
PART II 

UNCONSTRAINED 
OPTIMIZATION 





CHAPTER 6 

BASICS OF SET-CONSTRAINED AND 
UNCONSTRAINED OPTIMIZATION 

6.1 Introduction 

In this chapter we consider the optimization problem 

minimize f(x) 

subject to x G Ω. 

The function / : Rn —► R that we wish to minimize is a real-valued function 
called the objective function or cost function. The vector x is an n-vector of 
independent variables: x = [xi, #2, · · ·, #n]T £ Rn · The variables X i , . . . , xn 

are often referred to as decision variables. The set Ω is a subset of Rn called 
the constraint set or feasible set. 

The optimization problem above can be viewed as a decision problem that 
involves finding the "best" vector x of the decision variables over all possible 
vectors in Ω. By the "best" vector we mean the one that results in the-smallest 
value of the objective function. This vector is called the minimizer of / over 
Ω. It is possible that there may be many minimizers. In this case, finding any 
of the minimizers will suffice. 
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There are also optimization problems that require maximization of the 
objective function, in which case we seek maximizers. Minimizers and maxi-
mizers are also called extremizers. Maximization problems, however, can be 
represented equivalently in the minimization form above because maximizing 
/ is equivalent to minimizing —/. Therefore, we can confine our attention to 
minimization problems without loss of generality. 

The problem above is a general form of a constrained optimization prob-
lem, because the decision variables are constrained to be in the constraint 
set Ω. If Ω = Rn , then we refer to the problem as an unconstrained opti-
mization problem. In this chapter we discuss basic properties of the general 
optimization problem above, which includes the unconstrained case. In the 
remaining chapters of this part, we deal with iterative algorithms for solving 
unconstrained optimization problems. 

The constraint "x G Ω" is called a set constraint Often, the constraint 
set Ω takes the form Ω = {x : h(x) = 0, g(x) < 0}, where h and g are 
given functions. We refer to such constraints as functional constraints. The 
remainder of this chapter deals with general set constraints, including the 
special case where Ω = Rn . The case where Ω = Rn is called the unconstrained 
case. In Parts III and IV we consider constrained optimization problems with 
functional constraints. 

In considering the general optimization problem above, we distinguish be-
tween two kinds of minimizers, as specified by the following definitions. 

Definition 6.1 Suppose that / : Rn —► R is a real-valued function defined 
on some set Ω C Rn . A point x* G Ω is a local minimizer of / over Ω if there 
exists ε > 0 such that f(x) > f(x*) for all x G Ω \ {x*} and \\x — x*\\ < ε. 
A point sc* G Ω is a global minimizer of / over Ω if f(x) > f(x*) for all 
i c e f i \ { a i * } . ■ 

If in the definitions above we replace ">" with ">," then we have a strict 
local minimizer and a strict global minimizer, respectively. In Figure 6.1, we 
illustrate the definitions for n = 1. 

If x* is a global minimizer of / over Ω, we write f(x*) = πύη^Ω / ( # ) and 
x* = argminxGQ f(x). If the minimization is unconstrained, we simply write 
x* = argminjp f(x) or x* = arg min/(cc). In other words, given a real-valued 
function / , the notation arg min f(x) denotes the argument that minimizes the 
function / (a point in the domain of / ) , assuming that such a point is unique 
(if there is more than one such point, we pick one arbitrarily). For example, if 
/ : R —> R is given by f(x) = (x + l ) 2 + 3, then argmin/(x) = —1. If we write 
a rgmin^^ , then we treat ux G Ω" to be a constraint for the minimization. 
For example, for the function / above, argmina.>0 f(x) = 0. 

Strictly speaking, an optimization problem is solved only when a global 
minimizer is found. However, global minimizers are, in general, difficult to 
find. Therefore, in practice, we often have to be satisfied with finding local 
minimizers. 
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Figure 6.1 Examples of minimizers: X\: strict global minimizer; X2'. strict local 
minimizer; X3: local (not strict) minimizer. 

6.2 Conditions for Local Minimizers 

In this section we derive conditions for a point x* to be a local minimizer. We 
use derivatives of a function / : Rn —► R. Recall that the first-order derivative 
of / , denoted Df, is 

Df 
dj_ df_ df_ 
dxi' dx2' ' dxn 

Note that the gradient V / is just the transpose of £>/; that is, V / = (Df)T. 
The second derivative of / : Rn —► R (also called the Hessian of / ) is 

r £f(*) 
F{x) = £>'/(*) = 

d2f 
dx„dx\ (x) 

a2/ 
L dx\dx7 

(x) Sw 
Example 6.1 Let f(xi,x2) = 5#i + 8x2 + ^1^2 — x\ — 2^2· Then, 

Df(x) = (Vf(x))T 

and 

F(x) = D2f(x) = 

df , Λ df . ■ 
^ ( X ) ' ^ ( X ) [5 + X2 — 2xi, 8 + x\ - 4x2] 

« 2 1 
a x 2 ö x i ( x ) 

dX!dx2(
X' Έχ\(Χ> 

- 2 1 
1 - 4 

Given an optimization problem with constraint set Ω, a minimizer may lie 
either in the interior or on the boundary of Ω. To study the case where it lies 
on the boundary, we need the notion of feasible directions. 
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ocdi 

Figure 6.2 Two-dimensional illustration of feasible directions; d\ is a feasible 
direction, d2 is not a feasible direction. 

