [r i LV el Pl sluulu 1L '_)' \JJ lj [ 18 l.l.lla lJU wv RFLFLLL [ L i%Wih [ 79§ upuuwu

approximation D i+l according to (830), (8.31), and (8.32). As seen in Theorem
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8.8.6, if fis a quadratic function given by f(x) = ¢'x+(1/2)x'Hx; x € R",
where H is symmetric and positive definite; and if V/(y j) #0,7=1,..., n, then
we indeed obtain D,,; = H™'. In fact, observe from Parts 1 and 3 of Theorem
8.8.6 that for each j € {1,..., n}, the vectors py,..,p; are linearly independent
f ™ . |- Ty _

eigenvectors of D, H having eigenvalues equal to 1. Hence, at each step of

the method, the revised approximation accumulates one additional linearly
independent eigenvector, with a unit eigenvalue for the product D, H, until
D, H finally has all its n eigenvalues equal to 1, giving D,,,;HP = P, where P
is the nonsingular matrix of the eigenvectors of D, ,;H. Hence, D, ;H =1, or
D, = H .

Based on the foregoing observation, let us derive the update scheme

(8.30) for the DFP method and use this derivation to motivate other more
prominent updates. Toward this end, suppose that we have some symmetric,

positive definite approximation D; of the inverse Hessian matrix for which
P1,.» P ;1 are the eigenvectors of D H with unit eigenvalues. (For j = 1, no

such vector exists.) Adopting the inductive scheme of Theorem 8.8.6, assume
that these eigenvectors are linearly independent and are H-conjugate. Now,
given the current point y ;, we conduct a line search along the direction d; =

-D;V/(y ) to obtain the new point y ;) and, accordingly, we define

pj = (Yj—!-l - YJ)

(8.41)
q; = Vf(y;.1)-Vf(y;)=H(y,; 4 -y;)=Hp,.

Following the argument in the proof of Theorem 8.8.6, the vectors py = A4;dy, &
= 1,..., J, are easily shown to be linearly independent and H-conjugate. We now
want to construct a matrix

D;,=D;+Cy,
where C; is some symmetric correction matrix, which ensures that py,...,p ; are
eigenvectors of D, H having unit eigenvalues. Hence, we want D ., ,Hp, = p;
or, from (8.41), that D;,1q; = p; for k= 1,...j. For I <k <j, this translates to
requiring that p; =D q; +C;q; =D;Hp; + C,q; = pp + Cjqy, orthat
Ciq,=0 fork=1,..,j—-1. (8.42)

For &k =, the aforementioned condition

Dj-i-lqj = pj (843)
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is called the quasi-Newton condition, or the secant equation, the latter term
leading to the alternative name secant updates for this type of scheme. This
condition translates to the requirement that

Cja,=, D, :4)

Now if C: had a symmetric rank-one term p ;p’;/p‘.q;, then C.q; operating
7 74 rjr_} l'_}‘l_;? Jis r =

on this term would yield p;, as required in (8.44). Similarly, if C; had a

symmetric rank-one term, —(D ;q ; )(DJ,-qI-)’! (D,q; y q;, then C;q; operating on

this term would yield -D as required in (8.44). This therefore leads to the

.q .’
Jjij
rank-two DFP update (8.30) via the correction term,

{ ¢
p, D,a,9'D;
c; =28 AT - DR, (8.45)
P4, 4;Dja;

which satisfies the quasi-Newton condition (8.43) via (8.44). (Note that as in

Lemma 8.8.5, D, = D; + C; is symmetric and positive definite.) Moreover,
(8.42) also holds since forany &k € {1,...,, j — 1}, we have from (8.45) and (8.41)

that

since pj-Hpk = 0 in the first term and p;-HDijk = p’ijk = 0 in the second
term as well. Hence, following this sequence of corrections, we shall ultimately
obtain D,,,H =lor D, = H .

Broyden Family and Broyden—Fletcher—Goldfarb—Shanno (BFGS)
Updates

DEP that there

The reader might have observed in the foregoing derivation of C;
was a degree of flexibility in prescribing the correction matrix C;, the
restriction being to satisfy the quasi-Newton condition (8.44) along with (8.42)
and to maintain symmetry and positive definiteness of D ;,; =D; + C,. In light
of this, the Broyden updates suggest the use of the correction matrix C; = Cf
given by the following family parameterized by ¢:

B _ ¢DFP 47N M

\._.j' \_,j T
P/q;

o~
0o
4+
=)
~
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where v; = p, —(1/7;)D;q; and where 7; is chosen so that the quasi-Newton
condition (8.44) holds by virtue of v'jq ; being zero. This implies that [p; -

Dj-qur}-]'qj =0, or that

!
. 9q;D4q;
;e ———— AU,

‘j /
P;q;

o~
oo
-
Nt

Note that for 1 < & </, we have

1 1,
Vi9k = P9k — - 9;D 8, = p;Hps ~— p;HD jHp; =0
J r

because pj-Hpk = 0 by conjugacy and pj[D}-Hpk] = pj,-Hpk = 0, since p; is an
eigenvector of D ;H having a unit eigenvalue. Hence, (8.42) also continues to

hold true. Moreover, it is clear that D ;,; = D; + Cf continues to be symmetric

and, at least for ¢ > 0, positive definite. Hence, the correction matrix (8.46)-
(8.47) in this case vields a valid sequence of updates satisfying the assertion of
Theorem 8.8.6.

For the value ¢ = 1, the Broyden family yields a very useful special case,
which coincides with that derived independently by Broyden, Fletcher,
Goldfarb, and Shanno. This update, known as the BFGS update, or the positive
definite secant update, has been consistently shown in many computational
studies to dominate other updating schemes mn its overall performance. In
contrast, the DFP update has been observed to exhibit numerical difficulties,
sometimes having the tendency to produce near-singular Hessian
approxmmations. The additional correction term in (8.46) seems to alleviate this

propensity.
To derive this update correction

into (8.46), and simplify (8.46) using ¢ =1 to get

C?FGS, say, we simply substitute (8.47)

t { t ) t !
o Dg;| D,q;p +paD,
CIFOS = (g = )= L 14 2L | ST (s48)
P;q; P,4,; P,4;

Since with ¢= 0 we have C? = C?FP, we can write (8.46) as

C? = (1-)CFP 4 gCBFOS, (8.49)

The above discussion assumes the use of a constant value ¢ in (8.46). This is
known as a pure Broyden update. However, for the analytical results to hold

true, it is not necessary to work with a constant value of ¢. A variable value ¢,

can be chosen from one iteration to the next if so desired. However, there is a
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value of ¢ in (8.46) that will make d ;,; = -D; ,V/(y ;,1) identically zero (see

Exercise 8.35), namely,

_ AV, D,Vf(ylajPq,
Vf()’jn)r Dij(y,-H)

Hence, the algorithm stalls and, in particular, D, becomes singular and loses

¢ (8.50)

positive definiteness. Such a value of ¢ is said to be degenerate, and should be
avoided. For this reason, as a safeguard, ¢ is usually taken to be nonnegative,
although sometimes, admitting negative values seems to be computationally
attractive. In this connection, note that for a general differentiable function, if
perfect line searches are performed (i.e., either an exact minimum, or in the
nonconvex case, the first local minimum along a search direction is found), then
it can be shown that the sequence of iterates generated by the Broyden family is
mvariant with respect to the choice of the parameter ¢ as long as nondegenerate
¢ values are chosen (see the Notes and References section). Hence, the choice of
¢ becomes critical only with inexact line searches. Also, if inaccurate line
searches are used, then maintaining the positive definiteness of the Hessian
approximations becomes a matter of concern. In particular, this motivates the
following strategy.

Updating Hessian Approximations

Note that in a spirit similar to the foregoing derivations, we could alternatively
have started with a symmetric, positive definite approximation B; to the

Hessian H itself, and then updated this to produce a sequence of symmetric,
positive definite approximations according to B =B+ C jforj=1.,n

Again, for each j = 1,..., n, we would like P1,-P; to be eigenvectors of

H'B j7+1 having eigenvalues of 1, so that for j = n we would obtain H_!B" =1

or B,,, = H itself. Proceeding inductively as before, given that p;,...,p; | are

eigenvectors of H™'B ; associated with unit eigenvalues, we need to construct a

correction matrix Ej- such that H_I(Bj- + EJ-)P;, = pg fork=1, .., j. In other
words, multiplying throughout by H and noting that q;, = Hp, fork=1,..,,j by
(8.41), if we are given that

Bj-pk'—‘qk fork=1,...,j-l (851)

we are required to ensure that (B; + (_jj)pk = q fork = 1,., j or, using
(8.51), that

Cipp=0fort<k<j-1 and C;p,=q,-B;p;. (852)
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Comparing (8.51) with the condition D;q; = p; for k = 1,..., j - 1 and,

similarly, comparing (8.52) with (8.42) and (8.44), we observe that the present
analysis differs from the foregoing analysis involving an update of inverse
Hessians in that the role of D; and B;, and that of p, and q;, are

interchanged. By symmetry, we can derive a formula for C ; simply by
replacing D; by B; and by interchanging p; and q; in (8.45). An update

obtained in this fashion is called a complementary update, or duai update, to the
preceding one. Of course, the dual of the dual formula will naturally yield the
original formula. The C ; derived as the dual to C?FP
independently by Broyden, Fletcher, Goldfarb, and Shanno in 1970, and the
update is therefore known as the BFGS update. Hence, we have

was actually obtained

!
- q:.q: B B;
C?FGS= ;r i_ ;P;P (8.53)
ajp; P;Bp;
In Exercise 8.37 we ask the reader to derive (8.53) directly following the
derivation of (8.41) through (8.45).
Note that the relationship between CBFG% and C?MS is as follows:

D;, =D, +CFS gl = (B, +CHFSyT, (8.54)

That is, D ;,;q; = py fork= 1., jimplies that D}ilpk = q; orthat B, =

D; +1 mndeed satisfies (8.51) (written for j + 1). In fact, the inverse relationship

(8.54) between (8.48) and (8.53) can readily be verified (see Exercise 8.36) by
using two sequential applications of the Sherman—Morrison—Woodbury formula
given below, which is valid for any general » x n matrix A and n x 1 vectors a

and b, given that the inverse exists (or equivalently, given that 1+ b'A 'a» 0):

41 1 ATab'A™ o ec
(A+ab) ' = AT - ——————. (8.55)
1+b‘A"'a
Note that if the Hessian approximations B ; are generated as above, then the
search direction d; at any step needs to be obtained by solving the system of

equations B,d; = -Vf(y;). This can be done more conveniently by

maintaining a Cholesky factorization .?J,-‘Djfj,- of B;, where £; is a lower

triangular matrix and 9, is a diagonal matrix. Besides the numerical benefits of

ar‘nptlng thls prgcedm’e 11 can ale{) he ]ﬂnlnﬁ!! n thai the andlt on number of

D; can be useful in assessing the ill-conditioning status of B, and the positive
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definiteness of B; can be verified by checking the positivity of the diagonal
elements of D;. Hence, when an update of ‘.DJ,- reveals a loss of positive

definiteness, alternative steps can be taken by restoring the diagonal elements of

D1 tobe positive.

C 1T _-_,,: ) g
Scaiing of Quasi-Ne

Let us conclude our discussion on quasi-Newton methods by making a brief but
important comment on adopting a proper scaling of the updates generated by
these methods. In our discussion leading to the derivation of (8.41)}+8.45), we

learned that at each step j, the revised update D;,, had an additional
eigenvector associated with a unit eigenvalue for the matrix D;,;H. Hence, if,

for example, D; is chosen such that the eigenvalues of D/H are all

significantly larger than unity, then since these eigenvalues are transformed to
unity one at a time as the algorithm proceeds, one can expect an unfavorable
ratio of the largest to smallest eigenvalues of D H at the intermediate steps.

When minimizing nonquadratic functions and/or employing inexact line
searches, in particular, such a phenomenon can result in ill-conditioning effects
and exhibit poor convergence performance. To alleviate this, it is useful to

multiply each D, by some scale factor s; > 0 before using the update formula.

With exact line searches, this can be shown to preserve the conjugacy property
in the quadratic case, although we may no longer have D,,,, = H™!. However,

the focus here is to improve the single-step rather than the n-step convergence
behavior of the algorithm. Methods that automatically prescribe scale factors in
a manner such that if the function is quadratic, then the eigenvalues of s,D H

tend to be spread above and below unity are called self-scaling methods. We
refer the reader to the Notes and References section for further reading on this
subject.

Conjugate Gradient Methods

Conjugate gradient methods were proposed by Hestenes and Stiefel in 1952 for
solving systems of linear equations. The use of this method for unconstrained
optimization was prompted by the fact that the minimization of a positive
definite quadratic function is equivalent to solving the linear equation system
that results when its gradient is set at zero. Actually, conjugate gradient methods
were first extended to solving nonlinear equation systems and general
unconstrained minimization problems by Fletcher and Reeves in 1964, Although
these methods are typically less efficient and less robust than quasi-Newton
methods, they have very modest storage requirements (only three n-vectors are
required for the method of Fletcher and Reeves described below) and are quite
indispensable for large problems (» exceeding about 100) when quasi-Newton
methods become impractical because of the size of the Hessian matrix. Some
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very successful applications are reported by Fletcher [1987} in the context of
atomic structures, where problems having 3000 variables were solved using only
about 50 gradient evaluations, and by Reid [1971}, who solved some linear
partial differential equations having some 4000 variables in about 40 iterations.
Moreover, conjugate gradient methods have the advantage of simplicity, being
gradient deflection methods that deflect the negative gradient direction using the
previous direction. This defiection can aiternatively be viewed as an update of a
fixed, symmetric, positive definite matrix, usually the identity matrix, in the
spirit of quasi-Newton methods. For this reason they are sometimes referred to

ag rvﬂnr_maf"lﬂ marfan/ﬁ- in contrast to the term unmnhfo_marrrﬂ morhnrﬁ' which
FERR-LT Rl P W AL AAA AT W B 4D

applles to quasi-Newton procedures. Again, these are conjugate dlrectlon
methods that converge in, at most, »n iterations for unconstrained quadratic
optimization problems in R" when using exact line searches. In fact, for the
latter case, they generate directions identical to the BFGS method, as shown
later .

The basic approach of conjugate gradient methods for minimizing a

differentiable function £ R" — R is to generate a sequence of iterates vy i

according to

D

Yju =Y j Ay 56a)
where d; is the search direction and A; is the step length that minimizes f
along d; from the point y j- Forj =1, the search direction d; = —Vf(y,) can

be used, and for subsequent iterations, given y ;4 with Vf(y ) #0forj2> I,

WE Use
djy =-Vf(y;)+a,d;, (8.56b)

where a; is a suitable deflection parameter that characterizes a particular
conjugate gradient method. Note that we can write d ;,; in (8.56b) whenever
a; 20as
1
dji = ;[ﬂ[—vf (¥ 1+ (= p)d

where = 1/l + o ), so d; can then be essentially viewed as a convex

combination of the current steepest descent direction and the direction used at
the last iteration.
Now suppose that we assume f to be a quadratic function having a

positive definite Hessian H, and that we require d j+1and d; to be H-conjugate.

.u-...-.. FO S maad )"\ ! — Y menm o iumdbs den amew oo Sant e al.~a N 1 x
111 \0.J0a) dlid 1h J+1nu - = 4 aimouiiis {0 wquu ll g’ Lilal u — uj‘f-l rlpj -
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d'j +19- Using this in (8.56b) gives Hestenes and Stiefel’s [1952] choice for «,

used even in nonguadratic situations by assuming a local quadratic behavior, as

JHS _ VI(y ), _ LV ) a;
t ! )
dsa, P,4,

(8.57)

When exact line searches are performed, we have d;Vf(y ;,;) = 0= d}_Vf(y,),

2
leading to dq ; = —dLVF(y ) = IVf(y V—a._d . ¥VI(y.) = V7 . Sub-
< JJ P ACAAE N JiT i T J N

A
stituting this into (8.57) yields Polak and Ribiere’s [1969] choice for &; as
PR _ Vf(yj-+1 )t qj
;. = >
Ve )|

Furthermore, if fis quadratic and if exact line searches are performed, we have,
using (8.56) along with Vf(y ;4 Yd j =0=Vf(y j)’ d; | asabove, that

(8.58)

VI ) VI ,) = VG ) [epad g —d;]
=a; Vf(y ) d; = [VA(y;) +AHd; 1 d; |
=a; (AdHd; | =0

by the H-conjugacy of d ; and d,_; (where dy =0). Hence,

V(Y jr1) Vf(y;)=0. (8.59)

Substituting this into (8.58) and using (8.41) gives Fletcher and Reeves’s [1964]
choice of o as

[9r ¢y )]
af® =1 : (8.60)
V7o)

We now proceed to present and formally analyze the conjugate gradient
method using Fletcher and Reeves’s choice (8.60) for o - A similar discussion

follows for other choices as well,
Summary of the Conjugate Gradient Method of
Fletcher and Reeves

A summary of this conjugate gradient method for minimizing a general
differentiable function is given below.
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Initialization Step  Choose a termination scalar € > 0 and an initial
point x;. Let y; = xq, d; = -Vf(y;), k=j =1, and go to the Main Step.

Main Step

1. If HVf (y, )” < g, stop. Otherwise, let lj be an optimal solution to the
problem to minimize f(y; + Ad;) subjectto 420, and lety ;| =
y; + A;d;. Ifj <n, go to Step 2; otherwise, go to Step 3.

2 latd. . = _Fffv . \—t—ﬂr‘l where
<. LU Gy YIAY j+i/ a,a, Wit
2
Iy )|
Q’j = 2 .
Ivro |

Replacej byj+ 1, and go to Step 1.
3. Let y; = Xp41 = Y41, and let d; = =Vf(¥y)). Letj = 1, replace &
by K+ 1, and go to Step 1.

8.8.7 Exampie
Consider the following problem:
Minimize (x| - 2)4 +(x1 —2x; )2.

The summary of the computations using the method of Fletcher and Reeves is

given in Table 8.14. At each iteration, d; is given by —=Vf(y;), and d, is given
2 2

by d; = -Vf(y;) + aydy, where o =|Vf(yp)|[ /[[Vf(y1)| . Furthermore, y ;,

is obtained by optimizing along d j» Starting from y . At Iteration 4, the point

y, = (2.185, 1.094), which is very close to the optimal point (2.00, 1.00), is

reached. Since the norm of the gradient is equal to 0.02, which is, say,
sufficiently small, we stop here. The progress of the algorithm is shown in
Figure 8.23.