Definition 6.2 A vector d G Rn , d ^ 0, is a feasible direction at x G Ω if 
there exists ctQ > 0 such that x + ad G Ω for all a G [0, ao]. I 

Figure 6.2 illustrates the notion of feasible directions. 
Let / : Rn —► R be a real-valued function and let d be a feasible direction 

at x G Ω. The directional derivative of f in the direction d, denoted df/dd, 
is the real-valued function defined by 

Άχ) = lim / ( * + a d ) - / ( a ; ) . 
od a->o a 

If ||d|| = 1, then df/dd is the rate of increase of / at x in the direction d. 
To compute the directional derivative above, suppose that x and d are given. 
Then, f(x + ad) is a function of a, and 

a=0 

Applying the chain rule yields 

g(.) _!-/(, +a* Vf{xYd = <V/(s),<i) = rfTV/(x). 
a=0 

In summary, if d is a unit vector (||d|| = 1), then (V/(x) , d) is the rate of 
increase of / at the point x in the direction d. 

Example 6.2 Define / : by f(x) = #i#2#3> and let 
T 

d = 
L2'2 '72j 

The directional derivative of / in the direction d is 

— (x) = V/(a?)Td = [x2x3,xiX3,XiX2] 
1/2 
1/2 

1/V2 

X2^3 + Ζι:τ3 + \/2a;iX2 
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Note that because ||d|| = 1, the above is also the rate of increase of / at x in 
the direction d. I 

We are now ready to state and prove the following theorem. 

Theorem 6.1 First-Order Necessary Condition (FONC). Let Ω be a 
subset ofW1 and f G C1 a real-valued function on Ω. Ifx* is a local minimizer 
of f over Ω, then for any feasible direction d at x*, we have 

d T V/(x*) > 0. 

D 

Proof. Define 
x(a) = x* + ad G Ω. 

Note that a?(0) = x*. Define the composite function 

φ(α) = f(x(a)). 

Then, by Taylor's theorem, 

f(x* + ad) - f(x*) = φ{α) - 0(0) = φ'{0)α + o(a) = adTVf(x(0)) + o(a), 

where a > 0 [recall the definition of o(a) ("little-oh of a") in Part I]. Thus, 
if φ(α) > 0(0), that is, f(x* + ad) > f(x*) for sufficiently small values of 
a > 0 (a?* is a local minimizer), then we have to have d Vf(x*) > 0 (see 
Exercise 5.8). I 

Theorem 6.1 is illustrated in Figure 6.3. 
An alternative way to express the FONC is 

for all feasible directions d. In other words, if x* is a local minimizer, then 
the rate of increase of / at x* in any feasible direction d in Ω is nonnegative. 
Using directional derivatives, an alternative proof of Theorem 6.1 is as follows. 
Suppose that x* is a local minimizer. Then, for any feasible direction d, there 
exists ä > 0 such that for all a G (0, ä) , 

/ ( « * ) < / ( « * + a d ) · 

Hence, for all a G (0, ä) , we have 

/ ( * * + a d ) - / ( * * ) 
a 

Taking the limit as a —> 0, we conclude that 

g(x-)>o. 

>0 . 
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Figure 6.3 Illustration of the FONC for a constrained case; X\ does not satisfy the 
FONC, whereas x2 satisfies the FONC. 

A special case of interest is when x* is an interior point of Ω (see Sec-
tion 4.4). In this case, any direction is feasible, and we have the following 
result. 

Corollary 6.1 Interior Case. Let Ω be a subset o /R n and f G C1 a real-
valued function on Ω. If x* is a local minimizer of f over Ω and if x* is an 
interior point of Ω, then 

V/(**) = 0. 

D 

Proof. Suppose that / has a local minimizer as* that is an interior point of 
Ω. Because x* is an interior point of Ω, the set of feasible directions at x* is 
the whole of Rn. Thus, for any d G Rn , dTV/(cc*) > 0 and - d T V / ( x * ) > 0. 
Hence, dTV/(a;*) - 0 for all d G Rn , which implies that V/(«*) = 0. I 

Example 6.3 Consider the problem 

minimize x\ + 0.5x2 + 3#2 + 4.5 
subject to £i,#2 > 0. 

a. Is the first-order necessary condition (FONC) for a local minimizer sat-
isfied at x = [1,3]T? 

b . Is the FONC for a local minimizer satisfied at x = [0,3]T? 

c. Is the FONC for a local minimizer satisfied at x = [1,0]T? 
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Figure 6.4 Level sets of the function in Example 6.3. 

d. Is the FONC for a local minimizer satisfied at x = [0,0]T? 

Solution: First, let / : R2 -► R be defined by f(x) = x\ + 0.5x§ + 3x2 + 4.5, 
where x — \x\, x2]

T. A plot of the level sets of / is shown in Figure 6.4. 

a. At x = [1,3]T, we have Vf(x) = [2xux2 + 3]T = [2,6]T. The point 
x = [1,3]T is an interior point of Ω = {x : x\ > 0,x2 > 0}. Hence, the 
FONC requires that Vf(x) = 0. The point x = [1,3]T does not satisfy 
the FONC for a local minimizer. 

b . At x = [0,3]T, we have V/(a?) = [0,6]T, and hence dTVf(x) = 6d2, 
where d = [di,d2]T. For d to be feasible at as, we need di > 0, and d2 

can take an arbitrary value in R. The point x = [0,3]T does not satisfy 
the FONC for a minimizer because d2 is allowed to be less than zero. For 
example, d = [1, — 1]T is a feasible direction, but d T V / ( x ) = — 6 < 0. 