Quadratic Case

If the function fis quadratic, Theorem 8.8.8 shows that the directions dy, ...,d,,

generated are indeed conjugate, and hence, by Theorem 8.8.3, the conjugate
gradient algorithm produces an optimal solution after one complete application
of the Main Step, that is, after at most » line searches have been performed.
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Table 8.14 Summary of Computations for the Method of Fletcher and Reeves

Y;

Iteration X
' Vi(y;) VI(y;) o d, A ¥4l
k SFix) 4 D) J H J ” J Y 7 J
1 (0.00,3.00) 1  (0.00,3.00) (-44.00,24.00) 50,12 —  (44.00,-24.00)  0.062 (2.70, L.51)
52.00 52.00
2 (2,70, 1.5 (0.73, 1.28) 1.47 0.0009 (-0.89 —1.30) 023 (2.54,1.21)
0.34
2 (2.54,1.21) 1 (2.54, 1.21) (0.87, 0.48) 0.99 — (-0.87, 0.48) 0.1t (2.44, 1.26)
0.10 0.10
1 (244,126)  (0.18,0.32) 0.37 0.14  (=0.30,-0.25)  0.63  (2.25, 1.10)
0.04
3 (2.25, 1.10) 1 (2.25, 1.10) {0.16, -0.20) 0.32 — {—0.16, 0.20) 0.10 (223, 1.1
0.008 0.008
2 (2.23,1.12) (0.03, 0.04) 0.03 0.04 (-0.036,-0.032) 1.02 (2.1%, 1.0
0.003
A i 1 N0y 1 M 10 1 Ny M As N ndy falars - FLONS N NAY Nt fI1RS 1 NoAY
5 [ P i WNLadFy LUy Lu.u =auiT Uaud VUL, waus LER S Ll LU
Q.0017 0.0017
2 (2,185 1.094)  (0.002,0.01) 0.02

0.0012
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Figure 8.23 Method of Fletcher and Reeves,

8.8.8 Theorem

Consider the problem to minimize f(x) = ¢'x + (1/2)x'Hx subject to x € R".

Suppose that the problem is solved by the conjugate gradient method, starting
with y; and letting d| = —~Vf(y(). In particular, for j = 1,.., n, let 2; be an

Gnh‘mal enlhitinn tn tha nrahlam ta minimiza v . 4+ 34 Y enhiont ¢~ 3 -2 1T at

Ptllll“l UFLRMLIVSLL AW Ll lJlUU].\II.I.]. A LALLM A J \"j ij} S Wl LW L 2 WL L L
_ 2

Yj+1=Y;+ Ad;, andletd,, = ~Vf(y,,) +a,d,, where a; = “Vf(y f+1)“ /

”Vf(yj)ll AV (y;) =0 forj= 1., n, then the following statements are true:

l. d,,..d, are H-conjugate.
2. d,,...,d,, are descent directions.

qu[y sl )n AT
o
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Proof

First, suppose that Parts 1, 2, and 3 hold true for j. We show that they also
hold true for j + 1. To show that Part 1 holds true for j + 1, we first demonstrate

that d; Hd ;,; = 0 for k < j. Since d;,; = -Vf(y41) + @;d;, noting the induc-
tion hypothesis of Part 3 and letting & =, we get

dj,-HVf (¥ 541) 4
! J
d'Hd;

d%Hd ;) = dGH| -Vf(y )+ =0. (8.61)

Now let k <j. Since dj,; = -Vf(y;;;) + @,d;, and since d;Hd; = 0 by the
induction hypothesis of Part 1,

dyHd ;= -dHYS(y ). (8.62)
Since Vf(y;41) =¢+ Hyg, and y, . = ¥, + 4,d,, note that

di1 = VS (V) +ody
= - {Vf(y)+ A4 Hd, ] +agd,
= _[_dk +ak4dk_1 +&&Hdk]+akdk'

By the induction hypothesis of Part 2, d, is a descent direction and hence, 4, >
0. Therefore,

1
dyH = Z[—diﬂ +(1+a ) - dh]. (8.63)
From (8.62) and (8.63) it follows that

LA}
£l

=9

X7

At _ _at 3
ur JHL T TURIEVIY i)
1

= =3 VA o)+ @BV (Y1) s V(800

By part 1 of Theorem 8.8.3, and since dj,...d; are assumed conjugate,
VI jo0) = iV 1) = 5 V/(y 1) = 0. Thus, the above equation
implies that d} Hd j+1 = 0 for k < j. This, together with (8.61), shows that
diHd;, =0forallk< j

To show that d,..,d;,; arc H-conjugate, it thus suffices to show that

+1

they are linearly independent. Suppose that Z{:] yid; = 0. Then i  yd; +
¥jnl-Vf(¥ j11) + a;d;]=0. Multiplying by Vf(yj+1)', and noting part 1 of
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2 :
Theorem 8.8.3, it follows that ;. ”Vf(}’jH )“ =0. Since Vf(y;1) #0, 7
= (), This implies that Z{':I yid; =0, and in view of the conjugacy of d,...,d, it
follows that y; = -« = y; = 0. Thus, dy,...,d;,; are linearly indcpendent and

H-conjugate, so that Part 1 holds true for j + 1.
Now we show that Part 2 holds true for j + 1; that is, d;, is a descent

direction. Note that Vf(y j+1)} 20 by assumption, and that Vf(y j+l Y¥d j =0by

, " W2 .
Part | of Theorem 8.8.3. Then V(¥ ;1) djpy = - [V/ (v )| + @97 (y ju1)'d

2
= - ”Vf (¥ 41 )” <0. By Theorem 4.1.2, d;,, is a descent direction.

Next we show that Part 3 holds true for j + 1. By letting £ =j + 1 in (8.63)
and multiplying by Vf(y,,,), it follows that

;G HYS(Y j42) = (-850 + 0+ a5 - o, d5 197 (Y ja2)
= [Vf (¥ jur) + s — ;05197 (Y 1)

Since dy,...,d ;1 arc H-conjugate, then, by Part 1 of Theorem 8.8.3, dj,- + V(Y 42)

= derf (y j+2) = 0. The above cquation then implies that

”Vf (¥ j+2 )“ 245 HVF (Y ji2). (8.64)

Multiplying V(¥ j.1) = V(¥ j+2) — 4j+1Hd j11 by Vf(y;11)", and noting that
dHd iy = 45 V7 (3 j22) = d}Vf (¥ 42) =0, we get

HVf(Y,-H | = V0 I3 )= A Hd ]

=(-d’, +a ANV (y;2)- A, Hd ;1] (8.65)
J+1 } )‘IL J NS J+z,.l' )‘+| j+|J hY 7
f
= Ajd ;i Hd

From (8.64) and (8.65), it is obvious that part 3 holds true for j + 1.

We have thus shown that if Parts 1, 2, and 3 hold true for j, then they also
hold true for j + 1. Note that Parts 1 and 2 trivially hold true for j = 1. In
addition, using an argument similar to that used in proving that Part 3 holds true
for j + 1, it can easily be demonstrated that it holds true for j = 1. This completes
the proof.

R

The reader shouid note here that when the function f is quadratic and
when exact line searches are performed, the choices of a, given variously by
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(8.57), (8.58), and (8.60) all coincide, and thus Theorem 8.8.8 also holds true for
the Hestenes and Stiefel (HS) and the Polak and Ribiere (PR) choices of a;.

However, for nonquadratic functions, the choice aP appears to be empirically

superior to o: . This is understandable, since the reduction of (8.58) to (8.60)

assumes f to be quadratic. In the same vein, when inexact line searches are

HS

performed, the choice &, appears to be preferable. Note that even when fis

quadratic, if inexact line searches are performed, the conjugacy relationship
holds true only between consecutive directions. We refer the reader to the Notes
and References section for a discussion on some alternative three-term
recurrence relationships for generating mutually conjugate directions in such a
case.

Also note that we have used d; = -IVf(y;) in the foregoing analysis. In
lieu of using the identity matrix here, we could have used some general
preconditioning matrix D, where D is symmetric and positive definite. This
would have given d; = -DVf(y;), and (8.56b) would have become d,,| =

-DVf(y;a) tad;, where, for example, in the spirit of (8.57), we have

oS = q;DVi(y ;i)

j
ad;

This corresponds, essentially to making a change of variables y' = p Y 2y and

using the original conjugate gradient algorithm. Therefore, this motivates the
choice of D from the viewpoint of improving the eigenstructure of the problem,
as discussed earlier.

For quadratic functions f; the conjugate gradient step also has an
interesting patfern search interpretation, Consider Figure 8.24 and suppose that

the successive points y;, y,., and y;,, are generated by the conjugate
gradient algorithm. Now, suppose that at the point y j+1 obtained from y; by
minimizing along d j» we had instead minimized next along the steepest descent
direction —Vf(y ;1) at y;,, leading to the point y’,;. Then it can be shown

(see Exercise 8.38) that a pattern search step of minimizing the quadratic
function f from y; along the direction y}H - y; would also have led to the

same point y;,,. The method, which uses the latter kind of step in general

(even for nonquadratic functions), is more popularly known as PARTAN (see
Exercise 8.53). Note that the global convergence of PARTAN for general

functions is tied into using the negative gradient direction as a spacer step in
Theorem 7.3.4 and is mdpnendpnf of any restart rnpdlhnnc nlr‘h_nnoh it is

aei k. WwRs

recommended that the method be restarted every n iterations to promote its
behavior as a conjugate gradient method.
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Yj+2
Y}+1
dj+1 for the
conjugate gradient
~Vi(y...) method
V4
>
y .

Al Y j+l

Figure 8.24 Equivalence between the conjugate gradient method and
PARTAN.

Memoryless Quasi-Newton Methods

There is an interesting connection between conjugate gradient methods and a
simplified variant of the BFGS quasi-Newton method. Suppose that we operate
the latter method by updating the inverse Hessian approximation according to

BFGS
Dj. €

but assuming that D; = I. Hence, we get

1= D; + C?FGS, where the correction matrix is given in (8.48),

PPy |, 9/ | 9,P5+P,q)

D, =1+ p - - (8.66a)
P\ P4 P4,
We then move along the direction
dj =D Vf(y ) (8.66b)

This is akin to “forgetting” the previous approximation D; and, instea

updating the identity matrix as might be done at the first iteration of a quasi-
Newton method: hence, the name memoryless quasi-Newton method. Observe
that the storage requirements are similar to that of conjugate gradient methods

and that inexact line searches can be performed as long as p;q ;=4 jd;-[Vf ¥+
— Vf(y ;)] remains positive and d j+1 continues to be a descent direction. Also,

note that the loss of positive definiteness of the approximations D in the quasi-

Newton method is now no longer of concern. In fact, this scheme has proved to
be computationally very effective in conjunction with inexact line searches. We
refer the reader to the Notes and References section for a discussion on
conjugate gradient methods operated with inexact line searches.
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Now, suppose that we do employ exact line searches. Then we have
Py VS (¥ ju1) = Ajd5Vf (¥ ;1) =0,50(8.66) gives

t
q;V/(yja)
dj,y= —Vf(Yj+1)+%*+—Pj = _Vf(YjH)"'a}-lsdj
P;4;

from (8.57). Hence, the BFGS memoryless update scheme is equivalent to the
conjugate gradient method of Hestenes and Sticfel (or Polak and Ribiere) when
exact line searches are employed. We mention here that although this
memoryless update can be performed on any other member of the Broyden
family as well (see Exercise 8.34), the equivalence with conjugate gradicnt
methods results only for ¢ = 1 (the BFGS update), as does the observed

empirical effectiveness of this scheme (see Exercise 8.40).
Recommendations for Restarting Conjugate Gradient Methods

In several computational experiments using different conjugate gradient
techniques, with or without exact line searches, it has been demonstrated time
and again that the performance of conjugate gradient methods can be greatly
enhanced by employing a proper restart criterion. In particular, a restart
procedure suggested by Beale [1970c} and augmented by Powell [1977b] has
proved to be very effective and is invariably implemented, as described below.
Consider the conjugate gradient method summarized formally above in
the context of Fletcher and Reeves’s choice of ;. (Naturally, this strategy

applies to any other admissible choice of a; as well.) At some inner loop
iteration f of this procedure, having found that y;,; = y; + 4;d; by searching
along d; from the point y j» suppose that we decide to reset. (In the previous
description of the algorithm, this decision was made whenever j = n.) Let 7=
denote this restart iteration. For the next iteration, we find the search direction
deyy =-Vf(yr) v d, (8.67)
as usual. Then at Step 3, we replace y| by y,.q, let Xp; =y ., d) = 4.,

and return to Step 1 to continue with the next set of inner loop iterations.
However, instead of computing d ;3 = ~Vf(y ;,1) + a;d; for j> 1, we now use

dz = —Vf(y2)+aldl (8683)
and
di =-Vf(yp)+ad;+ydy forj22,

where
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_ \ZACER )tql
dig

¥y (8.68b)

and where a; is computed as before, depending on the method being used.

Note that (8.68a) employs the usual conjugate gradient scheme, thereby yielding
d; and d, as H-conjugate when fis quadratic. However, when fis quadratic

with a positive definite Hessian H and dy is chosen arbitrarily, then when j = 2,
for example, the usual choice of @, would make dy and d, H-conjugate, but
we would need something additional to make dy and d; H-conjugate. This is
accomplished by the extra term y»d;. Indeed, requiring that d§ Hd; = 0, where
d5 is given by the expression in (8.68b), and noting that d'szl =0 yields y,

= Vf(y;) Hd/d{Hd, = Vf(y;) q; /d{q,. Proceeding inductively in this manner,
the additional term in (8.68b) ensures the H-conjugacy of all directions
generated (see Exercise 8.48).

The foregoing scheme was suggested by Beale with the motivation that
whenever a restart is done using d; = -Vf(y,) instead of d;, = d,,, as given
by (8.67), we lose important second-order information inherent in d,.
Additionally, Powell suggested that after finding y ;,(, if any of the following
three conditions holds true, then the algorithm should be restarted by putting 7=
J, computing d.,, via (8.67), and resetting d; = d.,; and y| = ¥,

l. j=n-1

2. |Vf(y ) V(Y j)]zO.Z“Vf(y 14l )||2 for some j > 1.

2 2 .
3. 12| a0 <4V ) <08V )| s violated for

Pl ates -1

Condition 1 is the usual reset criterion by which, after searching along the
direction d_,| = d,,, we will have searched along » conjugate directions for the
quadratic case. Condition 2 suggests a reset if a sufficient measure of
orthogonality has been lost between Vf(y;) and Vf(y,,(), motivated by the

expanding subspace property illustrated in Figure 8.21. {(Computationally,
instead of using 0.2 here, any constant in the interval {0.1, 0.9] appears to give
satisfactory performance.) Condition 3 checks for a sufficient descent along the

direction d;, at the point y ), and it also checks for the relative accuracy of

pA
the identity dj- aV¥f (¥ ) = —HVf (¥ 41 )“ , which must hold true under exact

line searches [whence, using (8.56b), we would have dfin (y j +1) = 0]. For

similar ideas when employing inexact line searches, we refer the reader to the
Notes and References section.
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Convergence of Conjugate Direction Methods

As shown in Theorem 8.8.3, if the function under consideration is quadratic,
then any conjugate direction algorithm produces an optimal solution in a finite
number of steps. We now discuss the convergence of these methods if the
function is not necessarily quadratic.

In Theorem 7.3.4 we showed that a composite algorithm A = CB
converges to a point in the solution set 2 if the following properties hold true:

B is closed at points not in £2.

Ify € B(x), then f(y) < f(x) forx ¢ Q.
Ifz € C(y), then f(z) £ f(y).

The set A = {x: f(x)< f(x)} is compact, where x; is the starting
solution.

O R N

For the conjugate direction (quasi-Newton or conjugate gradient)
algorithms discussed in this chapter, the map B is of the following form. Given
X, then y € B(x) means that y is obtained by minimizing f starting from x along
the direction d = -DVf(x), where D is a specified positive definite matrix. In
particular, for the conjugate gradient methods, D = I, and for the quasi-Newton
methods, D is an arbitrary positive definite matrix. Furthermore, starting from
the point obtained by applying the map B, the map C is defined by minimizing
the function f along the directions specified by the particular algorithms. Thus,
the map C satisfies Property 3.

Letting Q = {x:Vf(x)=0}, we now show that the map B satisfies
Properties | and 2. Let x € Q2 and let x; — x. Furthermore, let y, € B(x;)
and let y, — y. We need to show that y € B(x). By the definition of y;, we
have y; = x; — 4, DVy(x,) for A, >0 such that

) £ fIx, —ADVS(x;)] forall A>0. (8.69)

Since Vf(x) = 0, then 4, converges to A= ||y—x||/ ||DVf (x)” > 0. Therefore,

y = x — ADVf(x). Taking the limit as £ — < in (8.69), f(¥) < fIx - ADVf(x)]
for all 2> 0, so that y is indeed obtained by minimizing f starting from x in the
direction —DVf(x). Thus, y € B(x), and B is closed. Also, Part 2 holds true by

noting that -Vf (x)'DVf (x) < 0, so that —DVf(x) is a descent direction.

Assuming that the set defined in Part 4 is compact, it follows that the conjugate
direction algorithms discussed in this section converge to a point with zero
gradient,

The role played by the map B described above is akin to that of a spacer
step, as discussed in connection with Theorem 7.3.4. For algorithms that are
designed empirically and that may not enjoy theoretical convergence, this can be
alleviated by inserting such a spacer step involving a periodic minimization



Unconstrained Optimization 433

along the negative gradient direction, for example, hence, achieving theoretical
convergence.

We now turn our attention to addressing the rate of convergence or local
convergence characteristics of the algorithms discussed in this section.

Convergence Rate Characteristics for Conjugate Gradient Methods

Consider the quadratic function f(x) = ¢/x + (1/2)x'Hx, where Hisann x n

symmetric, positive definite matrix. Suppose that the eigenvalues of H are
grouped into two sets, of which one set is composed of some m relatively large
and perhaps dispersed values, and the other set is a cluster of some n — m
relatively smaller eigenvalues. (Such a structure arises, for example, with the use
of quadratic penalty functions for linearly constrained quadratic programs, as
discussed in Chapter 9.) Let us assume that (m + 1) < n, and let & denote the
ratio of the largest to the smallest eigenvalue in the latter cluster. Now, we know
that a standard application of the conjugate gradient method will result in a finite
convergence to the optimum in »n, or fewer, steps. However, suppose that we
operate the conjugate gradient algorithm by restarting with the steepest descent
direction every m + | line searches or steps. Such a procedure is called a partial
conjugate gradient method

Starting with a solution x;, let {x.} be the sequence thus generated,
where for each &k > 1, x,,; is obtained after applying m + 1 conjugate gradient
steps upon restarting with x; as above. Let us refer to this as an (m + 1)-step
process. As in Equation (8.17), let us define an error function e(x) =

(1/2)(x—x")Y H(x~x"), which differs from f(x) by a constant, and which s

zero if and only if x = x”. Then it can be shown (see the Notes and References
section) that

,,,,,,

(8.18)]. However, the ratio a that governs the convergence rate is now
independent of the m largest eigenvalues. Thus, the effect of the m largest
eigenvalues is eliminated, but at the expense of an (m + 1)-step process versus
the single-step process of the steepest descent method.

Next, consider the general nonquadratic case to which the usual »-step
conjugate gradient process is applied. Intuitively, since the conjugate gradient
method accomplishes in » steps what Newton’s method does in a single step, by
the local quadratic convergence rate of Newton’s method, we might similarly
expect that the n—step conjugate gradient process also converges quadratically;

that is, iixk Jg-X ii <p iixk -x’ iiz for some £ > 0. Indeed, it can be shown (see
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the Notes and References section) that if the sequence {x;} — x_, the function
under consideration is twice continuously differentiable in some neighborhood

of x*, and the Hessian matrix at x is positive definite, the n-step process
converges superlinearly to x’. Moreover, if the Hessian matrix satisfies an

appropriate Lipschitz condition in some neighborhood of x*, then the rate of
superlinear convergence is n-step quadratic. Again, caution must be exercised in
interpreting these results in comparison with, say, the linear convergence rate of
steepest descent methods. That is, these are n-step asymptotic results, whereas
the steepest descent method is a single-step procedure. Also, given that these
methods are usually applied when » is relatively large, it is seldom practical to
perform more than Sn iterations, or five n-step iterations. Fortunately, empirical
results seem to indicate that this does not pose a problem because reasonable
convergence is typically obtained within 2» iterations.

Convergence Rate Characteristics for Quasi-Newton Methods

The Broyden class of quasi-Newton methods can also be operated as partial
quasi-Newton methods by restarting every m + | iterations with, say, the steepest
descent direction. For the quadratic case, the local convergence properties of
such a scheme resembies that for conjugate gradient methods as discussed
above. Also, for nonquadratic cases, the n-step quasi-Newton algorithm has a
local superlinear convergence rate behavior similar to that of the conjugate
gradient method. Intuitively, this is because of the identical effect that the »-step
process of either method has on quadratic functions. Again, the usual caution
must be adopted in interpreting the value of an »n-step superlinear convergence
behavior. Additionally, we draw the reader’s attention to Exercise 8.52 and to
the section on scaling quasi-Newton methods, where we discuss the possible ill-
conditioning effects resulting from the sequential transformation of the
eigenvalues of D;;H to unity for the quadratic case.

Quasi-Newton methods are also sometimes operated as a continuing
updating process, without resets. Although the global convergence of such a
scheme requires rather stringent conditions, the local convergence rate behavior

is often asymptotically superlinear. For example, for the BFGS update scheme,
which has been seen to exhibit a relatively superior empirical performance, as
mentioned previously, the following result holds true (see the Notes and

References section). Let y* be such that the Hessian H(y") is positive definite
and that there exists an &-neighborhood N (y*) of y* such that the Lipschitz
condition HH(y) —H(y*)" < L||y—y*|| holds true fory € N, (y"), where L is a
positive constant. Then, if a sequence {y,} generated by a continually updated

quasi-Newton process with a fixed step size of unity converges to sucha y’, the

asymptotic rate of convergence is superlinear. Similar superlinear convergence
rate results are available for the DFP algorithm, with both exact line searches
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and unit step size choices under appropriate conditions. We refer the reader to
the Notes and References section for further reading on this subject.

8.9 Subgradient Optimization

Consider Problem P, defined as

wherea 1€ 2 nanamnty at an nntimal
FYALLWL W 43 A Wb llUAl\!lAll.ltJ, » L) .l A A% FY W Al LEdLl L Ailiah LBl4 Ulll.llll.“;
solution exists, as it would be, for example, if X is bounded or if f{x) > «

whenever "x” — 0,

For such a Problem P, we now describe a subgradient optimization
algorithm that can be viewed as a direct generalization of the steepest descent
algorithm in which the negative gradient direction is substituted by a negative
subgradient-based direction. However, the latter direction need not necessarily
be a descent direction, although, as we shall see, it does result in the new iterate
approaching closer to an optimal solution for a sufficiently small step size. For
this reason we do not perform a line search along the negative subgradient
direction, but rather, we prescribe a step size at each iteration that guarantees
that the sequence generated will eventually converge to an optimal solution.
Also, given an iterate x; € X and adopting a step size 4; along the direction

d; = —fk/"fk", where &; belongs to the subdifferential of(x;) of fat x;
(£ # 0, say), the resulting point Xz, = x; + Ad; need not belong to X.
Consequently, the new iterate x; ; is obtained by projecting X, ., onto X, that
is, finding the (unique) closest point in X to X, ;. We denote this operation as
Xge1 = Py (Xg,1), where

Py (X) = argmin{||x - X||: x € X}. (8.72)

The foregoing projection operation should be easy to perform if the
method is to be computationaily viable. For example, in the context of
Lagrangian duality (Chapter 6), wherein subgradient methods and their variants
are most frequently used, the set X might simply represent nonnegativity
restrictions x > 0 on the variables. In this case, we easily obtain (x;,;); =

max{0, (xz,);} for each component { = 1,..., nin (8.72). In other contexts, the
set X = {x:£; <x;<w;, i=1,..., n} might represent simple finite lower and
upper bounds on the variables. In this case, it is again easy to verify that

{(ikﬂ)i if £; (Xg11); S
g i (Kppy)s <4 fori=1,.,n (8.73)

TRTLAE T F

k+17i i
[ui if (-x-k+1)‘ > u,-
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Also, when an additional knapsack constraint o‘x = 3 is introduced to define X

= {x: a'x=p, £<x<u}, then, again, Py(X) is relatively easy to obtain (see
Exercise 8.60).

Summary of a (Rudimentary) Subgradient Algorithm
Initialization Step  Select a starting solution x; € X, let the current
upper bound on the optimal objective value be UB; = f(x;), and let the current

incumbent solution be x* = x;. Put £ = 1, and go to the Main Step.

Main Step  Given x;, find a subgradient &, € df(x;) of fat x;. If

&, = 0, then stop; x; (or x') solves Problem P. Otherwise, let d, =
~& /&, select a step size 4, > 0, and compute x4, = Py (X;4(), Where

iki—l = Xi t ’?'kdk' If f(xk+l) < UBg, put UB,, = f(xz4) and x' =
Xg,1- Otherwise, let UB;,; = UB. Increment £ by | and repeat the Main
Step.

Note that the stopping criterion &; = 0 may never be realized, even if
there exists an interior point optimum and we do find a solution x; for which 0

€ Of(x;), because the algorithm arbitrarily selects the subgradient £;. Hence,

a practical stopping criterion based on a maximum limit on the number of
iterations performed is used almost invariably. Note also that we can terminate

the procedure whenever x;,; = x; for any iteration. Alternatively, if the
optimal objective value f° is known, as in the problem of finding a feasible
solution by minimizing the sum of (absolute) constraint violations, an ¢ stopping

criterion UB; < f* + £ may be used for some tolerance &> 0. (See the Notes

and References section for a primal-dual scheme employing a termination
criterion based on the duality gap.)

8.9.1 Example

Consider the following Problem P:
Minimize {f(x, y):-1<x<], -1 <y <}
where f(x, y)=max{—x, x+y, x—2y}.

By considering f(x, y)} <c, where ¢ is a constant, and examining the region

bounded by —x < ¢, x + y < ¢, and x -2y < ¢, we can plot the contours of fas
shown in Figure 8.25. Note that the points of nondifferentiability are of the type
(z, 0), (¢, 20), and (-, -f) for £ > 0. Also, the optimal solution is (x, ) = (0, 0), at

which all three linear functions defining ftie in value. Hence, although (0, 0) e
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8f(0), we also evidently have (-1, 0), (1, 1), and (I, —2)° belonging to
af(0).

Now consider the point (x, y) = (1, 0). We have f(1, 0) = 1, as determined
by the linear functions x + y and x — 2y. (See Figure 8.25.) Hence, £=(1, 1)' €

&f(1,0). Consider the direction —& = (1, —1). Note that this is not a descent
direction. However, as we begin to move along this direction, we do approach
closer to the optimal solution (0, 0)'. Figure 8.25 shows the ideal step that we
could take along the direction d = —¢& to arrive closest to the optimal solution.
However, suppose that we take a step length A = 2 along —& This brings us to
the point (1, 0) — 2(1, 1) = (-1, =2). The projection Py (-1,-2) of (-1, -2) onto
X is obtained via (8.73) as (-1, —1). This constitutes one iteration of the
foregoing algorithm.

The following result prescribes a step-size selection scheme that will
guarantee convergence to an optimum.

8.9.2 Theorem

Let Problem P be as defined in (8.71) and assume that an optimum exists.
Consider the foregoing subgradient optimization algorithm to solve Problem P,
and suppose that the prescribed nonnegative step size sequence {A,} satisfies

the conditions {4} — 0" and ¥§ o4 = . Then, either the algorithm

terminates finitely with an optimal solution, or else an infinite sequence is
generated such that

Contours 2

-1 -2

Figure 8.25 Contours of f, in Example 8.9.1.
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{UB;} = ' =min{f(x):x e X}.

Proof

The case of finite termination follows from Theorem 3.4.3. Hence,
suppose that an infinite sequence {x;} is generated along with the

accompanying sequence of upper bounds {UB,}. Since {UB,} is monotone

nonincreasing, it has a limit point f. We show that this limit f equals f* by

nulileitine that fre o Oy aliva 2~ £ tha caramema fv. 1 antasa tha lagal
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set S, = {x: f(x)<ca}. Hence, we cannot have f > f, or else we would

obtain a contradiction by taking @ € (f", f), so we must then have f = f*.
Toward this end, consider any x € X such that f(X) <a. (For example,
we can take X as an optimal solution to Problem P. ) Since % € int S, because
fis continuous, there exists a p> 0 such that “x— i" < pimpliesthatx € §,. In
particular, xg, = X + & /||£;| lies on the boundary of the ball centered at X
with radius p and hence lies in S, for all . But by the convexity of £, we have
F(xge) 2 f(xg) + (Xg —x;)' & for all k& Hence, on the contrary, if {x;}
never enters S,, thatis, f(x;) > a for all k£, we shall have (xg; — x;)' & <
f(xg) = F(x;) <0. Substituting for xz, this gives (x - x;)'& < -p|&.
Hence, using dy = ~& /&

, we get

(x, —x)'d, <-p  forallk (8.74)

Now we have

p— ~ 2 — ~ 2
"xk+l - X|| = "xk+1 — Xpyl T Xpyp X
a2 = 2 _ .
= [xgar = X|° + Xkt = Xp[|” + 2001 — Xpa1) (Kpss — %)
Hence, by Theorem 2.4.1,

[%ie1 - XHZ =Xk "iuz ~ %41 —"k+1||2 = 2(Xg i1 —Xpq1) (Xpp1 — %)
|2

-~

< "ik+l —X

Hence, we get
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Using (8.74), this gives

2
| + ’?‘k (’?'k -2p).

e =% < i %

Since 4, — 0%, there exists a K such that for k> K, we have 1, < p. Hence,

M A2 AnZ a ~ 0 p o we PPN
et =X s|xe %" —04  foraili>K. (8.75)

Summing the inequalities (8.75) written for £ = K, K+ 1...., K+ r, say, we get

p:ZK A <|xg ~%F ~Ixgora ~%f <|xg % forallr>o0.

Since the sum on the left-hand side diverges to infinity as r — oo, this leads to a
contradiction, and the proof is complete.

Note that the proof of the theorem can easily be modified to show that for
each a > f°, the sequence {x;} enters S, infinitely often or else, for some
K', we would have f(x;) > a for all £ > K’ leading to the same

contradiction. Hence, whenever x, .

1
ATIL

= Xy inthe foregoing algorithm, x; must

be an optimal solution.
Furthermore, the above algorithm and proof can be extended readily to
solve the problem of minimizing f(x) subject to x € X n @, where fand X are

as above and where O = {x: g;(x) <0, /= |,..., m}. Here, we assume that each

g, i = 1,...,m, is convex and that X m int(Q) # &, so that for each a > f*, by
defining S, = {xe @: f(x)<a}, we have a point X € X n int(S, ). Now, in
the algorithm, if we let £, be a subgradient of f whenever x; € (, and if we let
54 be a subgradient of the most violated constraint in Q if x; ¢ O (noting that
x; always lies in X by virtue of the projection operation), we shall again have

(8.74) holding true, and the remainder of the convergence proof would then
follow as before.

Choice of Step Sizes

Theorem 8.2.9 guarantees that as long as the step sizes A;, Yk, satisfy the
conditions stated, convergence to an optimal solution will be obtained. Although
this 1s true theoretically, it is unfortunately far from what is realized in practice.
For example, choosing 4, = 1/k according to the divergent harmonic series

[X%= (1/ k) = 0], the algorithm can easily stall and be remote from optimality
after thousands of iterations. A careful fine tuning of the choice of step sizes is

usually required to obtain a satisfactory algorithmic performance.

A e e Rewer wewala v wa AL TR Afn L AwElRLaliw
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To gain some insight into the choice of step sizes, let x; be a nonoptimal
iterate with £, € 6f(x;) and denote by x* an optimal solution to Problem (8.71)
having objective value f* = f(x*). By the convexity of £, we have f(x") >

f(xk) + (x "Xk) s‘k, or (x -xx)(- Stk)>f(xk) f* > 0. Hence, as

1 fona Diciie 8.25). although the di
L \acc 115“.15 UAJ) ikl El Ml A\l

r

-&, /H‘fk || need not be an improving direction, it does lead to points that are

closer in Euclidean norm to x* than was x;. In fact, this is the feature that

drives the convergence of the algorithm and ensures an eventual improvement in
objective function value.
Now, as in Figure 8.25, an ideal step size to adopt might be that which

brings us closest to x*. This step size A; can be found by requiring that the

vector (x; +A;d;) - x* is orthogonal to d, or that d[x; + A4;d; -x"] = 0.
This gives

A= —xp)d, =k : "") Sk (8.76)

Of course, the problem with trying to implement this step size 4; is that x" is
unknown. However, by the convexity of £, we have f* = f(x') > f(x;) +
(x’ —x; ) &. Hence, from (8.76), we have that 4; > [£(x;)- £ V/|&]. Since
f* is also usually unknown, we can recommend using an underestimate, £, in
lieu of f*,noting that the foregoing relationship is a “greater than or equal to”
type of inequality. This leads to a choice of step size

2 Bl s )= 11

k — i ]

[

where S; > 0. In fact, by selecting & < f; £2-g, for all & for some positive

(8.77)

& and g, and using f * itself instead of }'— in (8.77), it can be shown that the

generated sequence {x,} converges to an optimum x"'. (A linear or geometric

convergence rate can be exhibited under some additional assumptions on f)

A practical way of employing (8.77) that has been found empirically to
be computationally attractive is as follows (this is called a block halving
scheme). First, designate an upper limit N on the number of iterations to be
performed. Next, select some r < N and divide the potential sequence of
iterations 1,.., Ninto T= [ N/F | blocks, with the first 7 - I blocks having 7

AF LV W D

iterations, and the final block having the remaining (< 7) iterations. Also, for
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each block ¢, select a parameter value A(t), for z = 1,...,T. [Typical values are N
=200, 7 =75, () =0.75, A(2) = 0.5, and B(3) = 0.25, with 7= 3.] Now,
within each block ¢, compute the first step length using (8.77), with £, equal to
the corresponding S(r) value. However, for the remaining iterations within the

block, the step length is kept the same as for the initial iteration in that block,
except that each time the objective function value fails to improve over some v
(= 10, say) consecutive iterations, the step length is successively halved.
[Alternatively, (8.77) can be used to compute the step length for each iteration,

with £, starting at A(¢t) for block ¢, and with this /4 parameter being halved
MK o A7 b &~ o=

whenever the method experiences v consecutive failures as before.]
Additionally, at the beginning of a new block, and also whenever the method
experiences v consecutive failures, the process is reset to the incumbent
solution before the modified step length is used. Although some fine tuning of
the foregoing parameter values might be required, depending on the class of
problems being solved, the prescribed values work well on reasonably well-
scaled problems (see the Notes and References section for empirical evidence
using such a scheme).

Subgradient Deflection, Cutting Plane, and Variable Targ

Value Methods

It has frequently been observed that the difficulty associated with subgradient
methods is that as the iterates progress, the angle between the subgradient-based
direction d; and the direction x* — x; toward optimality, although acute,

tends to approach 90°. As a result, the step size needs to shrink considerably
before a descent is realized, and this, In turn, causes the procedure to stall.
Hence, it becomes almost imperative to adopt some suitable deflection or
rotation scheme to accelerate the convergence behavior.

Toward this end, in the spirit of conjugate gradient methods, we could

adopt a direction of search as d; = —&; and d; = -&, + ¢ di_,, where df_,
X; —X4_; and ¢ Is an appropriate parameter. (These directions can be

normalized and then used in conjunction with the same block-halving step size
strategy described above)) Various strategies prompted by theoretical
convergence and/or practical efficiency can be designed by choosing 4
appropriately (see the Notes and References section). A simple choice that

works reasonably well in practice is the average direction strategy, for which

¢ = ||§k||/"dﬂ_l“, so that d; bisects the angle between —£; and dﬂ_l.

Another viable strategy is to imitate quasi-Newton procedures by using
d; = -Dy£;, where D, is a suitable, symmetric, positive definite matrix. This
leads to the class of space dilation methods (see the Notes and References
section). Alternatively, we could generate a search direction by finding the
minimum norm subgradient as motivated by Theorem 6.3.11, but based on an
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approximation to the subdifferential at x;, and not the actual subdifferential as

in the theorem. The class of bundle methods (see the Notes and References
section) are designed to iteratively refine such an approximation to the
subdifferential until the least norm element yields a descent direction. Note that
this desirable strict descent property comes at the expense of having to solve
quadratic optimization subproblems, which detract from the simplicity of the
foregoing types of subgradient methods.

Thus far, the basic algorithm scheme that we have adopted involves first
finding a direction of motion d; at a given iterate x;, followed by computing a

,,!L_ —

prescr tep size A,k in order to determine the next iteraie according to
Xiel = Py (Xpq1)s where X;,1 = x; + 4, d,.

There exists an alternative approach in which X, is determined directly via a
projection of x; onto the polyhedron defined by one or more cutting planes,

thereby effectively yielding the direction and step size simultaneously. To
motivate this strategy, let us first consider the case of a single cutting plane.