c. At x = [1,0]T, we have V/ (x ) = [2,3]T, and hence dTVf(x) = 2d1+3d2. 
For d to be feasible, we need d2 > 0, and d\ can take an arbitrary 
value in R. For example, d = [—5,1]T is a feasible direction. But 
dTVf(x) = -7 < 0. Thus, x = [1,0]T does not satisfy the FONC 
for a local minimizer. 

d. At x = [0,0]T, we have V/ (x ) = [0,3]T, and hence dTVf{x) = 3d2. For 
d to be feasible, we need d2 > 0 and d\ > 0. Hence, x — [0,0]T satisfies 
the FONC for a local minimizer. | 

Example 6.4 Figure 6.5 shows a simplified model of a cellular wireless sys-
tem (the distances shown have been scaled down to make the calculations 
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Primary 2 Neighboring 
Base Station H H Base Station 

| *-| Mobile 
x 

Figure 6.5 Simplified cellular wireless system in Example 6.4. 

simpler). A mobile user (also called a mobile) is located at position x (see 
Figure 6.5). 

There are two base station antennas, one for the primary base station 
and another for the neighboring base station. Both antennas are transmitting 
signals to the mobile user, at equal power. However, the power of the received 
signal as measured by the mobile is the reciprocal of the squared distance 
from the associated antenna (primary or neighboring base station). We are 
interested in finding the position of the mobile that maximizes the signal-to-
interference ratio, which is the ratio of the signal power received from the 
primary base station to the signal power received from the neighboring base 
station. 

We use the FONC to solve this problem. The squared distance from the 
mobile to the primary antenna is 1 + x2, while the squared distance from the 
mobile to the neighboring antenna is 1 + (2 — x)2. Therefore, the signal-to-
interference ratio is 

fix) - 1 + (2-*>2 
I[X) 1 + x 2 ' 

We have 

_ -2(2-x)(l + x2)-2x(l + (2-x)2) 
J[ ]~ (1 + * 2 ) 2 

_ 4(x2 - 2x - 1) 
(1 + x2)2 ' 

By the FONC, at the optimal position x* we have / '(#*) = 0. Hence, either 
x* — 1 — y/2 or x* = 1 + y/2. Evaluating the objective function at these two 
candidate points, it easy to see that x* = 1 — y/2 is the optimal position. I 

The next example illustrates that in some problems the FONC is not helpful 
for eliminating candidate local minimizers. However, in such cases, there may 
be a recasting of the problem into an equivalent form that makes the FONC 
useful. 

Interference 
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Example 6.5 Consider the set-constrained problem 

minimize f(x) 

subject to x G Ω, 

where Ω = {[xi,#2]T · x\ + %\ = 1}· 

a. Consider a point x* G Ω. Specify all feasible directions at x*. 

b . Which points in Ω satisfy the FONC for this set-constrained problem? 

c. Based on part b, is the FONC for this set-constrained problem useful for 
eliminating local-minimizer candidates? 

d. Suppose that we use polar coordinates to parameterize points x G Ω in 
terms of a single parameter Θ: 

X i = c o s 0 #2 = sin0. 

Now use the FONC for unconstrained problems (with respect to Θ) to 
derive a necessary condition of this sort: If x* G Ω is a local minimizer, 
then d T V/(x*) = 0 for all d satisfying a "certain condition." Specify 
what this certain condition is. 

Solution: 

a. There are no feasible directions at any x*. 

b . Because of part a, all points in Ω satisfy the FONC for this set-
constrained problem. 

c. No, the FONC for this set-constrained problem is not useful for eliminat-
ing local-minimizer candidates. 

d. Write h{ß) = /(#(#)), where g : R —► R2 is given by the equations relating 
Θ to x = [χι,Χ2]Τ· Note that Dg{9) = [— sin0,cos0]T . Hence, by the 
chain rule, 

h\ff) = Df{g{e))Dg{9) = Dg(e)TVf(g(e)). 

Notice that Dg{6) is tangent to Ω at x = g(0). Alternatively, we could 
say that Dg(9) is orthogonal to x = g(0). 

Suppose that x* G Ω is a local minimizer. Write x* = g{0*). Then 
Θ* is an unconstrained minimizer of h. By the FONC for unconstrained 
problems, h'(6*) = 0, which implies that d T V/(x*) = 0 for all d tangent 
to Ω at x* (or, alternatively, for all d orthogonal to x*). | 

We now derive a second-order necessary condition that is satisfied by a 
local minimizer. 
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Theorem 6.2 Second-Order Necessary Condition (SONC). Let Ω c 
Rn , f G C2 a function on Ω, x* a local minimizer of f over Ω, and d a feasible 
direction at x*. If dTWf(x*) = 0, then 

dTF(x*)d > 0, 

where F is the Hessian of f. Q 

Proof We prove the result by contradiction. Suppose that there is a feasible 
direction d at x* such that dTVf(x*) = 0 and dTF(x*)d < 0. Let x{a) = 
x* + ad and define the composite function φ(α) = f(x* + ad) = f(x(a)). 
Then, by Taylor's theorem, 

φ(α) = 0(0) + ^ " ( 0 ) ^ + ο ( α 2 ) , 

where by assumption, <//(0) = d T V/(x*) = 0 and φ"{ϋ) = dTF(x*)d < 0. 
For sufficiently small a, 

φ(α)-φ(0) = φ"(0)^+ο(α2)<0, 

that is, 
/ (x* + a d ) < / ( x * ) , 

which contradicts the assumption that x* is a local minimizer. Thus, 

φ"(0) = dTF(x*)d > 0. 