Note that by the assumed convexity of £, we have f(x) > f(x;) + (x — x;)' &,

where £; € Of(x, ). Let f' denote the onti
K Il
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now that f(x;) > f, sothat & is nonzero. Consider the Polyak-Kelly cutting
plane generated from the foregoing convexity-based inequality by imposing the

desired restriction that f(x) < f* as given by

(x=xp)' &k < 7 = F(xg). (8.78)

Observe that the current iterate x; violates this inequality since f(x;) > f~,
and hence, (8.78) constitutes a cutting plane that deletes x;. If we were to
project the point x; onto this cutting plane, we would effectively move from x

a step length of A, say, along the negative normalized gradient d k= —Ei/ "5,( ||

uch fh“! X, + jﬂ <3 tu“vs (R ac an annality Thie vialde tha nratactad
k \ £ g [ST¥ UH“I‘I} A ALAD J A bl T LA LW Yl UJ o b Wl
solution
*
- g - e X))
Xp,1 = X + Adg, where d; = ok and A = L")-—IH (8.79)
A ¢l

Observe that the effective step length 1 in (8.79) is of the type given in (8.77),

with f* itself being used in lieu of the underestimate £, and with Bi = 1. This
affords another interpretation for the step size (8.77).

Following this concept, we now concurrently examine a pair of Polyak—
Kelly cutting planes based on the current and previous iterates x; and x;_i,
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respectively. These cuts are predicated on some underestimate f;, at the present

iteration & that is less than the currently best known objective value. Imitating
(8.78), this yields the set

Gy ={x:(x—x,;)& < fy - f(x;) forj=k-landk}.  (8.80)

We then compose the next iterate via a projection onto the polyhedron G,
according to

Xpel = Py(Xgyr),  where Xy = Fg, (x4). (8.81)

Because of its simple two-constraint structure, the projection G, () is

relatively easy to compute in closed-form by examining the KKT conditions for
the underlying projection problem (see Exercise 8.58). This process of
determining the direction and step size simultaneously has been found to be
computationally very effective, and can be proven to converge to an optimum

under an appropriate prescription of f;, Vk (see below as well as the Notes and

References section).
We conclude this section by providing an important relevant comment on

selecting a suitable underestimating value f;, V4, that could be used in place of

f within (8.77), or in the algorithmic process described by (8.80) and (8.81).

Note that, in general, we typically do not have any prior information on such a
suitable lower bound on the problem. It is of interest, therefore, to design
algorithms that would prescribe an automatic scheme for generating and

iteratively manipulating an estimate )_’k for f*, Vk, that in concert with

prescribed direction-finding and step-size schemes would ensure that {fk} —

7* and {x,} = x_ (over some convergent subsequence) as ¥ — . There
exists a class of algorithms called variable target value methods that possesses
this feature. Note that the estimate fk at any iteration & in these procedures

might not be a true underestimate for f*. Rather, f;‘, merely serves as a current
target value to be achieved, which happens to be less than the objective function
value best known at present. The idea, then, is to decrease or increase f

suitably, depending on whether or not a defined sufficient extent of progress is
made by the algorithm, in a manner that finally induces convergence to an
optimal solution. Approaches of this type have been designed to yield both
theoretically convergent and practically effective schemes under various
deflected subgradient and step-size schemes, including cutting plane projection
methods as described above. We refer the reader to the Notes and References
section for a further study on this subject.
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Exercises

[8.1] Find the minimum of 6¢ * + 242 by each of the following procedures:

Golden section method.
Dichotomous search method.
Newton’s method.

Nicartinn coarrh mathad
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[8.2] For the uniform search method, the dichotomous search method, the

golden section method, and the Fibonacci search method, compute the number

Al Brovtirmemal azsaloactinme ranacrsrad Fre o =N1 NNl N nNnnt amA AN wwvhava
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is the ratio of the final interval of uncertainty to the length of the initial interval
of uncertainty.

[8.3] Consider the function £ defined by f(x) = (x,+x3)° + 2(x~x, —4)*.
Given a point x, and a nonzero direction vector d, let 8(4) = f(x| + Ad).

a. Obtain an explicit expression for 8(4).

b. For x; =(0, 0) and d = (1, 1), using the Fibonacci method, find
the value of A that solves the problem to minimize #(A) subject to A
€R.

c. For x; =(5, 4) and d = (-2, 1), using the golden section method,
find the value of A that solves the problem to minimize &(A)

subjectto A € R.
d. Repeat parts b and c using the interval bisection method.

[8.4] Show that the method of Fibonacci approaches the golden section method
as the number of funcitonal evaluations » approaches co,

[8.5] Consider the problem to minimize f(x+ Ad) subject to 4 € R. Show that

a necessary condition for a minimum at 4 is that d’Vf(y) = 0, where y = x +

Ad. Under what assumptions is this condition sufficient for optimality?

[8.6] Suppose that &is differentiable, and let |6'| < q. Furthermore, suppose that

-

the uniform search method is used to minimize & Let A be a grid point such
that (1) — #(A) > &> 0 for each grid point 2 = A. If the grid length & is
such that ad < & show, without assuming strict quasiconvexity, that no point

outside the interval [.i—é', j.+5] could provide a functional value of less than
6¢A).

[8.7] Consider the problem to minimize f(x+ Ad) subjecttox+ Ad € Sand A
> 0, where S is a compact convex set and fis a convex function. Furthermore,
suppose that d is an improving direction. Show that an optimal solution A is
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given by 4 = min{4, 1}, where 4 satisfies d'Vf(x+4d) =0, and 4, =
max{A.x+Ad € §}.

[8.8] Define the percentage test line search map that determines the step length
A to within 100p%, 0 < p < 1, of the ideal step A" accordingto M(x,d)={y: y

PR
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= x + Ad, where 0 < A < o, and I)i-—zf. ;S_p/t }, where defining &A) =

f(x+4d), we have 8'(A%) = 0. Show that if d # 0 and & is continuously
iy .
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conjunction with the quadratic-fit method desc rlbed in Section 8.3.
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[8.9] Consider the problem to minimize 34— 22% + A3+ 2% subject to 4> 0.

a. Write a necessary condition for 2 minimum. Can you make use of
this condition to find the global minimum?

b. Is the function strictly quasiconvex over the region {4 : A > 0}?
Apply the Fibonacci search method to find the minimum.

c. Apply both the bisection search method and Newton’s method to the
above problem, starting from 4 = 6.

[8.10] Consider the following definitions:
A function €: R > R to be minimized is said to be strongly unimodal

over the interval [a, b] if there exists a 4 that minimizes & over the interval; and
forany A4, 4, € [q, b]suchthat 4 < 4,, we have

<A implies that G(4;) > 0(4)
A=A implies that (4 ) < 6(4,).

A function : R — R to be minimized is said to be strictly unimodal over
the interval [a, b] if there exists a2 4 that minimizes 6 over the interval; and for

A, Ay € [a, b] such that O(4) = O(L), O(A) # 6(4), and A4 < Ay, we
have

A SA implies that (%) > 6(4,)
A=A implies that 8(4) < 8(1y).

a. Show that if @ is strongly unimodal over [a, 5], then & is strongly
quasiconvex over [a, 5]. Conversely, show that if & is strongly
quasiconvex over [a, #] and has a minimum in this interval, then it is
strongly unimodal over the interval.

b. Show that if €is strictly unimodal and continuous over [a, 6], then 6
is strictly quasiconvex over [a, b]. Conversely, show that if 6 is
strictly quasiconvex over {a, 5] and has a minimum in this interval,
then it is strictly unimodal over this interval.
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[8.11] Let €: R — R and suppose that we have the three points (4, ), (43,
6,), and (4, ), where 6, = 6(4,) for j= 1, 2, 3. Show that the quadratic
curve ¢ passing through these points is given by

QA=A)A-Tp)  BlA=A)A-Tp)  Os(A=A)XA-)
h=2)hy ~28) (o= A)Ip—A3) (s —2)(hs — )

q(A) =

Furthermore, show that the derivative of ¢ vanishes at the point 4 given by

T 1 b, Oy + by 9-.+b. 9,
2 9239|+03192 +apb;

where a3 = A4 — A; and b; = 21-2 - A}. Find the quadratic curve passing
through the points (1, 4), (3, 1), and (4, 7), and compute A. Show that if (A,

Ay, A3) satisfy the three-point pattern (TPP), then 4; < A< Ay. Also:
a. Propose a method for finding 4, 4, 43 suchthat 4 < 4, < 43, §

> 6, and &) < 6.
b. Show that if & is strictly quasiconvex, then the new interval of
uncertainty defined by the revised and 43 of the quadraticfit line

search indeed contains the minimum.
c. Use the procedure described in this exercise to minimize -31 — 242 +
243 + 3% over 4> 0.

[8.12] Let & R — R be a continuous strictly quasiconvex function, Let 0 £ 4 <

Ay < A3 and denote 8; = &(4,) forj=1,2,3.

a. If 6 = 6, = 65, show that this common value coincides with the value
of min {¢{4): A= 0}.

b. Let (A4, 4, 4) € R represent a three-point pattern iterate generated

by the quadratic-fit algorithm described in Section 8.3. Show that the
function 5(&1, 2y, A3} = 0(4) + B(Ay) + 8(/3) is a continuous function

that satisfies the descent property 8[(4, 4, A)new] < (A, 42, 43)
whenever 6, 6;, and & are not all equal to each other.

[8.13] Let & be pseudoconvex and continuously twice differentiable. Consider

the algorithm of Section 8.3 with the modification that in Case 3, when 1 =

A, welet Aoy = (A, A, A)if (1) >0, we let Ay = (4, 4, A4)if
8'(43) <0, and we stop if &'(4;) = 0. Accordingly, if 4y, 4;, and 45 are not

e ) Py oo madl s rsyYmyYYy b

e oo .
all Ulblllll.«l., let them be bdld o bdllbl}’ lIlC mree-pumr panern Li1rr) WIICIICVCI'

O(A) <Oif Ay = Ay < &y, 8'(Jy) >0if 4 < Ay = Ay, and 6'(Ay) = 0 and
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6°(4) > 0if 4 = A4 = A3. With this modification, suppose that we use the

quadratic interpolation algorithm of Section 8.3 applied to & given a starting
TPP (4, 4;, 4), where the quadratic fit matches the two function values and

the derivative 8'(4,) whenever two of the three points 4, 4, Ay are

coincident, and where at any iteration, if 8'(4,) =0, we put 2 = (4,, 4,

Ay) and terminate. Define the solution set Q = {(4, 4, 4): 8'(4) = 0}.

a, Let A define the algorithmic map that produces A,., € A(4, 4,
A3). Show that A is closed.

b. Show that the function 8(4, 4y, A43) = 6(4) + 8(2) + O(L) is a
continuous descent function that satisfies 8(Any) < 8(4, 4, A3) if
0'(4) #0.

c. Hence, show that the algorithm defined either terminates finitely or
generates an infinite sequence whose accumulation points lie in ).
d. Comment on the convergence of the algorithm and the nature of the

solution obtained if @ is strictly quasiconvex and twice continuously
differentiable.

[8.14] In Section 8.2 we described Newton’s method for finding a point where

the derivative of a function vanishes.

a. Show how the method can be used to find a point where the value of a
continuously differentiable function is equal to zero. Illustrate the

method for @(4) = 243 -4, starting from 4; = 5.

b. Will the method converge for any starting point? Prove or give a
counterexample.

[8.15] Show how the line search procedures of Section 8.1 can be used to find a
point where a given function assumes the value zero. Illustrate by the function &

defined by £(4) = 242 ~51 +3. (Hint: Consider the absolute value function 6
=14

[8.16] In Section 8.2 we discussed the bisection search method for finding a
point where the derivative of a pseudoconvex function vanishes. Show how the

method can be used to find a point where a function is equal to zero. Explicitly
state the assumptions that the function needs to satisfy. Illustrate by the function

g defined by 6(4) = 247 — 4 defined on the interval [0.5, 10.0].

[8.17] 1t can be verified that in Example 9.2.4, for a given value of 4, if x,, =

(x;, x,)’, then x; satisfies




448 Chapter 8

For 1 =1, 10, 100, and 1000, find the value of x; satisfying the above equation,
using a suitable procedure.

[8.18] Consider applying the steepest descent method to minimize f(x) versus

the application of this method to minimize F(x) = I]Vf (x)"2 . Assuming that f

is quadratic with a positive definite Hessian, compare the rates of convergence

of the two schemes and, hence, justify why the equivalent minimization of F is
not an attractive strategy.

107 Ch
P27} 35

maximized when K

[8.20] Solve the problem to maximize 3x; + xp+ 6xx; — 2x12 + Zx% by the
method of Hooke and Jeeves.

[8.21] Let H be an » x n, symmetric, positive definite matrix with condition
number a. Then the Kantorovich inequality asserts that for any x € R”, we have

(x(x)2 4o

(x’Hx)(x'H_lx) - (l+a)2 -

Justify this inequality, and use it to establish Equation (8.18).

[8.22] Consider the problem to minimize (3 — x; )2 + T(xq —xlz )2. Starting from
the point (0, 0), solve the problem by the following procedures:

a. The cyclic coordinate method.

b. The method of Hooke and Jeeves.

C. The method of Rosenbrock.

d. The method of Davidon—Fletcher—Powell.

- e el 1 L O I TFoao Ll b A 1. OLh e STITOAON
e, 1100 MELNnod ol DTU}/UCH—PICLUHUF-UU!UI D—2I1dIlIi0 {DI’\JD}.

[8.23] Consider the following problem:

Minimize 3, [100(x; —x2;)% +(1—x,_)].
=2

For values of » = 5, 10 and 50, and starting from the solution x° = (-1.2, 1.0,
-1.2, 1.0, ...), solve this problem using each of the following methods. (Write
subroutines for evaluating the objective function, its gradient, and for
performing a line search via the quadratic-fit method, and then use these
subroutinies to compose codes for the following methods. Also, you could use
the previous iteration’s step length as the initial step for establishing a three-

point pattern (TPP) for the current iteration. Present a summary of comparative
results,
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a. The method of Hooke and Jeeves (use the line search variant and the
same termination criteria as for the other methods, to facilitate
comparisons).

Rosenbrock’s method (again, use the line search variant as in Part a).
The steepest descent method.

Newton’s method.
Rrovden Fletcher Goldfarb-Shanno (RFGQ\ uasi-Newton method,

A ) AW WL s S s mwa las mr AaiaZEn Bnr s o F

The conjugate gradient method of Hestenes and Stiefel.
The conjugate gradient method of Fletcher and Reeves.
The conjugate gradient method of Polyak and Ribiere.

SEMme ae o

[8.24] Consider the problem to minimize (x —Jl:%)2 + 3(xq —x2)4. Solve the

problem using each of the following methods. Do the methods converge to the
same point? If not, explain.

a. The cyclic coordinate method.

The method of Hooke and Jeeves.

The method of Rosenbrock.

The method of steepest descent.

The method of Fletcher and Reeves.

The method of Davidon-Fletcher—Powell.

L4 g SIPSEY =1 Pl o bY

The method of Broyden—Fletcher—Goidfarb—Shanno (BFGS)

@re e o

[8.25] Consider the model y = a + fix + yxz + & where x is the independent

variable, y is the observed dependent variable, @, f#, and y are unknown
parameters, and & is a random component representing the experimental error.
The following table gives the values of x and the corresponding values of y.
Formulate the problem of finding the best estimates of a, B, and y as an
unconstrained optimization problem by minimizing:

a. The sum of squared errors.

b. The sum of the absolute values of the errors.
~ Tha aloaliba srnbaia mftha oo

L ™) Fy H.C lllﬂ.AllllUlll ﬂUDUlULC \"d.luc U'I. I.IJC LI,

For each case, find a, A, and y by a suitable method.

x 0 1 2 3 4 5
¥ 3 3 -10 -25 -50 -100

[8.26] Consider the following problem:
Minimize 2x; + x,
subject to xlz + x% =9
—2x1 - 3.1’2 < 6.

a. Formulate the Lagrangian dual problem by incorporating both
constraints into the objective function via the Lagrangian multipliers

and u,.
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b. Using a suitable unconstrained optimization method, compute the
gradient of the dual function # at the point (1, 2).
c. Starting from the point @ = (1, 2)°, perform one iteration of the steepest

ascent method for the dual problem. In particular, solve the following
problem, where d = V8(u}:
Maximize &(u + Ad)
subjectto uy +Ady 20
Az0.

[8.27] Let £ R" > R be differentiable at x and [et the vectors dy, .., d,, in R”
be linearly independent. Suppose that the minimum of f(x + Ad;) over A1 € R
occurs at A =0 forj = 1,..., n. Show that Vf(x) = 0. Does this imply that fhas a

local minimum at x?

[8.28] Let H be a symmetric » x n matrix, and let dy,..,d, be a set of
characteristic vectors of H. Show that dy, ...,d,, are H-conjugate,

[8.29] Consider the problem in Equation (8.24) and suppose that £, > 0 is such
that H(x;) + &I is positive definite. Let A, = —H(x,) + &I VF(x,).

Show that §= x;,; — X, given by (8.22), and the Lagrange multiplier 1= &,

satisfy the saddle point optimality conditions for (8.24). Hence, comment on the
relationship between the Levenberg—Marquardt and trust region methods. Also
comment on the case £, =0.

[8.30] The following method for generating a set of conjugate directions for
minimizing £ R" — R is due to Zangwill [1967b]:

initial point x;. Let y; = xy, let dy = ~Vf(y;), let £ =/ =1, and go to the
Main Step.

Main Step

L. Let ; be an optimal solution to the problem to minimize f(y; +
Ad;) subjectto A € R,andlet y,;;y =y; + 4;d;. If j=n,goto
Step 4; otherwise, go to Step 2.

2. Letd= -Vf(y;,) and let 7 be an optimal solution to the
problem to minimize f(y;,; + ud)subjectto #>0.Let z; = y
+ nd. Leti=1, and go to Step 3.

£ Irf> M =« 2 ctnm swith = Mhoarmuis Iat 5y
&L ” "J kLI‘j" ™~ G, ll Wl.\,ll L‘ WALLLWw] vuay, 1wl F

Lt

solution to the prohlem to minimize f(z; + pd;) subjectto iz € R.
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Let z,,; = z; + pd;. If i <j, replace i by / + 1, and repeat Step 3.
Otherwise, let d ;.1 = z;,1 — ¥,,1, replace jby j+ 1, and go to
Step 1.

4. Let y| = Xy, =Ypue- Let dy = —Vf(y;), replace kby £+ 1, let;
= I, and go to Step 1.

Note that the steepest descent search in Step 2 is used to ensure that z; —
y| € L(dy,....d ;) for the quadratic case so that finite convergence is guaranteed.
Illustrate using the problem to minimize (x; - 2)4 + (x1 —2x, )2, starting from
the point (0.0, 3.0).

[8.31] Suppose that f is continuously twice differentiable and that the Hessian
matrix is invertible everywhere. Given x;, let x;,; = x; + A d;, where d; =
-H(x; )_IVf (x;) and A; is an optimal solution to the problem to minimize
f(x; +2d;) subject to A € R Show that this modification of Newton’s method
converges to a point in the solution set Q = {X:Vf (i)'H(i')_IVf (x) = 0}.

Hlustrate by minimizing (x; —2)* + (x; - 2x,)* starting from the point (-2, 3).
o (=B il | F L%t | FA o r LY r r

[8.32] Let af,...,a, be aset of linearly independent vectors in R”, and let H be
an n x n symmetric positive definite matrix.
a. Show that the vectors dy, ...,d,, defined below are H-conjugate.

a, if k=1
d, = k-1{ q¢
AP . R )
i=1| dfHd,
b. Suppose that ay, ...,a,, are the unit vectors in R”, and let D be the matrix

whose columns are the vectors dy, ...,d,, defined in Part a. Show that D
is upper triangular with all diagonal eiements equal to i.
c. Ilustrate by letting a; = (1,0, 0), a, =(1,-1, 4), a3 =(2,-1, 6),

and
2 -1
H= 0 2.
-1 2 2
d. Ithustrate by letting a;, a,, and a; be the unit vectors in R? and H as

oy 1o Dn'-t

=% ~
51\'511 il I s

[8.33] Consider the following problem:
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Minimize 2):12 +3x1x9 + 4x% + 2x32, —2x9X3+ 5x1 +3x7 — 4x3.

Using Exercise 8.32 or any other method, generate three conjugate directions.
Starting from the origin, solve the problem by minimizing along these
directions.

[8.34] Show that amalogous to (8.66), assuming exact line searches, a
memoryless quasi-Newton update performed on a member of the Broyden
family (taking D, = I) results in a direction d ;1 = —D;, V(¥ ;,(), where

q,9; ¢P;q5-
qf:'qf Pfrqf

l)j+l =1-(1-¢)

Observe that the equivalence with conjugate gradient methods results only when
¢ =1 (BFGS update).

[8.35] Show that there exists a value of ¢ [as given by Equation (8.50)] for the
Broyden correction formula (8.46) that will yield d;,; = -D; 1 Vf(y ;) = 0.

(Hint: Use p; = A;d; — LD V(Y ;). q; = V(Y 1) = V(Y ;) and d'VF(Y o)
= V(Y ) = VAV Y DVS(Y jyp) =0)]

[8.36] Use two sequential applications of the Sherman—Motrison—Woodbury
formula given in Equation (8.55) to verify the inverse relationship (8.54)
between (8.48) and (8.53).

[8.37] Derive the Hessian correction (8.53) for the BFGS update directly,
following the scheme used for the update of the Hessian inverse via (8.41)—
(8.45).

[8.38] Referring to Figure 8.24 and the associated discussion, verify that the
minimization of the quadratic function ffrom y; along the pattern direction d p
=Yy’ - ¥ will produce the point y ;5. [Hint: Let y';,, denote the point thus
+ ! MGrry 3y
Nat Vi Y j+lJ YI\Y j+1)
fis quadratic, show that Vf(y’,,) is orthogonal to both Vf(y, ;) andto dp,

Tamnd TFF 2o Blamans prmma

= Y . dla, . F - .
=u IU Uidl ¥V 7 1b HICdl, SIIWG

so that y,, is a minimizing point in the plane of Figure 8.24. Using Part 3 of

Theorem 8.8.3, argue now that y’j+2 =¥, +2]

[8.39] Consider the quadratic form f(x) = ¢'x + (1/2)x"Hx, where H is a

symmetric » x »n matrix. In many applications it is desirable to obtain
separability in the variables by climinating the cross-product terms, This could
be done by rotating the axes as follows. Let D be an # x » matrix whose columns

d,, ..,d, are H-conjugate. Letting x = Dy, verify that the quadratic form is
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equivalent to Z}f:lajyj + (IIZ)Zaleﬂjy?, where (oq,...,0,) = ¢'D, and B

= df,-Hd j for j = 1,..., n. Furthermore, translating and rotating the axes could be

accomplished by the transformation x = Dy + z, where z is any vector satisfying
Hz + ¢ = 0, that is, Vf(z) = 0. In this case show that the quadratic form is

s

N {ww_1 1. 1 r .
1 LIS

PR T PO Y + PIvL A . + 71 5ANTY n 2 TY oal o o da o
cqulrvaient 1w (o 4 (/L) nz (l!é)Lj:ijyj- uUsc LINE TCSUIL O

-

exercise to draw accurate contours of the quadratic form 3x; — 6xy + 2:4:12 +
2

w1 Ve
AJZ-

Xxy +
[8.40] Consider the problem to maximize ~2xi — 3x% + 3x1¢; — 2x1 + 4x,.
Starting from the origin, solve the problem by the Davidon—Fletcher-Powell
method, with D; as the identity. Also solve the problem by the Fletcher and
Reeves conjugate gradient method. Note that the two procedures generate
identical sets of directions. Show that, in general, if Dy = 1, then the two
methods are identical for quadratic functions.

[8.41] Derive a quasi-Newton correction matrix C for the Hessian
approximation B, that achieves the minimum Frobenius norm (squared)

pIP> y Cyz-, where Cj; are the elements of C (to be determined), subject to the

quasi-Newton condition (C + B;)p; = q; and the symmetry condition C =

C'. [Hint: Set up the corresponding optimization problem after enforcing
symmetry, and use the KKT conditions. This gives the Powell-Symmetric
Broyden (PSB) update, ]

Zx}z ¢x§

[8.42] Solve the problem to minimize 2x + 3x§ + e , Starting with the

point (1, 0) and using both the Fletcher and Reeves conjugate gradient method
and the BFGS quasi-Newton method.

[8.43] A problem of the following structure frequently arises in the context of
solving a more general nonlinear programming problem:

Minimize f(x)
subjectto a@; <x; <b;, fori=1,..m

a, Investigate appropriate modifications of the unconstrained optimization
methods discussed in this chapter so that lower and upper bounds on the
variables could be handled.

b, Use the results of Part a to solve the following problem:

Minimize (x—2)* + (x; - 2x,)*

subject to 4 <6
3

5.

Fa

X

I

Fa
A

X2
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[8.44] Consider the system of simultaneous equations
hi(x) =0 fori=1..., £

a. Show how to solve the above system by unconstrained optimization
techniques. [Hint: Consider the problem to minimize Zlelh,-(x)]p ,

where p is a positive integer.]
b. Solve the following system:

200 -2 +(2x - x%)* -4 =0
x§ —2xy +1=0.

[8.45] Consider the problem to minimize f(x) subject to A(x) =0 fori=1,.,

£. A point x is said to be a KKT point if there exists a vector v € RY such that

V(x)+ %"’.—V"i(x) =0
i=|
h’(X)=O f0rf=1w-:£-

a. Show how to solve the above system using unconstrained optimization
techniques. (Hint: See Exercise 8.44.)
b. Find the KKT point for the following problem:

Minimize (x — 3)4 +(x; —3xy )2

subject to 2x12 —x3 =0.

[8.46] Consider the problem to minimize f(x) subjectto g;(x) <0 fori=1,..., m.

a. Show that the KKT conditions are satisfied at a point x if there exist
. | o, Frvv ¥ = I s orynh that
L NAN ] n), WPl & l,--v-, ) oWlwll LIIGL

i)+ 3 ulVg(x) = 0

gi(x)+s? =0 fori=1,...m
us; =0 fori=L..,m

b. Show that unconstrained optimization techniques could be used to find a
solution to the above system. (Hint: See Exercise 8.44.)
c. Use a suitable unconstrained optimization technique to find a KKT point

to the following problem;

Minimize 3xf +2x3 — 2x;x +4x + 6x,

o Ik o ~ 3 V.Y .
SUpjetl 1 —2x1 —JX3 +0 s U,
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[8.47] Consider the problem to minimize x12 + x% subjectto x; + x, —4=0.

a. Find the optimal solution to this problem, and verify optimality by the

KKT conditions.
b. One approach to solving the problem is to transform it into a problem of

the form to minimize x12 + x% + u(x +x —4)%, where 1> 0 is a large

. S iy ----;_a.

scalar, Solve the unconstrained prumt:l for 4 = 10 by a conjugate
gradient method, starting from the origin.

[8.48] Using induction, show that the inclusion of the extra term y;d; in
Equation (8.68b), where y; is as given therein, ensures the mutual H-conjugacy
of the directions d;, ...,d,, thus generated.

[8.49] Let H be an # x n symmetric matrix, and let f(x) = ¢’x + (1/2)x'Hx.

Consider the following rank-one correction algorithm for minimizing £ First, let
D; be an n x n positive definite symmetric matrix, and let x; be a given vector,

Forj=1,.., n let 4; be an optimal solution to the problem to minimize f(x; +
Ad ;) subject to A€ R,and let x;,; = x; + A;d;, where d; = -D;Vf(x;)

611 en vy
By J

(p;-D;q;)p;~Dq;)
q(p; -Dq;)

Dj+l =Dj+

P; =X, 1—X%j

a. Verify that the matrix added to D to obtain D, is of rank 1.
b Forj=1,.., n,showthat p, = D, ;q; fori < ;.
c. Supposing that H is invertible, does D, = H ! hold?

Even if D; is positive definite, show that D, is not necessarily

positive definite. This explains why a line search over the entire real line

is used.

e. Are the directions d|, ...,d,, necessarily conjugate?

f. Use the above algorithm for minimizing x —4x, + 23.:12 + 2xyx; +
3x% .

g. Suppose that q j 1s replaced by Vf(x;,1)— Vf(x;). Develop a procedure

similar to that of Davidon—Fletcher—Powell for minimizing a
nonquadratic function, using the above scheme for updating D ;. Use the

procedure to minimize (x 2+ (4 —2x )2.
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[8.50] Consider the design of a conjugate gradient method in which d;, =
~Vf(y;u) + a,d; inthe usual notation, and where, for a choice of a scale
parameter s;,;, we would like s;,1d;,; to coincide with the Newton direction

~H'Vf(y,y), if at all possible. Equating s;[-V/(yj) + ;d;]

_Iv-{'{u . trnn

ennca hat eidae and minltinly thaca hy WA and nea tha
.ll TJ \J j+l}, mxayvnu LALFLLL Jiulwd  LliWd Illulllyl] Lilvwadw L lluj, Elivnk LiOW% LILA-
quasi-Newton condition A;Hd ; = q; to derive
N N .-.,.. N
_ JAY )45~ U/S IVIY j41) P
Jo t
d;q;
a. Show that with exact line searches, the choice of s;,; is immaterial.

Moreover, show that as 5;,; — 0, a; > a}{s in (8.57). Motivate the

choice of s;;; by considering the situation in which the Newton

direction —H"’lVf (yj+1) is, indeed, contained in the cone spanned by

€ co
-Vf(y..;) and d; but is not coincident with d;. Hence, :

j+1) and d; 1S not ¥ it with d;. H , suggest a

scheme for choosing a value for s;,;.
b. Itlustrate, using Example 8.8.2, by assuming that at the previous
iteration, y; =(-1/2, 1), d; =(1, 0, 2; = 1/2 (inexact step), so that

yj+l = (0, 1), and consider your suggested choice along with the
choices (i) s;,; = o, (ii) s;4 = L, and (ii}) s,y = 1/4 at the next
iteration. Obtain the corresponding directions d ;.1 = -Vf(y;) +
¢ ;d ;. Which of these can potentially lead to optimality? (Choice (i) is
Perry’s {1978] choice. Sherali and Ulular [1990] suggest the scaled
version, prescribing a choice for 5;,.)
[8.51] In this exercise we describe a modification of the simplex method of
Spendley et al. [1962] for solving a problem of the form to minimize f(x)
subject to x € R". The version of the method described here is credited to
Nelder and Mead [1965].

Initialization Step  Choose the points x;, Xj,..,X,, to form a

simplex in R". Choose a reflection coefficient a > 0, an expansion coefficient
> 1, and a positive contraction coefficient 0 < g < 1. Go to the Main Step.

W _a__ MV«
Main Step

| Let x,, x; € {X[,...,.X,,1} besuch that
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f(x,)= min f(x;} and f(x;)= max f(x;).

<_;<n+ n+1
_ 1 n+l
Let X = — 3 x;, and go to Step 2.
nj=1jis

2, Let X = X + a(X-x,). If f(x,) > f(X), let x, = X + y(X-X), and
go to Step 3. Otherwise, go to Step 4.

3. The point x, is replaced by x, if f(X) > f(x,) and by x if f(X) <
f(x,) toyield a new set of n + 1 points. Go to Step 1.

4 If maxgjgne1{f(x;):j#s}2 f(x), then x; is replaced by x to form
anew set of n + 1 points, and we go to Step 1. Otherwise, go to Step 5.

5. Let x' be defined by F(x) = min{f(x), f(x,)}, and let x” = X +
B(x'-%). If f(x") > f(x), replace x; by x; + (/2)(x, —x;) for j =
l,...,n+ 1, and go to Step 1. If F(x") < f(x'), then x" replaces x; to
form a new set of » + 1 points. Go to Step 1.

a. Let d; be an n-vector with the jth component equal to a and all other

components equal to b, where

(Vr+l1+n-1), b= (Jn+ -1),

a=

J_ nf

and where ¢ is a positive scalar. Show that the initial simplex defined by
X[, w0 Xy could be chosen by letting x;,1 = x; + d;, where x| is

selected arbitrarily. (In particular , show that x;,; — x forj=1,..., n are

linearly independent. What is the interpretation of ¢ in terms of the
geometry of this initial simplex?)

g _ a1 — | & ___r LS. S -~ 2 . ] . 2 ] 2 - 1M
Solve the problem to minimize 2x{ +2xxy +x3 +3x7 —3x; —10x;

o
b

using the simplex method described in this exercise.

—

852} Consider the quadral atic function ffv\ = ctv + ﬂf?\vrnv where H is an

X n symmetric, posmve definite matnx Suppose that we use some algorithm
for which the iterate y jel = ¥; = A4D;Vfi(y;) is generated by an exact line

search along the direction ~D,;Vf(y;) from the previous iterate y ;, where D;

is some positive definite matrix. Then, if y* is the minimizing solution for f;

and if e(y) = (I/2Xy-y*)YH(y-y") is an error function, show that at every
step /, we have

(a; 1)
e(Y_;+l) — e(YJ )

(a'j+l)
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where «; is the ratio of the largest to the smallest eigenvalue of D ;H.

[8.53] Consider the following method of parallel tangents credited to Shah et al.
[1964] for minimizing a differentiable function fof several variables:

Initialization Step Choose a termination scalar € > 0, and choose a
starting point x,. Let yo = x;, £=/ =1, and go to the Main Step.

Main Step

1. Let d = —-Vf(x;) and let A be an optimal solution to the problem to
minimize f(x; +Ad) subjectto 1> 0. Let y; = x; + Ad. Go to Step

2. iet d= -Vf(y;), and let 4; be an optimal solution to the problem to
minimize f(y;+Ad) subjectto A2 0.Let z; = y; + 4;d, and go to
Step 3.

3. Letd=z; - y;;, and let y; be an optimal solution to the problem to

minimize f(z; + pd) subjectto e R Let y ;= z; + u;d Ifj<n,
replace by j + 1, and go to Step 2. If j = », go to Step 4.
4. Let x40 = Ypuo If ka+1—xk|| < g stop. Otherwise, let yo = X1,

replace kby k + 1, letj = 1, and go to Step 1.
Using Theorem 7.3.4, show that the method converges. Solve the following
problems using the method of parallel tangents:

a.  Minimize 2x{ +3x] +2xx; —2x —6x;.

b, Minimize x12 +x§ —2x;x; — 2% — x5. (Note that the optimal solution for
this problem is unbounded.)

c. Minimize (x; —3)? +(x; —3x, ).

[8.54] Let £ R" — R be differentiable. Consider the following procedure for
minimizing f:

Initialization Step  Choose a termination scalar £ > 0 and an initial
step size A > 0. Let m be a positive integer denoting the number of allowable
failures before reducing the step size. Let x; be the starting point and let the
current upper bound on the optimal objective value be UB = f(x;). Let v=0,
let £ = 1, and go to the Main Step.

Main Step
1. Let dk = —Vf(xk), and let Xpqep = Xy F Adk If f(x“l) <UB, letv
=0, X = X1, UB = f(X), and go to Step 2. If, on the other hand,

f(x441) 2 UB, replace vby v+ 1. If v=m, go to Step 3; and if v <m, go
to Step 2.
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2. Replace £ by £ + 1, and go to Step 1.

3. Replace £ by & + 1. If A < g, stop with x as an estimate of the optimal
solution. Otherwise, replace A by A2, let v =0, let x;, = x, and go to
Step 1.

a. Can you prove convergence of the above algorithm for £=0?

b. Apply the above algorithm for the three problems in Exercise 8.53.

[8.55] The method of Rosenbrock can be described by the map A: R" x U x
R" 5 R" x U x R" Here U= {D: D is an n x n matrix satisfying D'D =1}.

The algorithmic map A operates on the triple (x, D, 4), where x is the current
vector, D is the » x » matrix whose columns are the directions of the previous
iteration, and A is the vector whose components Ay, ..., 4, give the distances

moved along the directions dy,...,d,,. The map A = A3A;A[ is a composite

map whose components are discussed in detail below.

1. A, is the point-to-point map defined by A|(x, D, 4) = (x, D), where
D is the matrix whose columns are the new directions defined by (8.9).

2. The point-to-set map A, is defined by (x, y, D) € A,(x, D) if
minimizing £, starting from x, in the directions dj,...d,, leads to y. By
Theorem 7.3.5, the map A, is closed.

3. Aj is the point-to-point map defined by As(x, y, D) =(y, D, 2),
where 1 = (ﬁ)_l(y—x).
Show that the map A; is closed at (x, D, A) if /Ij z0forj=1,.,n

b. Is the map A closed if A; =0 for some j? (Hint: Consider the sequence
_(F 0 _l/k

Dk [0 ]:| and ﬂ"k |: 1 .)

c. Show that A, is closed.

d. Verify that the function f could be used as a descent function.

e. Discuss the applicability of Theorem 7.2.3 to prove convergence of
Racanhranl’a “Ff\ﬂﬂr’l\l"ﬂ Thic avarnica tlhictratac that a dAiffimiltian
l\UBUllULUUI\ = ] Pl bbb L LJ.I.J.I.D UA\IIUIQU LLEUILE LEA-O I..Il.“l. BULLIU uu.uuuluba

could arise in viewing the algorithmic map as a composition of several
maps. In Section 8.5 a proof of convergence was provided without
decomposing the map A.)

{8.56] Consider the problem to minimize f(x) subject to x € R”, and consider
the following algorithm credited to Powell [1964] (and modified by Zangwill
[1967b] as in Part c).

Initialization Step  Choose a termination scalar £ > 0. Choose an
initial point x;, let dj, ...,d,, be the coordinate directions, and let A =;=/= 1.