■ 
Corollary 6.2 Interior Case. Let x* be an interior point o / ! l c l " . / / 
x* is a local minimizer of f : Ω —> ]R, / G C2, i/ien 

V/(**) = 0, 

and F(x*) is positive semidefinite (F{x*) > 0); that is, for all d G W1, 

dTF(x*)d > 0. 

G 

Proof If x* is an interior point, then all directions are feasible. The result 
then follows from Corollary 6.1 and Theorem 6.2. I 

In the examples below, we show that the necessary conditions are not 
sufficient. 

Example 6.6 Consider a function of one variable f(x) = x3, / : R —► R. 
Because / '(0) = 0, and /"(0) = 0, the point x = 0 satisfies both the FONC 
and SONC. However, x = 0 is not a minimizer (see Figure 6.6). I 
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AW 
' f(x)=x3 

Figure 6.6 The point 0 satisfies the FONC and SONC but is not a minimizer. 

Example 6.7 Consider a function / : R2 —► R, where f(x) = x\ - x\. The 
FONC requires that Vf{x) = [2x1,-2x2]

T = 0. Thus, x = [0,0]T satisfies 
the FONC. The Hessian matrix of / is 

F(x) 
2 0 

0 - 2 

The Hessian matrix is indefinite; that is, for some d\ G R2 we have dx Fd\ > 0 
(e.g., di = [1,0]T) and for some d2 we have d jFd 2 < 0 (e.g., d2 = [0,1]T). 
Thus, x = [0,0]T does not satisfy the SONC, and hence it is not a minimizer. 
The graph of f(x) — x\ x"o is shown in Figure 6.7. I 

Figure 6.7 Graph of f(x) 
SONC; this point is not a minimizer. 

xl xl The point 0 satisfies the FONC but not 
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We now derive sufficient conditions that imply that x* is a local minimizer. 

Theorem 6.3 Second-Order Sufficient Condition (SOSC), Interior 
Case. Let f E C2 be defined on a region in which x* is an interior point. 
Suppose that 

1. V/(x*) = 0. 

2. F(x*) > 0. 

Then, x* is a strict local minimizer of f. G 

Proof. Because / G C2, we have F(x*) = FT(as*). Using assumption 2 and 
Rayleigh's inequality it follows that if d φ 0, then 0 < Amin(F(ic*))||d||2 < 
d F(x*)d. By Taylor's theorem and assumption 1, 

/ ( * · + d) - /(**) = \dTF(x*)d + o(\\df) > Λ " " ° ^ ( 8 * ) ) μ | | 2 + 0(!|rf||2). 

Hence, for all d such that ||d|| is sufficiently small, 

f{x* + d)> f(x*), 

which completes the proof. I 

Example 6.8 Let f{x) = x\ + x\. We have Vf(x) = [2xl,2x2)
T = 0 if and 

only if x = [0,0]T. For all x G R2, we have 

F(x) = 
2 0 

0 2 
>0 . 

The point x = [0,0]T satisfies the FONC, SONC, and SOSC. It is a strict 
local minimizer. Actually, x = [0,0]T is a strict global minimizer. Figure 6.8 
shows the graph of f(x) = x\ + x\. I 

In this chapter we presented a theoretical basis for the solution of non-
linear unconstrained problems. In the following chapters we are concerned 
with iterative methods of solving such problems. Such methods are of great 
importance in practice. Indeed, suppose that one is confronted with a highly 
nonlinear function of 20 variables. Then, the FONC requires the solution of 
20 nonlinear simultaneous equations for 20 variables. These equations, being 
nonlinear, will normally have multiple solutions. In addition, we would have 
to compute 210 second derivatives (provided that / G C2) to use the SONC 
or SOSC. We begin our discussion of iterative methods in the next chapter 
with search methods for functions of one variable. 
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Figure 6.8 Graph of f(x) = x\ + x\. 

E X E R C I S E S 

6.1 Consider the problem 

minimize / ( x ) 
subject to x G Ω, 

where / G C2. For each of the following specifications for Ω, x*, and / , de-
termine if the given point x* is: (i) definitely a local minimizer; (ii) definitely 
not a local minimizer; or (iii) possibly a local minimizer. 

a. / : R2 -» R, Ω = {x = [xi ,x2]T : x\ > 1}, x* = [1,2]T, and gradient 
V/(x*) = [ l , l ] T . 

b . / : R2 -> R, Ω = {x = [a?i,x2]T : x\ > 1,^2 > 2}, x* = [1,2]T, and 
gradient V/(x*) = [l ,0]T . 

c. / : R2 -+ R, Ω = {x = [xi ,x2]T : »l > 0,x2 > 0}, x* = [1,2]T, gradient 
V/(x*) = [0,0]T, and Hessian F(x*) = I (identity matrix). 

d. / : R2 -► R, Ω = {x = [xi ,x2]T : X\ > l,x2 > 2}, x* = [1,2]T, gradient 
V/(x*) = [1,0]T, and Hessian 

F(x* 1 0 
0 - 1 

6.2 Find minimizers and maximizers of the function 

/ (x i ,x 2 ) = -x\ - 4 x i + -x\ - 16x2. 
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6.3 Show that if x* is a global minimizer of / over Ω, and #* G Ω' C Ω, then 
x* is a global minimizer of / over Ω'. 