Let z; = y; = x{, and go to the Main Step.
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Main Step

L. Let A be an optimal solution to the problem to minimize f(z; + Ad;)
subject to A € R, and let z,,; = z; + Ad;. Ifi<n replace ibyi+1,
and repeat Step 1. Otherwise, go to Step 2.

2. Letd =z, — z;, and let 2 be an optimal solution to the problem to
minimize f(Z,, + Ad)subjectto Ac R Let y; .| =2z, + Ad. Ifj <

n, replace d, by d, = dg forf=1.,n-1let d, =d, let z; =

Iat i= 1 vamlara thu i+ 1 and on tn Stan 1 ﬂfhm-unep ;= B anrl
JJ+1’ j{ Ly Ivprave f Uy f 77 1, diiua 5U W ut.v i. < i, alila
go to Step 3.
3. Let xp,1 = yp1- If g —xi | <& stop. Otherwise, leti=j=1, let z,

= ¥y| = X;.1, replace kby £+ 1, and go to Step L.

a. Suppose that f(x) = ¢'x + (V2)x"Hx, where H is an # x n symmetric
matrix. After one pass through the main step, show that if d,, ...,d,, are

linearly independent, then they are also H-conjugate, so that by Theorem
8.8.3, an optimal solution is produced in one iteration.
b. Consider the following problem credited to Zangwill [1967b]:

Minimize (x; —x; «i-x3)2 +{(—x| +x; +x3)2 + (x| +xp —x3)2.

Apply Powell’s method discussed in this exercise, starting from the point
(172, 1, 1/2). Note that the procedure generates a set of dependent
directions and hence will not yield the optimal point (0, 0, 0).

c. Zangwill [1967b] proposed a slight modification of Powell’s method to
guarantee linear independence of the direction vectors. In particular, in

Step 2, the point z; is obtained from y ;.| by a spacer step application,
such as one iteration of the cyclic coordinate method. Show that this
modification indeed guarantees linear independence, and hence, by Part

a, finite convergence for a quadratic function is assured.
d. Apply Zangwill’s modified method to solve the problem of Part b.

e, If the function is not quadratic, consider the introduction of a spacer step
so that in Step 3, z; = y| is obtained by the application of one iteration
of the cyclic coordinate method starting from x; ;. Use Theorem 7.3.4
to prove convergence.

[8.57] Solve the Lagrangian dual problem of Example 6.4.1 using the
subgradient algorithm, Resolve using the deflected subgradient strategy
suggested in Section 8.9.

[8.58] Consider the problem of finding X = Fg(x), where G={y: &}y < f;,

forj=1,2}.

a. Formulate this as a linearly constrained quadratic optimization problem
and write the KKT conditions for this problem. Explain why these KKT
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conditions are both necessary and sufficient for optimality for this
problem.

b. Prescribe a closed-form solution to these conditions, enumerating cases
as necessary. [llustrate geometrically each such case identified,

C. Identify the above analysis with the main computation in the Polyak—
Kelly cutting plane algorithm as embodied by Equations (8.80) and
(8.81).

[8.59] Solve the example of Exercise 6.30 using the subgradient optimization
algorithm starting with the point (0, 4). Re-solve using the deflected subgradient
strategy suggested in Section 8.9.

[8.60] Consider the problem of finding the projection x* = Py (X) of the point

Xonto X={x:a'x =8 £<x<u}, where x, X, x* € R". The following

variable dimension algorithm projects the cutrent point successively onto the
equality constraint and reduces the problem to an equivalent one in a lower-
dimensional space, or else stops. Justify the various steps of this algorithm.

Illustrate by projecting the point (-2, 3, 1, 2)° onto {x: x; + xy + X3 + x4 =

1,0 < x; <1 forall i}. (This method is a generalization of the procedures that
annanr iy Ritran and Hav [1TQT74TY and in CSharali and Chattv TEO2NKT
appeal il il aliG ridX | 17 /0] il il Siciar alil OlGily (17 0vl].)

Inifialization  Set (x°, I°, £, W%, A% =(x, I ¢ u, B), where I={i:
a, #0}. Forig I put x; =X if £; <X < uy, X if X; < £; and x] =

i
w if % > ;. Letk=0.

Step 1 Compute the projection % of X* onta the equality constraint in the
subspace / k according to

X; =X + o, for each i e I*.

If g’;.‘ < 3 <uf for all i € Ik, put x;' = Séf for all / € I", and stop.

Otherwise, proceed to Step 2.

Step2  Define J; = fie I*: 3 <¢by, Jy ={ie I*: ¥ > v}, and
compute

e ey
IF A — Rk than nnt vi‘ = ﬂk 0T r &= 1.-.* = q,rk (2 sl = -~ ﬂﬂr‘ '\-“ = C_k
i , P " LAIAGALL llult J"I ‘l-l AL N ul, Wl u; AvFl O e vz, AL ARS J\r! J\r'
forie I* — Ji U J,, and stop. Otherwise, define
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Jy={ieJ;:a;>0} and Jy={iety: a; <0} ify)ﬁk
Ji=liedia; <0 and  Jy={edy:ia>0  if y < gt

Set x; = f’,—‘ ifi e Jy, and x; = ”ik ifi € Jy. (Note: Jy U J, #@D.) Update
=1k _ G g, If 15 = @, then stop. Otherwise, update (e = zk

!

for 1 € I%), (& = max{ef, #}if (8% - P> 0, and o = 4

i H
otherwise, for i € 1¥*1), (u,’-’”'l = min {u;-", 2y if o:,(ﬁk -9 <0, and u{”l =
uik otherwise, for i € I**'), and ,BIHI = ﬂk - 215_130’,'3? — Z;EJ“Q’;V{‘-
Increment £ by 1 and go to Step 1.

Notes and References

We have discussed several iterative procedures for solving an unconstrained
optimization problem. Most of the procedures involve a line search of the type
described in Sections 8.1 through 8.3 and, by and large, the effectiveness of the
search direction and the efficiency of the line search method greatly affect the
overall performance of the solution technique. The Fibonacci search procedure
discussed in Section 8.1 is credited to Kiefer [1953]. Several other search
procedures, including the golden section method, are discussed in Wilde [1964]
and Wilde and Beightler [1967]. These references also show that the Fibonacci
search procedure is the best for unimodal functions in that it reduces the
maximum interval of uncertainty with the least number of observations.

Another class of procedures uses curve fitting, as discussed in Section 8.3
and illustrated by Exercises 8.11 through 8.13. If a function f of one variable is
to be minimized, the procedures involve finding an approximating quadratic or
cubic function g¢. In the quadratic case, the function is selected such that given

three points 4, A,, and JA;, the fiinctional values of fand g are equal at these

points. In the cubic case, given two points 4 and 4,, g is selected such that the

functional values and derivatives of both functions are the same at these points.
In any case, the minimum of ¢ is determined, and this point replaces one of the
initial points. Refer to Davidon [1959), Fleicher and Powell [1963], Kowalik
and Osborne [1968], Luenberger [1973a/1984], Pierre [1969], Powell [1964],
and Swann [1964] for more detailed discussions, particularly on precautions to
be taken to ensure convergence. Some limited computational studies on the
efficiency of this approach may be found in Himmelblau [1972b] and Murtagh
and Sargent [1970]. See Armijo [1966] and Luenberger [1973a/1984] for further
discussions on inexact line searches.

Among the gradient-free methods, the method of Rosenbrock [1960],
discussed in Section 8.4, and the method of Zangwill [1967b], discussed in
Exercises 8.30 and 8.56, are generally considered quite efficient. As originally
proposed, the Rosenbrock method and the procedure of Hooke and Jeeves

[1961] do not use line searches but employ instead discrete steps along the
search directions. Incorporating a line search within Rosenbrock’s procedure
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Mathematical Review

In this appendix we review notation, basic definitions, and results related to
vectors, matrices, and real analysis that are used throughout the text. For more

details, see Bartle [1976], Berge [1963], Berge and Ghoulia-Houri {1965], Buck
[1965], Cullen [1972], Flet {1966}, and Rudin [1964].

11 ll}

A.l1 Vectors and Matrices

VYectors

An n-vector x is an array of n scalars x), xp,...,x,. Here x; is called the jth
component, or element, of the vector x. The notation x represents a column

vector, whereas the notation x’ represents the transposed row vector. Vectors are
denoted by lowercase boldface letters, such as a, b, ¢, x, and y. The collection of

all n-vectors forms the n-dimensional Euclidean space, which is denoted by R”

Special Vectors

The zero vector, denoted by 0, is a vector consisting entirely of zeros. The sum
vector is denoted by 1 or e and has each component equal to 1. The ith
coordinate vector, also referred to as the ith unit vector, is denoted by e; and

consists of zeros except for a 1 at the ith position.

Vector Addition and Multiplication by a Scalar

b wr x . S — .

Let x and d y be two n-vectors. The sum of x and Yy is written as the vector x + Y.
The jth component of the vector x +y is x; + y;. The product of a vector x and

a scalar «ris denoted by ax and is obtained by multiplying each element of x by
a.

Linear and Affine Independence

A collection of vectors xy,...,X; in R”" is considered linearly independent if

2’}:1 A;x; =0 implies that A; = 0 forall j= 1., k. A collection of vectors X,

Xp,..., X in R” is considered to be affinely independent if (X, ~Xg),...,(X; — Xg)
are linearly independent.

751
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Linear, Affine, and Convex Combinations and Hulls

A vector y in R" is said to be a linear combination of the vectors x;,..., X, in R"

if y can be written as y = Z"‘.ﬂl X ; for some scalars 4y,..., 4. If, in addition,

Aq,e, Ay are restricted to satisfy Z" =1, then y is said to be an affine com-

bination of Xy,...,X;. Furthermore, if we also restrict 4,..., A; to be nonnegative,

then this is known as a convex combination of xy,..,X;. The linear, affine, or

convex hull of aset § < R" is, respectively, the set of all linear

, the se inear, affine, or convex
combinations of points within S.

E

Spanning Vectors

A collection of vectors xi,...,x; in R", where k > n, is said to span R" if any

vector in R" can be represented as a linear combination of xy,...,x;. The cone
spanned by a collection of vectors xy,..,x;, for any £ > 1, is the set of
nonnegative linear combinations of these vectors.

Basis

A collection of vectors xj,.., X in R" is called a basis of R" if it spans R” and
if the deletion of any of the vectors prevents the remaining vectors from

spanning R". It can be shown that x;,...,x; form a basis of R” if and only if
X1,-.., X are linearly independent and if, in addition, k= ».

Inner Product

The inner product of two vectors x and y in R” is defined by x! y = Zf..;x, Y-

If the inner product of two vectors is equal to zero, then the two vectors are said
to be orthogonal.

Norm of a Vector

The norm of a vector x in R" is denoted by |x| and defined by x| = (x'x)"2 =

cn ALY )”2 This is also referred to as the £5 norm, or Euclidean norm.

Schwartz Inequality

Let x and y be two vectors in R”, and let ,x‘ yl denote the absolute value of x'y.

Then the following inequality, referred to as the Schwartz inequality, holds true:

ix'y <[]yl



Mathematical Review 753

Matrices

A matrix is a rectangular array of numbers. If the matrix has m rows and »
columns, it is called an m x n matrix. Matrices are denoted by boldface capital
letters, such as A, B, and C. The entry in row ; and column j of a matrix A is

denoted by aj;, its ith row is denoted by A;, and its jth column is denoted by a ;.

Special Matrices

An m x n matrix whose elements are all equal to zero is called a zero matrix and
is denoted by 0. A square n x n matrix is called the identity matrix if ¢ = 0 for

#jand g; =1 for i = 1,..., n. The n x n identity matrix is denoted by I and
sometimes by I to highlight its dimension. An n x n permutation matrix P is
one that has the same rows of I, but which are permuted in some order. An

orthogonal matrix Q having dimension m x n is one that satisfies Q'Q =1, or
QQ' = I,,. In particular, if Q is square, Q'l = Q'. Note that a permutation
matrix P is an orthogonal square matrix.

Addition of Matrices and Scalar Multiplication of a Matrix

Let A and B be two m x »n matrices. The sum of A and B, denoted by A + B, is
the matrix whose (i, Jth entry is a; + b;. The product of a matrix A by a scalar

a 1s the matrix whose (i, j)th entry is aaj.

Matrix Multiplication

Let A be an m x n matrix and B be an # x p matrix. Then the product AB is
defined to be the m x p matrix C whose (i, j)th entry ¢; is given by

n
C!'j = kzlaikbkj fOl‘ [= 1,,.., m, and} = 1,,--, P-

Transposition

Let A be an m x » matrix. The transpose of A, denoted by A’, is the n x m
matrix whose (i, /)th entry is equal to a;;. A square matrix A is said to be

symmetric if A = A'. Itis said to be skew symmetric if A’ =—A.

Partitioned Matrices

A matrix can be partitioned into submatrices. For example, the m x n matrix A
could be partitioned as follows:
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Al AIZ]
A= .
[A2l iAzz

where All is my Xy, Alz ISIR] X M, A21 is My X np, A22 1S My X By, m=m +
my, and n=n + ny.

Determinant of a Matrix

Let A be an n x » matrix. The deferminant of A, denoted by det[A), is defined
iteratively as follows:

n
det{A] = ¥ a;; det[A; ]
=1
Here A; is the cofactor of g, defined as (-1)"*! times the submatrix of A

formed by deleting the ith row and the first column, and the determinant of any
scalar is the scalar itself. Similar to the use of the first column above, the
determinant can be expressed in terms of any row or column.

Inverse of a Matrix

A square matrix A is said to be nonsingular if there is a matrix A7} called the

inverse matrix, such that AA™! = A™1A = I The inverse of a square matrix, 1f it
exists, is unique. Furthermore, a square matrix has an inverse if and only if its
determinant is not equal to zero.

Rank of a Matrix

Let A be an m x n matrix. The rank of A is the maximum number of linearly
independent rows or, equivalently, the maximum number of linearly independ-
ent columns of the matrix A. If the rank of A is equal to min{m, n}, A is said to
have full rank.

Norm of a Matrix

Let A be an n x n matrix. Most commonly, the norm of A, denoted by [|A], is
defined by

4] = max Ax]

where |Ax] and x| are the usual Euclidean (£;) norms of the corresponding
vectors. Hence, for any vector z, |Az| < [A] [[z]. A similar use of an ¢, norm

M , induces a corresponding matrix norm ||A|’p. In particular, the above matrix

~F

norm, sometimes denoted ||A[,, , is equal to the [maximum eigenvalue of AfATY

Also, the Frobenius norm of A is given by
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n H IQ
|Afg = [z ZIa;l]

i= j=1

and is simply the £, norm of the vector whose elements are all the elements of A.

Eigenvalues and Eigenvectors

Let A be an # x n matrix. A scalar A and a nonzero vector x satisfying the equa-
tion Ax = Ax are called, respectively, an eigenvalue and an eigenvector of A. To

compute the eigenvalues of A, we solve the equation det{A — AI] = 0. This
vields a polynomial equation in A that can be solved for the eigenvalues of A. If
A is symmetric, then it has » (possibly nondistinct) eigenvalues. The eigenvec-
tors associated with distinct eigenvalues are necessarily orthogonal, and for any
collection of some p coincident eigenvalues, there exists a collection of p
orthogonal eigenvectors. Hence, given a symmetric matrix A, we can construct
an orthogonal basis B for R”, that is, a basis having orthogonal column vectors,
each representing an eigenvector of A. Furthermore, let us assume that each
column of B has been normalized to have a unit norm. Hence, B'B = I, so that

B! = B'. Such a matrix is said to be an orthogonal matrix or an orthonormal
matrix.

Now, consider the (pure) quadratic form x' Ax, where A is an # x n sym-
metric matrix. Let 4,..., 4, be the eigenvalues of A, let A =diag {4;,..,4,} bea
diagonal matrix comprised of diagonal elements 4,,..., 4, and zeros elsewhere,

and let B be the orthogonal eigenvector matrix comprised of the orthogonal,
normalized eigenvectors by,..., b, as its columns. Define the linear transforma-

tion x = By that writes any vector x in terms of the eigenvectors of A. Under this
transformation, the given quadratic form becomes

x'Ax =y'B'ABy = y'B'ABy = y'Ay = Z%y,

i=1

Thic ie ~allad a diqoo alization nrocess.
Ad LLEWF ALF il w r y

vaLLU G Likgl
Observe also that we have AB = BA, so that because B is orthogonal, we

u

get A = BAB' = Hﬂ,b . This representation is called the spectral decom-

position of A. For an m x n matrix A, a related factorization A = UE V!, where
U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and Z is an m
x n matrix having elements 2;; = 0 for i # j, and Zy >0 fori=,is known as a

singular-value decomposition (SVD) of A. Here, the columns of U and V are
normalized eigenvectors of AA’ and A’A, respectively. The Z,-j values are the

(absolute) square roots of the eigenvalues of AA'ifm<norof A'Aifm>n.
The number of nonzero 2 ;; values equals the rank of A.
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Definite and Semidefinite Matrices

Let A be an n x n symmetric matrix. Here A is said to be positive definite if
x' Ax > 0 for all nonzero x in R” and is said to be positive semidefinite if x' Ax >

0 for all x in R". Similarly, if x' Ax < 0 for all nonzero x in R", then A is called

negative definite; and if X’ Ax < 0 for all x in R”, then A is called negative

semidefinite. A mafrix that is neither positive semidefinite nor negative
semidefinite is called indefinite. By the foregoing diagonalization process, the
matrix A is positive definite, positive semidefinite, negative definite, and
negative semidefinite if and only if its eigenvalues are positive, nonnegative,
negative, and nonpositive, respectively. (Note that the superdiagonalization
algorithm discussed in Chapter 3 is a more efficient method for ascertaining
definiteness properties.) Also, by the definition of A and B above, if A is

positive definite, then its square root A" is the matrix satisfying AlZA2 = 5
and is given by A2 = BA!2B’.

A.2 Matrix Factorizations

Let B be a nonsingular »# x » matrix, and consider the system of equations Bx =
b. The solution given by x = B'b is seldom computed by finding the inverse

B~ directly. Instead, a factorization or decomposition of B into multiplicative
components is usually employed whereby Bx = b is solved in a numerically
stable fashion, often through the solution of triangular systems via back-
substitution. This becomes particularly relevant in ill-conditioned situations
when B 1s nearly singular or when we wish to verify positive definiteness of B
as in quasi-Newton or Levenberg-Marquardt methods. Several useful
factorizations are discussed below. For more details, including schemes for
updating such factors in the context of iterative methods, we refer the reader to
Bartels et al. [1970], Bazaraa et al. {2005], Dennis and Schnabel {1983],
Dongarra et al. [1979], Gill et al. {1974, 1976], Golub and Van Loan
[1983/1989], Murty [1983], and Stewart [1973], along with the many
accompanying references cited therein. Standard software such as LINPACK,
MATLAB, and the Harwell Library routines are also available to perform these

are also av per
factorizations efficiently.

LU and PLU Factorization for a Basis B

In the LU factorization, we reduce B to an upper triangular form U through a
series of permutations and Gaussian pivot operations. At the ith stage of this

process, having reduced B to B(H), say, which is upper triangular in columns
1,..., i — 1 (where B = B), we first premultiply B(Y by a permutation matrix
P, to exchange row i with thatrow in {i, i + 1,..., n} of BUD that has the largest
absolute-valued element in column i This is done to ensure that the (i, /)th

element of PfB('__l) is significantly nonzero. Using this as a pivot element, we
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perform row operations to zero out the elements in rows i + 1,..., # of column i,
This triangularization can be represented as a premultiplication with a suitable
Gaussian pivot matrix G;, which is a unit lower triangular matrix, having ones
on the diagonal and suitable possibly nonzero elements in rows i + 1,..., n of
column ;. This gives B! = (G,P; )B(H). Hence, we get, after some r < (n — 1)
such operations,

(G,P,)(G2P, (G P)B = U. (A1)

S

The system Bx = b can now be solved by computing b = (G_P,)---(G,P})b and

then solving the triangular system Ux = b by back-substitution. If no
permutations are performed, G,---G; is lower triangular, and denoting its
(lower triangular) inverse as L, we have the factored form B = LU for B, hence

its name. Also, if P! is a permutation matrix that is used to a priori rearrange the
rows of B and we then apply the Gaussian triangularization operation to derive

L'P/B = U, we can write B = (P*)"'LU = PLU, noting that P/ = P™!. Hence,
this factorization is sometimes called a PLU decomposition. If B is sparse, P’

can be used to make P'B nearly upper triangular (assuming that the columns of
B have been appropriately permuted) and then only a few and sparse Gaussian
pivot operations will be required to obtain U. This method is therefore very well
suited for sparse matrices.

QR and QRP Factorization for a Basis B

This factorization is most suitable and is used frequently for solving dense
equation systems. Here the matrix B is reduced to an upper triangular form R by

premultiplying it with a sequence of square, symmetric orthogonal matrices Q;.
Given BUD = Q;.;---Q,B that is upper triangular in columns 1,..., i — 1 {(where

B = B), we construct a matrix Q, so that Q,-B("“l) =B is upper triangular in
column i as well, while columns 1,..., / — | remain unaffected, The matrix Q; is a

square, symmetric orthogonal matrix of the form Q; = I - y,q;q}, where q; =

(0,...,0, q,-,-,...,qm)' and y; € R are suitably chosen to perform the foregoing
operation. Such a matrix Q; is called a Householder transformation matrix. 1f

the elements 1n rows i,..., # of column i of B¢-D are denoted by (ai,...,a,,)',
then we have g; = a; + 6;, g;; = a; forj =1+ 1,..., n, y; = 1/6,g;, where 6; =
2]li2

sign((.r,-)[a',2 ++a, ], and where sign(a;) = 1 if ; > 0 and -1 otherwise,

Defining Q = Q,,_;---Qy, we see that Q is also a symmetric orthogonal matrix

and that QB = R, or that B = QR, since Q = Qf = Q_i; that is, Q is an
involutory matrix.
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Now, to solve Bx = b, we equivalently solve QRx = b or Rx = Qb by
finding b = Qb first and then solving the upper triangular system Rx = b via
back-substitution. Note that since [JQv] = ||v| for any vector v, we have [R| =
IQR] = |BYf, so that R preserves the relative magnitudes of the elements in B,
maintaining stability. This is its principal advantage.

Also, a permutation matrix P is sometimes used to postmultiply B¢-D
before applying Q; to it, so as to move a column that has the largest value of the

sum of squares below row 7 — 1 into the ith column position (see the computa-
tion of &, above). Since the product of permutation matrices is also a

permutation matrix, and since a permutation matrix is orthogonal, this leads to
the decomposition B = QRP via the operation sequence Q,,_;---Q;BPP,---P, _,
=R,

Cholesky Factorization LL' and LDL' for Symmetric, Positive
Definite Matrices B

The Cholesky factorization of a symmetric, positive definite matrix B represents

this matrix as B = LI, where L is a lower triangular matrix of the form

£y £ 0
L = f31 332 533 ] y
_!nl £n2 fmu
so that
lezl ) ) (symmetric)
. Lty (I +45;)

2,2 2
Lty Unls +Enply) (5 + 8, T‘33)

: . X
Ll Ul +iplyy) (Gl + Ul +L338,3) o (L +--+ L, )]

By equating the elements of B directly to those in LL, we obtain the system of
equations

2

= by, L4 =by, 44 “'bw s 'enlt]l = b,
2 2
Ly +ly =byy, Lly + 80, =byy, o, 8, +4,0, =b,
2 2 2
L5, + Ly, +15; = by, B L2, "‘fszfnz."'!a)!n} = bpy

2 2
2+ +L =b

nn’

if in the

order €11, €31,....0 51, €22, £33, 8,3, £33,003€ y3seces £ s DY using the equation

These equations can be used sequentially to compute the unknowns ¢
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for bg‘ to compute £ for j = 1,..., n, i = j,..., n. Note that these equations are

well-defined for a symmetric, positive definite matrix B and that LL' is positive
definite if and only if £; >0 forall i=1,..., n

The equation system Bx = b can now be solved via L(L'x) = b through
the solution of two triangular systems of equations. We first find y to satisfy Ly
= b and then compute x via the system L'x =y.

Sometimes the Cholesky factorlzatlon 18 repreSente as B = LDL', where

T 1 v
J.U l.d

diagonal matrix, both having positive diagonal entries. Writing B = LDL' =
(LD” 2)(LD”Z) L'L", we see that the two representations are related equiva-
lently. The advantage of the representation LDL! is that D can be used to avoid
the square root operation associated with the diagonal system of equations, and

this improves the accuracy of computations. (For example, the diagonal
components of L can be made unity.)

Also, if B is a general basis matrix, then since BB! is symmetric and

positive definite, it has a Cholesky factorization BB’ = LI In such a case, L is
referred to as the Cholesky factor associated with B, Note that we can determine

L in this case by finding the OR decomposition for B so that BB’ = R‘'Q'QR =
R'R, and therefore, L = R'. Whenever this is done, note that the matrix Qorits

components Q; need not be stored, since we are only interested in the resulting
upper triangular matrix R.

A.3 Sets and Sequences

A set is a collection of elements or objects. A set may be specified by listing its
elements or hv anmfvmo the nrnnprhr-c that the elements must satisfv. For

wiwikiwEIRid IR Presaa Y aii | adntaltiaded LilniL SdsLaoE Y

example, the set §=1{1,2, 3, 4} can be represented alternativelyas §={x: 1 <x
<4, x integer}. If x is a member of S, we write x € S, and if x is not a member of
S, we write x ¢ S. Sets are denoted by capital letters, such as S, X, and A. The
empty set, denoted by &, has no elements.

Unions, Intersections, and Subsets

Given two sets, §; and S, the set consisting of elements that belong to either S,
or Sy, or both, is called the union of §) and S, and is denoted by S; U S,. The
elements belonging to both S, and S, form the intersection of §; and S,
denoted S; N S5. If Sy is a subset of S5, that is, if each element of §; is also an

element of S,, we write §; — S, or §; o §]. Thus, we write S ¢ R” to denote
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that all elements in S are points in R". A strict containment S| Sy, S) # 85, 18
denoted by ) < 5.

Closed and Open Intervals

Let @ and b be two real numbers. The closed interval [a, b] denotes all real
numbers satisfying a < x < & Real numbers satisfying a < x < b are represented
by [a, b), while those satisfying a < x < b are denoted by (a, b]. Finally, the set
of points x with 2 <x < b is represented by the open interval (a, b).

Greatest Lower Bound and Least Upper Bound

Let S be a set of real numbers. Then the greatest lower bound, or the infimum, of
S is the largest possible scalar « satisfying a <x for each x € §. The infimum is
denoted by inf {x : x € S}. The least upper bound, or the supremum, of S is the
smallest possible scalar « satisfying a > x for each x € S. The supremum is
denoted by sup {x:x € S}.

Neighborhoods

> N tha h-J] A
v rid

p ndaon -~
LY 7Y e y Ul LY

wr W

g{x} = {J : ‘HJ’
g-neighborhood of x. The inequality in the definition of N (x) is sometimes
replaced by a strict inequality.

Interior Points and Open Sets

Let S be a subset of R", and let x € S. Then x is called an interior point of S if

there is an g-neighborhood of x that is contained in S, that is, if there exists an £
> 0 such that |y —x} < & implies that y e S. The set of all such points is called

the interior of S and 1s denoted by int S. Furthermore, S is called open if § = int
S.

Relative Interior

Let S — R”, and let aff(S) denote the affine hull of S. Although int(S) = &, the

interior of S as viewed in the space of its affine hull may be nonempty. This is
called the relative interior of S and is denoted by relint(S). Specifically, relint(S)

= {x € §: N.(x) n aff(S) c S for some £> 0}. Note that if §;  S,, relint(S)
is not necessarily contained within relint(S; ), although int(S;) < int(S;). For

example, if §) = {x: a&'x =8}, a2 0and S, = {x: a’'x <B}, §; c §,, int(S;) =
O cint(S)={x: a'x < B}, butrelint(S;) = §; & relint(Sy) = int(S, ).
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Bounded Sets

A set S < R" is said to be bounded if it can be contained within a ball of finite
radius.

Closure Points and Closed Sets

Let S be a subset of R”. The closure of S, denoted cl S, is the set of all points
that are arbitrarily close to S. In particular, x e ¢l S if for cach £> 0, S~ N (x)

# &, where N_(x) = {y :|ly — x| < &}. The set S is said to be closed if S = ¢l S.

Boundary Points

Let S be a subset of R”. Then x is called a boundary point of § if for each £> 0,
N, (x) contains a point in S and a point not in S, where N_(x) = {y: |y —x| < &}.
The set of all boundary points is called the boundary of S and is denoted by a5.

Sequences and Subsequences

A sequence of vectors X, X5, X3,..., is said to converge to the limit point X if
Ixx —x|| = 0 as & — oo; that is, if for any given £> 0, there is a positive integer
N such that |x; —X|| < & for all £> N. The sequence is usually denoted by {x;},
and the limit point X is represented by either x; —» X as £ — o« or by lim;_,,
X; = X. Any converging sequence has a unique limit point.

By deleting certain elements of a sequence {x;}, we obtain a subse-
quence. A subsequence is usually denoted as {x; } 5~ where 2" is a subset of all

positive integers. To illustrate, let .7 be the set of all even positive integers.
Then {x,} 5 denotes the subsequence {x5, x4, Xg,...}.

Given a subsequence {x;}-, the notation {x, .} denotes the
subsequence obtained by adding 1 to the indices of all elements in the subse-
quence {x;} 5. To illustrate, if .2 = {3, S, 10, 15,...,}, then {x;,;} 5 denotes

the subsequence {x4,Xg, X1, X1g,--}-

A sequence {x;} is called a Cauchy sequence if for any given £> 0, there
is a positive integer N such that ||x; —x,, || < & for all 5, m > N, A sequence in
R" has a limit if and only if it is Cauchy.

Let {x,} be a bounded sequence in R. The limit superior of {x, }, denoted
limsup(x, ) or E(xn ), equals the infimum of all numbers ¢ € R for which at
most a finite number of the elements of {x,} (strictly) exceed g. Similarly, the

limit inferior of {x,} is given by liminf (x,) = lim(x,) = sup{q : at most a finite
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number of elements of {x,} are (strictly) less than g}. A bounded sequence

always has a unique lim and lim.

Compact Sets

A set S in R” is said to be mpact if i
{X,} inaco - 0N

A.4 Functions

A real-valued function f defined on a subset S of R” associates with each point x
in § a real number f(x). The notation f. § — R denotes that the domain of f1s §

and that the range is a subset of the real numbers. If /is defined everywhere on

R" or if the domain is not important, the notation £/ R” — R is used. A collection
of real-valued functions fj,..., f,, can be viewed as a single vector function f

whose jth component is £;.

Continuous Functions

A function £ § —> R is said to be continuous at X € § if for any given £> 0, there
is a § > 0 such that x € S and [x-X| < & imply that [f(x)- f(X)| < &
Equivalently, f'is continuous at X € S, if for any sequence {x,} — X such that

{/(x,)} > 7, we have that f(X) = f as well. A vector-valued function is said
to be continuous at X if each of its components is continuous at X.

Upper and Lower Semicontinuity
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and |x-X| < &imply that f(x) — f(X) < & Similarly, a function £ R" - R is
called lower semicontinuous at X € S if for each £ > 0 there exists a § > 0 such
that x € S and |x -X|| < §imply that f(x) — f(X) > —& Equivalently, then fis
upper semicontinuous at X € S, if, for any sequence {x,} — X such that
{f(x,)} — f, we have f(X) > f. Similarly, if f(X) < f for any such
sequence, then f is said to be lower semicontinuous at X. Hence, a function is
continuous at X if and only if it is both upper and lower semicontinuous at X. A

vector-valued function is called upper or lower semicontinuous if each of its
components is upper or lower semicontinuous, respectively.

Minima and Maxima of Semicontinuous Functions

Let S be a nonempty compact set in R” and suppose that £ R” — R. If fis lower
semicontinuous, then it assumes a minimum over S; that is, there exists an X € S
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such that f(x) £ f(X) for each x € S. Similarly, if f1s upper semicontinuous,

then it assumes a maximum over S. Since a continuous function is both lower
and upper semicontinuous, it achieves both a minimum and a maximum over
any nonempty compact set.

Differentiable Functions

Let S be a nonempty set in R”, X e int S and let £ § — R. Then fis said to be

differentiable at X if there is a vector Vf(X) in R" called the gradient of fat X
and a function g satisfying S(x; x) = 0 as x = X such that

fO=fX)+V X (x-X)+|x-X| #(X;x)  foreachx e §.

The gradient vector consists of the partial derivatives, that is,

X o (X) 5f(i‘)]
ox, ’ Oxs ox,, '

VI () =(

Furthermore, f'is called fwice differentiable at X if, in addition to the gradient
vector, there exist an n x n symmetric matrix H(X), called the Hessian matrix of

fat X, and a function g satisfying S(X; x) - 0 as x —» X such that

F0)= 7R+ VY (x= )+ (x- D HEO(x-) + [x~T A% 0)

foreachx e S.

The element in row ; and column j of the Hessian matrix is the second partial
& f(X)ox; bx;.
A vector-valued function is differentiable if each of its components is

differentiable and is twice differentiable if each of its components is twice
differentiable.

In particular, for a differentiable vector function h: R" — R® where h(x)
= (B(x), ..., hp(x))’, the Jacobian of h, denoted by the gradient notation Vh(x),

is given by the £ x n matrix

Vi (x)'
Vh(x)=| ,

Vhy(x)'

fxn

whose rows correspond to the transpose of the gradients of #A,.., A,
respectively.



764 Appendix A

Mean Value Theorem

Let S be a nonempty open convex set in R”, and let £ S — R be differentiable.
The mean value theorem can be stated as follows. For every x; and X, in S, we
must have

F(x2) = FOx)+ ¥/ (0) (xp = x1),
where x = Ax; +(1-4)x, forsome 4 € (0, 1).
Taylor’s Theorem

Let S be a nonempty open convex set in R”, and let £ § — R be twice
differentiable. The second-order form of Zaylor’s theorem can be stated as
follows. For every x; and x, in S, we must have

F(x9) = £(x)+ V/(x) (X - x1)+—;—<x2 —x) HOO(X - X)),

where H(x) is the Hessian of fat x, and where x = Ax; + (1-1)x, for some 4 €

(©, ).
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Summary of Convexity,
Optimality Conditions,
and Duality

This appendix gives a summary of the relevant results from Chapters 2 through
6 on convexity, optimality conditions, and duality. /¢ is infended to provide the
minimal background needed for an adequate coverage of Chapters 8 through
11, excluding convergence analysis.

B.1 Convex Sets

A set Sin R” is said to be convex if for each X, x, € S, the line segment Ax, +
(1-A)x, for A € [0, 1] belongs to S. Points of the form x = Ax; + (1 -A)x, for 1
e [0, 1] are called convex combinations of X| and x,. Figure B.1 illustrates an

example of a convex set and an example of a nonconvex set.
We present below some examples of convex sets frequently encountered
in mathematical programming.

1. Hyperplane: S = {x : p'x = @}, where p is a nonzero vector in R”,
called the normal to the hyperplane, and o is a scalar.

2. Half-space: S = {x : p'x < a}, where p is a nonzero vector in R”"
and « is a scalar.

3. Open half-space: S = {x: p'x < a}, where p is a nonzero vector in
R™ and o is a scalar.

4. Polyhedral set: S = {x: Ax < b}, where A is an m x p matrix and b
1s an m-vector .

Polyhedral cone: §= {x: Ax <0}, where A is an m x n matrix.
6. Cone spanned by a finite number of vectors: S = {x ;: x =

h

Z;’.’;l},jaj, Aj >0 forj = 1,..,, m}, where a,,...,a,, are given vectors
in R".
7. Neighborhood: S = {x : |x —X| < &}, where X is a fixed vector in

R™and £> 0.

765
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A convex set A nonconvex set

Figure B.1 Convexity.

Given two nonempty convex sets S; and S in R” such that §; N S, = &,
there exists a hyperplane H = {x : p’x = o} that separates them; that is,

p'x<aforalixe§ and p‘x>aforalxeS,.

Here H is called a separating hyperplane whose normal is the nonzero vector p.
Closely related to the above concept is the notion of a supporting

hyperplane. Let S be a nonempty convex set in R”, and let X be a boundary

point. Then there exists a hyperplane = {x : p'x = a} that supports S at X; that
is,

pP’X=a and p'x<aforallxes.

In Figure B.2 we illustrate the concepts of separating and supporting
hyperplanes.

The following two theorems are used in proving optimality conditions
and duality relationships and in developing termination criteria for algorithms.

O/

Separating hyperplane Supporting hyperplane

Ed

Figure B.2 Separating and supporting hyperplanes.
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Farkas’s Theorem

Let A be an m x » matrix and let ¢ be an n-vector. Then exactly one of the
following two systems has a solution:

System1 Ax<0,c¢'x>0  forsomex € R".
System?2 A'y=c,y>0 forsomeye R”.

Gordan’s Theorem

Let A be an m x » matrix. Then exactly one of the following systems has a
solution.

System1 Ax<0  forsomex € R".

System?2 A'y=0,y>0  for some nonzeroy € R™.