6.4 Suppose that x* is a local minimizer of / over Ω, and i l c f f . Show 
that if x* is an interior point of Ω, then x* is a local minimizer of / over Ω'. 
Show that the same conclusion cannot be made if a?* is not an interior point 
of Ω. 

6.5 Consider the problem of minimizing / : R —> R, / G C3, over the 
constraint set Ω. Suppose that 0 is an interior point of Ω. 

a. Suppose that 0 is a local minimizer. By the FONC we know that / ' (0) = 
0 (where / ' is the first derivative of / ) . By the SONC we know that 
/"(0) > 0 (where / " is the second derivative of / ) . State and prove a 
third-order necessary condition (TONC) involving the third derivative at 

o, r(o). 
b . Give an example of / such that the FONC, SONC, and TONC (in part 

a) hold at the interior point 0, but 0 is not a local minimizer of / over 
Ω. (Show that your example is correct.) 

c. Suppose that / is a third-order polynomial. If 0 satisfies the FONC, 
SONC, and TONC (in part a), then is this sufficient for 0 to be a local 
minimizer? 

6.6 Consider the problem of minimizing / : R —> R, / G C3, over the 
constraint set Ω = [0,1]. Suppose that x* — 0 is a local minimizer. 

a. By the FONC we know that /'(O) > 0 (where / ' is the first derivative 
of / ) . By the SONC we know that if / ' (0) = 0, then /"(0) > 0 (where 
/ " is the second derivative of / ) . State and prove a third-order necessary 
condition involving the third derivative at 0, /'"(O). 

b . Give an example of / such that the FONC, SONC, and TONC (in part 
a) hold at the point 0, but 0 is not a local minimizer of / over Ω = [0,1]. 

6.7 Let / : Rn -> R, x0 G Rn , and Ω c Rn . Show that 

x0 + arg min / (x ) = arg min / (y ) , 
χβΩ yeQ' 

where Ω' = {y : y — XQ G Ω}. 

6.8 Consider the following function / : R2 —> R: 

"l 2~ 
4 7 

x + xT "3" 
5 
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a. Find the gradient and Hessian of / at the point [1,1]T. 

b . Find the directional derivative of / a t [1,1]T with respect to a unit vector 
in the direction of maximal rate of increase. 

c. Find a point that satisfies the FONC (interior case) for / . Does this 
point satisfy the SONC (for a minimizer)? 

6.9 Consider the following function: 

f(x\,X2) = x\x2 +#2 χ 1· 

a. In what direction does the function / decrease most rapidly at the point 
χ(°) = [2,1]τ? 

b . What is the rate of increase of / at the point x^ in the direction of 
maximum decrease of / ? 

c. Find the rate of increase of / at the point x^ in the direction d — [3,4]T. 

6.10 Consider the following function / : R2 -+ R: 

" 2 5 
- 1 1 

x + xT 3 
4 

a. Find the directional derivative of / at [0,1]T in the direction [1,0]T. 

b . Find all points that satisfy the first-order necessary condition for / . 
Does / have a minimizer? If it does, then find all minimizer(s); otherwise, 
explain why it does not. 

6.11 Consider the problem 

minimize — x\ 

subject to |#21 < x\ 

x\ > 0 , 

where £i,#2 £ ^ · 

a. Does the point [#i,£2]T = 0 satisfy the first-order necessary condition 
for a minimizer? That is, if / is the objective function, is it true that 
d T V / ( 0 ) > 0 for all feasible directions d at 0? 

b . Is the point [#i,£2]T = 0 a local minimizer, a strict local minimizer, a 
local maximizer, a strict local maximizer, or none of the above? 
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6.12 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where / : R2 —> R is given by f(x) = 5^2 with x = [xi,x2]T
? and Ω = {x = 

[xi ,x2]T : x\ + X2 > 1}. 

a. Does the point x* = [0,1]T satisfy the first-order necessary condition? 

b . Does the point x* = [0,1]T satisfy the second-order necessary condition? 

c. Is the point x* = [0,1]T a local minimizer? 

6.13 Consider the problem 

minimize f(x) 

subject to x G i ] , 

where / : R2 —> R is given by f(x) = —3x\ with x = [xi, X2]T? a n d Ω = {x = 
[xi,X2]T · x\ + x\ < 2}. Answer each of the following questions, showing 
complete justification. 

a. Does the point x* = [2,0]T satisfy the first-order necessary condition? 

b . Does the point x* = [2,0]T satisfy the second-order necessary condition? 

c. Is the point x* = [2,0]T a local minimizer? 

6.14 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where Ω = {x G R2 : x\ + x\ > 1} and f(x) = x2. 

a. Find all point (s) satisfying the FONC. 

b . Which of the point(s) in part a satisfy the SONC? 

c. Which of the point(s) in part a are local minimizers? 

6.15 Consider the problem 

minimize f(x) 

subject to x G Ω 
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where / : R2 —> R is given by f(x) = 3x\ with x = [xi,X2]T, and Ω = {x = 
[xi,X2]T · X\ + x\ > 2}. Answer each of the following questions, showing 
complete justification. 

a. Does the point x* = [2,0]T satisfy the first-order necessary condition? 

b . Does the point x* = [2,0]T satisfy the second-order necessary condition? 

c. Is the point x* = [2,0]T a local minimizer? 
Hint: Draw a picture with the constraint set and level sets of / . 