An important concept in convexity is that of an extreme point. Let S be a

non-empty convex set in R”. A vector x ¢ S is called an extreme point of S if x =
Ax, + (1- 2)x4 with x;, x4 € §, and 2 € (0, 1) imnlies that x = x; = x4. In other
i A S AL i? L 3 \VTr o I 1 Fa

words, x is an extreme point if it cannot be represented as a strict convex
combination of two distinct points in S. In particular, for the set S$= {x : Ax = b,
x > 0}, where A is an m x »n matrix of rank m and b is an m-vector, x is an
extreme point of S if and only if the following conditions hold true. The matrix
A can be decomposed into [B, N], where B is an m x m invertible matrix and x’
= (xfg,va), where Xp = B~!b > 0 and xy =0.

Another concept that is used in the case of an unbounded convex set is
that of a direction of the set. Specifically, if S is an unbounded closed convex set, a
vector d is a direction of Sif x + Ad € S for each 1> 0 and for each x € S.

B.2 Convex Functions and Extensions

H Pl fpnedian £ O o : . ¢
» 11T LJULILLILIL j. =7 i\ 1o agiu I

=
5
)
3
A

JIAx + (1= A)x3] <A1 (x)) +(1-2) f(x2)

for each Xx;, X5 € § and for each 4 € [0, 1]. The function f'is said to be strictly

convex on S if the above inequality holds as a strict inequality for each distinct
X|, X3 € Sand for each 2 € (0, 1). The function fis said to be concave (strictly

concave) if —f is convex (strictly convex). Figure B.3 shows some examples of
convex and concave functions.

Fg]lgwino ars eame examnles nf convex netinonig Rv takine the
i Fradip Al VAUV WAQEAIpAiiad g WLV L LEwlias. A3 LONLILE MAW

1
negatives of these functions, we get some examples of concave functions.
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X| X X1 R X2 x| X3
Ax) +(1-A)xy Axy +(1-D)x,
Convex function Concave fimction Neither convex nor concave function

f(x1,x7) = 2xl2 +x% —2x1%,.
6. f(x,x2,x3) = xf +2x% +3x§ —4x1 —4x9x3.
In many cases, the assumption of convexity of a function can be relaxed
to the weaker notions of quasiconvex and pseudoconvex functions.

Let S be a nonempty convex set in R". The function £ S — R is said to be
quasiconvex on S if for each x|, x, € §, the following inequality holds true:

SIAx +(0-A)x, ] <max{f(x)), f(x3)} foreach 4 € (0, 1).
The function f is said to be strictly quasiconvex on S if the above inequality
holds as a strict inequality, provided that f(x;) = f(x,). The function fis said to
be strongly quasiconvex on § if the above inequality holds as a strict inequality
for x; = x,.
Let S be a nonempty open convex set in R”. The function £: § — R is said

to be pseudoconvex if for each x), X5 € S with Vf(x)) (x5 — x;) > 0, we have
S(X3) =2 f(x;). The function f is said to be strictly pseudoconvex on § if

whenever x| and x, are distinct points in § with Vf(xl)’(xz —x;) > 0, we have

f(X2)> f(xy).

The above generalizations of convexity extend to the concave case by
replacing f by —f Figure B.4 illustrates these concepts. Figure B.5 summarizes
the relationships among different types of convexity.

We now give a summary of important properties for various types of

convex functions. Here £ S — R, where .S is a nonempty convex set in R”,



Summary of Convexity, Optimality Conditions and Duality 769

/N

Both quasiconvex Quasiconvex but Neither quasiconvex
and pseudoconvex not pseudoconvex nor pseudoconvex

Figure B.4 Quasiconvexity and pseudoconvexity.

Strictly Convex Functions

1.

2.
3.
4

The function fis continuous on the interior of S.
The set {(x,): x € S,y> f(x)} is convex.

The set {x € §: f(x) <a} is convex for each real c.
A differentiable function fis strictly convex on S if and only if f(x)

> f(X) + V/(X)'(x —X) for each distinct x, X € S.

Let f be twice differentiable. Then if the Hessian H(x) is positive
definite for each x € §, f'is strictly convex on S. Furthermore, if fis
strictly convex on §, then the Hessian H(x) is positive semidefinite
foreachx € S.

Every local minimum of f over a convex set X — S is the unique
global minimum.

If V/(x) =0, then X is the unique global minimum of fover S,

The maximum of fover a nonempty compact polyhedral set X < § is
achieved at an extreme point of X,

Convex Functions

function fis continuous on the interior of S.
The function f'is convex on S if and only if the set {(x,)):x € S, y>
f(x)} is convex,

Theset {x € §: f(x) < a} is convex for each real «.
A differentiable function f is convex on .S if and only if f(x) >

f(X) + Vf(x)'(x-%) foreachx, X € 5.

A twice differentiable function fis convex on S if and only if the
Hessian H(x) is positive semidefinite for each x € S.

Every local minimum of f over a convex set X < S is a global
minimum,

If Vf(X) =0, then X is a global minimum of fover §.

Lo
11
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Strictly
convex
e > .
Undenl differentiability onvex
Strictly
pseudoconvex Underldifferentiability
l =»' Pscudoconvex
Strongly
quasiconvex
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Underl lower
semicontinuity
h 4
) Quasiconvex _

Figure B.5 Relationship among various types of convexity.

8.

A maximum of f over a nonempty compact polyhedral set X < S is
achieved at an extreme point of X.

Pseudoconvex Functions

b

o

The set {x € §: f(x) < a} is convex for each real «.

[y s Y s am Y W

Evcly local minimum ©
minimum,

If V/(X) = 0, then X is a global minimum of fover S,
A maximum of fover a nonempty compact po
achieved at an extreme point of X.

This characterization and the next relate to twice differentiable func-

tions f defined on an open convex set § ¢ R”, with Hessian H(x).
The function £ is pseudoconvex on § if H(x) + r(x)Vf(X)Vf (x) is
positive semidefinite for all x e S, where n(x) = (1/2)[§ — f(x)] for

some § > f(x). Moreover, this condition is both necessary and
sufficient if fis quadratic.

Define the (n + 1) x (n + 1) bordered Hessian B(x) of f as follows,
where H(x) is “bordered” by an additional row and column:
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H(x) Vf(X)]
vixY 0 |

Given any k € {l,..., n},and y = {§,..., i} composed of some &

B(x) =[

distinct indices | < jj < §; < «-- < i < n, the principal submatrix
B, ,(x) isa(k+ 1) x (k+ 1) submatrix of B(x) formed by picking
the elements of B(x) that intersect in the rows #,..., %, (n+ 1) and
the columns fj,...4, (n + 1) of B(x). The leading principal
submatrix of B(x) is denoted by By (x) and equals B, ; fory={1,..,,
k}. Similarly, let H, ;(x) and H;(x) be the ¥ x k principal
submatrix and the leading principal submatrix, respectively, of H(x).
Then f is pseudoconvex on § if for each x € S, we have (i) det
B},’k(x) <0forally, k= 1,..., n, and (ii) if det By,k(x) =0 for any v,
k, then det H, ; > 0 over some neighborhood of x. Moreover, if fis

quadratic, then these conditions are both necessary and sufficient.
Also, in general, the condition det By (x) <0 forallk=1,...,n X €
S, 1s sufficient for fto be pseudoconvex on S.

Let £ S < R” — R be quadratic, where § is a convex subset of R”,
Then [f is pseudoconvex on S} < [the bordered Hessian B(x) has
exactly one simple negative eigenvalue for all x € S} <> [for each y
€ R" such that V/(x)'y =0, we have that yH(x)y >0 for all x ¢
S3. Moreover, [fis strictly pseudoconvex on §] < [for all x € S, and
for all £ = 1,..., n, we have (i) det B;(x) < 0, and (ii) if det B, (x) =
0, then det H, > 0].

Quasiconvex Functions

1.

The function fis quasiconvex over § if and only if {x € §: f(x) <

a} is convex for each real «

A maximum of fover a nonempty compact polyhedral set X — S is
achieved at an extreme point of X.

A differentiable function fon § is quasiconvex over S if and only if

X1, X5 € Swith £(x) < f(x5) implies that V/(x5) (x, —X,) <0.
Let £ S ¢ R" — R, where fis twice differentiable and S is a solid

(i.e., has a nonempty interior) convex subset of R”. Define the

bordered Hessian of f and its submatrices as in Property 6 of pseu-
doconvex functions. Then a sufficient condition for f to be
quasiconvex on S is that for each x € S, det By (x) <0 forall 4 = 1,...,

n. (Note that this condition actually implies that f is pseudoconvex.)
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On the other hand, a necessary condition for fto be quasiconvex on
S is that foreach x € §, det B, (x) <O forallk=1,..,n

5. Letf Sc R" — R be a quadratic function where S < R” is a solid
(nonempty interior) convex subset of R”. Then fis quasiconvex on S
if and only if fis pseudoconvex on int(S).

A local minimum of a strictly quasiconvex function over a convex set X

c § is also a global minimum. Furthermore, if the function is strongly
quasiconvex, the minimum is unique If a function fis both strictly quasiconvex

and lnwper caminantiniinae 14 ﬂ!‘nﬂh“nﬂi 2X SO ﬂnnf fkn oknuo mranoartiac far
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quasiconvexity hold true.

B.3 Optimality Conditions
Consider the following problem:

P: Minimize f(x)
subjectto g;(x)<0 fori=1,...m
h(x)=0 fori=1,....¢

xelX,

where £, g;, A: R" > R and X is a nonempty open set in R”. We give below the

Fritz John necessary optimality conditions. If a point x is a local optimal
solution to the above problem, then there must exXist a nonzero vector (ug,u, v)

such that
uOVf(i)+ § u, Vg (x)+ f’, v,-Vh,-(i) =0
i=1 i=1

u;g;(x)=0 fori=1,..,m
Uy > 0,u; >0 fori=1,., m,

where u and v are m- and {-vectors whose /th components are «; and v;,

respectively. Here, ug, u;, and v; are referred to as the Lagrange or Lagrangian
multipliers associated, respectively, with the objective function, the ith
inequality constraint g;(x) < 0, and the /th equality constraint 4;(x) = 0. The
condition u;g;(X) = 0 is called the complementary slackness condition and
stipulates that either u; = 0 or g;(X) = 0. Thus, if g;(x) <0, then %, = 0. By
letting ! be the set of binding inequality constraints at X, thatis, / = {i: g;(X) =

0}, then the Fritz John conditions can be written in the following equivalent
form. If X is a local optimal solution to Problem P above, then there exists a

nonzero vector (u,, uy, v) satistying the following, where uy is the vector of
Lagrange multipliers associated with g;(x) <0 forie I
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uVi(x)+ 3 uVg,(x)+ é viVh(x)=0

ief =]
Uy 20,420 foriel

If uy = 0, the Fritz John conditions become less meaningful, since essentially,

they simply state that the gradients of the binding inequality constraints and the
gradients of the equality constraints are linearly dependent. Under suitable
assumptions, referred to as constraint qualifications, uy is guaranteed to be

positive, and the Fritz John conditions reduce to the Karush-Kuhn-Tucker
(KKT) conditions. A typical constraint qualification is that the gradients of the
inequality constraints for / € [ and the gradients of the equality constraints at x
are linearly independent.

The KKT necessary optimality conditions can be stated as follows. If x is
a local optimal solution to Problem P, under a suitable constraint qualification,
there exists a vector (u, v) such that

V(®)+ 3 4 Vg (B)+ 3 v V1 (%) =0
i=1 i=1

-, \ n Fﬂr l'-: 1 F o
u I'\A) e T Lyauay FFa
u; >0 fori=1,..,m

Again, u; and v; are the Lagrange or Lagrangian multipliers associated with the
constraints g;(x) < 0 and A;(x) = 0, respectively. Furthermore, u;g;(x) = 0 is
referred to as a complementary slackness condition. If we let I = {i: g;(X) =0},
the above conditions can be rewritten as

VIi(x)+ Z u.Vg,(x)+ Z vVWh(x)=0

=] =]

u; >0 foriel
Under suitable convexity assumptions, the KKT conditions are also suffi-
cient for optimality. In particular, suppose that x is a feasible solution to
Problem P and that the KK T conditions stated below hold true:

VI(R)+ 3 498 (%) + 5 vV (x) =0

ief i=l
u; >0 foriel

where I = {i: g;(x) = 0}. If fis pseudoconvex, g; is quasiconvex for i € /; and
if A is quasiconvex if v; > 0 and quasiconcave if v; < 0, then X is an optimal

solution to Problem P.
To illustrate the KKT conditions, consider the following problem:
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Minimize (x —3)% +(x, —2)°
subjectto xZ+x3 <5
X +2x9 <4
-x <0
—Xy < 0.

The problem is illustrated in Figure B.6. Note that the optimal solution is X = (2,
1)'. We first verify that the KKT conditions hold true at X. Here, the set of
binding inequality constraints is I = {1, 2}, so that we must have u3 =153 =0 to
satisfy the complementary slackness conditions. Note that

vf(i} = (_21 -2)‘7 ngm = (41 2)’1 and ng (i) = (l*r :-".')l

Thus, V/(X) + 14Vg(X) + 4,Vgy(X) = 0 holds true by letting u; = 1/3 and », =
2/3, so that the KKT conditions are satisfied at X. Noting that £ g;, and g, are

convex, we have that X is indeed an optimal solution by the consequent
sufficiency of the KKT conditions.
Now, let us check whether the KKT conditions hold true at the point X =

(0, 0). Here, I = {3, 4}, so that we must have #; = uy = 0 to satisfy
complementary slackness. Note that

V(X)=(-6,-4), Vg3(X)=(-1,0)', and Vg,(X)=(0,-1).

Unconstrained

©,2 minimum

7 V& (%)
Contours of /

i /

X (+/5,0)

¥ Vg, (%)

Figure B.6 The KKT conditions.
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Thus, Vf(X) + 13V g3(X) + u4Vg4(X) = 0 holds true only by letting #; = —6 and
= -4, violating the nonnegativity of the Lagrange multipliers. This shows that

i is not a KKT point and hence could not be a candidate for an optimal solution.
In Figure B.6, the gradients of the objective function and the binding
constraints are illustrated for both X and Xx. Note that —Vf (x) lies in the cone

snann ad hy tha oradiante Ff"\n hindin netraint t v l-\n o Y
SpamicG oYy W& gradiCllis 67 ¢ © T X

not he in the corresponding cone. Indeed, the KKT conditions for a problem
having mequallty constraints could be interpreted geometrica lly as follows. A
vector x 1s a KKT point if and only if ~Vf(x) lies in the cone spanned by the

= SpERllllhn LAY

gradients of the binding constraints at X.
Let Problem P be as defined above, where all objective and constraint
functions are continuously twice differentiable, and let X be a KKT solution

having associated Lagrange multipliers (u, v). Define the (restricted)
Lagrangian function L(x) = f(x) + a‘g(x) + ¥'h(x), and let VzL(x) denote its
Hessian at X. Let C denote the cone {d : Vg, (x)'d =0 forall i e I, Vg;(x)'d
<0forallie {° and Vh(X)'d =0 for all 1 = 1,...,¢}, where I* = {i € {l,...,

R T~ . X TR 70_
m} © u; > 0} and

(1 Y FA 0N, o\ SUSUUEE IR ) ,,,_-..‘ S N
{ly--y g —F . L1NCIL WE NAVE UIC IU OWIIE secona-ordcr

sufficient conditions holding true: If VZL(i) is positive definite on C, that is,

d'V2L(x)d > 0 for alld € C, d # 0, then X is a strict local minimum for

Problem P. We also remark that if V2L(x) is positive semidefinite for all
feasible x [respectively, for all feasible x in N, (X) for some ¢ > 0], then X is a

global (respectively, local) minimum for P.
Conversely, suppose that X is a local minimum for P, and let the gradients

Vg, (x), i € I, Vh(X), i = 1,..., £ be linearly independent, where / = {i € {1,.,
m} : g;(x) = 0}. Define the cone C as stated above for the second-order

sufficiency conditions. Then X is a KKT point having associated Lagrange
multipliers (u, v). Moreover, defining the (restricted) Lagrangian function L(x)

= f(x) + a'g(x) + v'h(x), the second-order necessary condition is that VzL(Y)
is positive semidefinite on C.
B.4 Lagrangian Duality

Given a nonlinear programming problem, called the primal problem, there exists
a problem that is closely associated with it, called the Lagrangian dual problem.
These two problems are given below.
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Primal Problem P : Minimize f(x)
subjectto g,(x)<0 fori=1,..,m
h(x)=0 fori=1,..,¢
xelkX,

where £, g;, and A: R” — R and X is a nonempty set in R”. Let g and h be the

m- and £-vector functions whose #th components are, respectively, g; and A;.

Lagrangian Dual Problem D: Maximize &(u, v)

subjectto u=>90,

where 8(u, v) = inf{f(x) + T ug;(x) + Tf vk (x): x € X}. Here the

vectors u and v belong to R™ and Rf, respectively. The ith component »; of u is

referred to as the dual variable or Lagrange/Lagrangian multiplier associated
with the constraint g;(x) < 0, and the ith component v; of v is referred to as the

dual variable or Lagrange/Lagrangian multiplier associated with the constraint
h(x) = 0, It may be noted that 8 is a concave function, even in the absence of

PO ._.. ............. 1

any convexity or C(‘Jucaﬁ‘“y assump ions u_;, g, Or n“ or t.uuvcmty of the set X.
We summarize below
and dual problems:

some important relationships between the primal

1. If x is feasible to Problem P and if (u, v) is feasible to Problem D,
then f(x) > &u, v). Thus,

nf{ f(x). g(x) <0, h(x)=0, x € X} > sup{&u, v) : u>0}.

This result is called the weak duality theorem.
2, If sup{&u, v): u> 0} = o, then there exists no point x € X such
that g(x) <0 and h(x) = 0, so that the primal probiem is infeasible.
3. Hinf{f(x): g(x) <0, h(x) =0, x € X} = —0, then &u, v) =—0 for
each (u, v) with u > 0.
If there exists a feasible x to the puf"‘a ] problem and a feasible \u, v;
to the dual problem such that f(x) = &u, v), then x is an optimal
solution to Problem P and (u, v) is an optimal solution to Problem
D. Furthermore, the complementary slackness condition u;g;(x) =0
for i = 1,..., m holds true.

:Fh.

5. Suppose that X is convex, that f, g;; R" — R for i = 1,..., m are

conveX, and that h is of the form h(x) = Ax - b, where A isanm x n
matrix and b is an m-vector, Under a suitable constraint
qualiflcation the optimal objective values of Problems P and D are

anitals thhat
wjual, ulal. lﬂ,

inf{ f(x):x € X, g(x) <0, h(x) =0} =sup{&u, v) : u>0}.
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Furthermore, if the inf is finite, then the sup is achieved at (u, V)
with u > 0. Also, if the inf is achieved at X, then u; g;(X) =0 for i =
1,..., m. This result is referred to as the strong duality theorem.