6.16 Consider the problem 

minimize f(x) 

subject to x G Ω, 

where x = [£ι,£2]Τ, / : R2 —> R is given by f(x) = 4x2 — x\, and Ω = {x : 
x\ + 2#i - x2 > 0, x\ > 0, x2 > 0}. 

a. Does the point x* = 0 = [0,0]T satisfy the first-order necessary condi-
tion? 

b . Does the point x* = 0 satisfy the second-order necessary condition? 

c. Is the point x * = 0 a local minimizer of the given problem? 

6.17 Consider the problem 

maximize f(x) 

subject to x G Ω, 

where Ω c {x G R2 : x\ > 0,^2 > 0} and / : Ω —► R is given by 
f(x) = log(xi) + log(#2) with x = [xi ,x2]T , where "log" represents natu-
ral logarithm. Suppose that x* is an optimal solution. Answer each of the 
following questions, showing complete justification. 

a. Is it possible that x* is an interior point of Ω? 

b . At what point(s) (if any) is the second-order necessary condition satisfied? 

6.18 Suppose that we are given n real numbers, # i , . . . , xn. Find the number 
x G R such that the sum of the squared difference between x and the numbers 
above is minimized (assuming that the solution x exists). 

6.19 An art collector stands at a distance of x feet from the wall, where a 
piece of art (picture) of height a feet is hung, b feet above his eyes, as shown in 
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Picture 

Eye Λ: 

a 

Figure 6.9 Art collector's eye position in Exercise 6.19. 

ϋϋϋΒέφ 

tiil^iiiiii!;!;!! 
: · : · : · : · : · * ■ : · : ■ : · : ■ 

:;:;:;2!:;i;i;:;i!:ii;iii;!;i!i;Mi^fffitfSi; 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : ? ? [:: t ji^iäU':£:: 

H Sensor 

Figure 6.10 Simplified fetal heart monitoring system for Exercise 6.20. 

Figure 6.9. Find the distance from the wall for which the angle 0 subtended 
by the eye to the picture is maximized. 
Hint: (1) Maximizing 0 is equivalent to maximizing tan(0). 
(2) If 0 = 02 - 0i, then tan(0) = (tan(02) - tan(0i))/(l + tan(02) tan(0i)). 

6.20 Figure 6.10 shows a simplified model of a fetal heart monitoring system 
(the distances shown have been scaled down to make the calculations simpler). 
A heartbeat sensor is located at position x (see Figure 6.10). 

The energy of the heartbeat signal measured by the sensor is the reciprocal 
of the squared distance from the source (baby's heart or mother's heart). 
Find the position of the sensor that maximizes the signal-to-interference ratio, 
which is the ratio of the signal energy from the baby's heart to the signal 
energy from the mother's heart. 

6.21 An amphibian vehicle needs to travel from point A (on land) to point 
B (in water), as illustrated in Figure 6.11. The speeds at which the vehicle 
travels on land and water are v\ and t>2, respectively. 



EXERCISES 99 

Figure 6.11 Path of amphibian vehicle in Exercise 6.21. 

a. Suppose that the vehicle traverses a path that minimizes the total time 
taken to travel from A to B. Use the first-order necessary condition to 
show that for the optimal path above, the angles θ\ and θ2 in Figure 6.11 
satisfy Snell's law: 

sin θι vi 
sin 02 v2' 

b . Does the minimizer for the problem in part a satisfy the second-order 
sufficient condition? 

6.22 Suppose that you have a piece of land to sell and you have two buyers. 
If the first buyer receives a fraction x\ of the piece of land, the buyer will pay 
you Ό\(χ\) dollars. Similarly, the second buyer will pay you U2{x2) dollars 
for a fraction of x2 of the land. Your goal is to sell parts of your land to the 
two buyers so that you maximize the total dollars you receive. (Other than 
the constraint that you can only sell whatever land you own, there are no 
restrictions on how much land you can sell to each buyer.) 

a. Formulate the problem as an optimization problem of the kind 

maximize f(x) 

subject to x £ Ω 

by specifying / and Ω. Draw a picture of the constraint set. 
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b . Suppose that Ui(xi) = a ^ , i = 1,2, where a\ and a2 are given positive 
constants such that a\ > a2. Find all feasible points that satisfy the 
first-order necessary condition, giving full justification. 

c. Among those points in the answer of part b, find all that also satisfy the 
second-order necessary condition. 

6.23 Let / : R2 -► R be defined by 

f(x) = {xi - x2)
4 + x\ - x\ - 2xi + 2x2 + 1, 

where x = [xi,X2]T. Suppose that we wish to minimize / over R2. Find all 
points satisfying the FONC. Do these points satisfy the SONC? 

6.24 Show that if d is a feasible direction at a point x G Ω, then for all 
ß > 0, the vector ßd is also a feasible direction at x. 

6.25 Let Ω = {x G Rn : Ax = b}. Show that d G Rn is a feasible direction 
at x G Ω if and only if Ad = 0. 

6.26 Let / : R2 -> R. Consider the problem 

minimize f(x) 

subject to x\,X2 > 0, 

where x = [χι,α^]"1". Suppose that V/(0) Φ 0, and 

£<o)so, -g(o)<o. 

Show that 0 cannot be a minimizer for this problem. 

6.27 Let c G Rn, c φ 0, and consider the problem of minimizing the function 
f(x) = cTx over a constraint set Ω C Rn . Show that we cannot have a 
solution lying in the interior of Ω. 

6.28 Consider the problem 

maximize C\X\ + C2X2 

subject to x\ + X2 < 1 
x i ,x 2 > 0, 

where c\ and c2 are constants such that c\ > c2 > 0. This is a linear program-
ming problem (see Part III). Assuming that the problem has an optimal fea-
sible solution, use the first-order necessary condition to show that the unique 
optimal feasible solution x* is [1,0]T. 
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Hint: First show that x* cannot lie in the interior of the constraint set. Then, 
show that x* cannot lie on the line segments L\ = {x : x\ = 0,0 < x2 < 1}, 
L2 = {x : 0 < x\ < 1, x2 = 0}, L3 = {x : 0 < X\ < 1, x2 = 1 - xi}. 

6.29 Line Fitting. Let [#i ,2/ i ]T , . . . , [xn?2/n]T
5 n > 2, be points on the R2 

plane (each Xi,yi G R). We wish to find the straight line of "best fit" through 
these points ("best" in the sense that the average squared error is minimized); 
that is, we wish to find a, b G R to minimize 

1 n 

/ (a , b) = - ^2 (axi + b - yi)2 . 
2 = 1 

a. Let 

— 1 n 

X = - V x i , n f-f 
2 = 1 

1 n 

2 = 1 

1 n 

2 = 1 

1 n 

2 = 1 

I n 

XY = ~ΣχΜ' n *-^ 
2 = 1 

Show that f(a,b) can be written in the form zTQz — 2c T z + d, where 
z = [a, 6]T, Q = Q T G R2^x 2

LcGR2 and d G R, and find expressions for 
Q, c, and d in terms of X, Ϋ, X 2 , Y2, and 1 7 . 

b . Assume that the xz, z = 1 , . . . , n, are not all equal. Find the parameters 
a* and b* for the line of best fit in terms of X, Y, X 2 , Y2, and XY. 
Show that the point [α*, δ*]τ is the only local minimizer of / . 
Hint:JÖ-{Xf = ^Yri^i-X?· 

c. Show that if a* and 6* are the parameters of the line of best fit, then 
Y = a*X + b* (and hence once we have computed a*, we can compute 
6* using the formula b* = Y — a*X). 

6.30 Suppose that we are given a set of vectors {x^\ . . . , x ^ } , a:W G Rn , 
2 = 1 , . . . ,p. Find the vector x G Rn such that the average squared distance 
(norm) between x and x^\ . . . , χ(ρ\ 

1 P 
ωιι2 

PUi 
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is minimized. Use the SOSC to prove that the vector x found above is a strict 
local minimizer. How is x related to the centroid (or center of gravity) of the 
given set of points { x ^ \ . . . , x^}? 

6.31 Consider a function / : Ω —► R, where Ω C Rn is a convex set and 
/ eC1. Given x* G Ω, suppose that there exists c > 0 such that d T V/(x*) > 
c||d|| for all feasible directions d at x*. Show that x* is a strict local minimizer 
of / over Ω. 

6.32 Prove the following generalization of the second-order sufficient condi-
tion: 
Theorem: Let Ω be a convex subset of Rn , / G C2 a real-valued function on 

Ω, and x* a point in Ω. Suppose that there exists c G R, c > 0, such that 
for all feasible directions d at x* (d φ 0), the following hold: 

1. d T V/(x*) > 0. 
2. dTF(x*)d > c||d||2. 

Then, x* is a strict local minimizer of / . 

6.33 Consider the quadratic function / : Rn —> R given by 

/ ( x ) = -xTQx - x T 6 , 

where Q = QT > 0. Show that x* minimizes / if and only if x* satisfies the 
FONC. 

6.34 Consider the linear system Xk+i = Q<Xk + biik+i, k > 0, where X{ G R, 
ui G R, and the initial condition is xo = 0. Find the values of the control 
inputs u\,..., un to minimize 

n 

-qxn + r^uh 
2 = 1 

where </, r > 0 are given constants. This can be interpreted as desiring to 
make xn as large as possible but at the same time desiring to make the total 
input energy Σ™=1 u

2 as small as possible. The constants q and r reflect the 
relative weights of these two objectives. 



CHAPTER 7 

ONE-DIMENSIONAL SEARCH METHODS 

7.1 Introduction 

In this chapter, we are interested in the problem of minimizing an objec-
tive function / : K —» R (i.e., a one-dimensional problem). The approach is 
to use an iterative search algorithm, also called a line-search method. One-
dimensional search methods are of interest for the following reasons. First, 
they are special cases of search methods used in multivariable problems. Sec-
ond, they are used as part of general multivariable algorithms (as described 
later in Section 7.8). 

In an iterative algorithm, we start with an initial candidate solution x^ 
and generate a sequence of iterates x^l\x^2\ For each iteration k = 
0 ,1 ,2 , . . . , the next point χ^+^ depends on x^ and the objective function 
/ . The algorithm may use only the value of / at specific points, or perhaps 
its first derivative / ' , or even its second derivative / " . In this chapter, we 
study several algorithms: 

■ Golden section method (uses only / ) 

■ Fibonacci method (uses only / ) 

An Introduction to Optimization, Fourth Edition. 103 
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc. 
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AfM 

H ' ' ^v 
a0 b0

 x 

Figure 7.1 Unimodal function. 

■ Bisection method (uses only / ' ) 

■ Secant method (uses only / ' ) 

■ Newton's method (uses f and / " ) 

The exposition here is based on [27]. 

7.2 Golden Section Search 

The search methods we discuss in this and the next two sections allow us to 
determine the minimizer of an objective function / : R —► R over a closed 
interval, say [αο,&ο]· The only property that we assume of the objective 
function / is that it is unimodal, which means that / has only one local 
minimizer. An example of such a function is depicted in Figure 7.1. 

The methods we discuss are based on evaluating the objective function 
at different points in the interval [αο,&ο]· We choose these points in such a 
way that an approximation to the minimizer of / may be achieved in as few 
evaluations as possible. Our goal is to narrow the range progressively until 
the minimizer is "boxed in" with sufficient accuracy. 

Consider a unimodal function / of one variable and the interval [αο,&ο]· 
If we evaluate / at only one intermediate point of the interval, we cannot 
narrow the range within which we know the minimizer is located. We have 
to evaluate / at two intermediate points, as illustrated in Figure 7.2. We 
choose the intermediate points in such a way that the reduction in the range 
is symmetric, in the sense that 

ai - a0 = b0 -bi = p(b0 - a0), 

where 
1 

P<2-
We then evaluate / at the intermediate points. If f(a\) < /(&i), then the 
minimizer must lie in the range [αο,&ι]. If, on the other hand, f(a{) > /(£>i), 
then the minimizer is located in the range [01,60] (see Figure 7.3). 
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a r a 0 
b0"b1 

+ + + 
a0 a-, b-| b0 

Figure 7.2 Evaluating the objective function at two intermediate points. 

a0 x* a^ bA b 0 

Figure 7.3 The case where /(αι) < /(6i); the minimizer x* G [ao,&i]. 

Starting with the reduced range of uncertainty, we can repeat the process 
and similarly find two new points, say Ü2 and 62, using the same value of 
p < \ as before. However, we would like to minimize the number of objec-
tive function evaluations while reducing the width of the uncertainty interval. 
Suppose, for example, that f{a\) < / (6i) , as in Figure 7.3. Then, we know 
that x* G [αο,&ι]. Because a\ is already in the uncertainty interval and f(a\) 
is already known, we can make a\ coincide with 62· Thus, only one new evalu-
ation of / at 02 would be necessary. To find the value of p that results in only 
one new evaluation of / , see Figure 7.4. Without loss of generality, imagine 
that the original range [ao, bo] is of unit length. Then, to have only one new 
evaluation of / it is enough to choose p so that 

p(fei - a 0 ) = 61-62 . 

Because 61 — ao = 1 — p and 61 — 62 = 1 — 2p, we have 

p(l-p) = l - 2p. 

We write the quadratic equation above as 

p2 - 3p + 1 = 0. 

The solutions are 

Pi = 
3 + ^ 5 

92 
3 - \ / 5 
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1-p 
>-. 

! P 1-2p i 

a0 a2 a1 =b2 b1 b0 

- < > ► 

b0-a0=1 

Figure 7.4 Finding value of p resulting in only one new evaluation of / . 

Because we require that p < ^, we take 

p = ^ Λ „ 0.382. 

Observe that 

and 

> / 5 - l 
! - P = — ö — 

>/5 \ / 5 - l 1 

that is, 
x / 5 - 1 2 

P 1 - p 
1 - p 1 

Thus, dividing a range in the ratio of p to 1 — p has the effect that the ratio of 
the shorter segment to the longer equals the ratio of the longer to the sum of 
the two. This rule was referred to by ancient Greek geometers as the golden 
section. 

Using the golden section rule means that at every stage of the uncertainty 
range reduction (except the first), the objective function / need only be 
evaluated at one new point. The uncertainty range is reduced by the ra-
tio 1 — p « 0.61803 at every stage. Hence, N steps of reduction using the 
golden section method reduces the range by the factor 

N (1 - p)N « (0.61803) 

Example 7.1 Suppose that we wish to use the golden section search method 
to find the value of x that minimizes 

f{x) =xA- 14x3 + 60z2 - 70x 

in the interval [0,2] (this function comes from an example in [21]). We wish 
to locate this value of x to within a range of 0.3. 
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After N stages the range [0,2] is reduced by (0.61803)^. So, we choose N 
so that 

(0.61803)^ < 0.3/2. 

Four stages of reduction will do; that is, N = 4. 
Iteration 1. We evaluate / at two intermediate points a\ and b\. We have 

di = ao H- p(b0 — a0) = 0.7639, 
6i = a0 + (1 - p){bo - a0) = 1.236, 

where p = (3 — Λ /5) /2 . We compute 

/(αχ) = -24.36, 
f{h) = -18.96. 

Thus, / ( a i ) < /(&i), so the uncertainty interval is reduced to 

[oo,6i] = [0,1.236]. 

Iteration 2. We choose 62 to coincide with ai , and so / need only be 
evaluated at one new point, 

a2 = a0 + p(bx - a0) = 0.4721. 

We have 

f(a2) = -21.10, 

f(b2) = / ( a i ) = -24.36. 

Now, /(i>2) < /(02), so the uncertainty interval is reduced to 

[α2,6ι] = [0.4721,1.236]. 

Iteration 3. We set a3 = b2 and compute 63: 

63 = a2 + (1 - p)(6i - a2) = 0.9443. 

We have 

/ (a 3 ) = /(&2) = "24.36, 
/(63) = -23.59. 

So f(bs) > f(as). Hence, the uncertainty interval is further reduced to 

[a2M = [0.4721,0.9443]. 

Iteration 4- We set 64 = as and 

a4 = a2 + p(bs — a2) = 0.6525. 
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We have 

/ (a 4 ) = -23.84, 
/ ( M = / (a 3 ) = -24.36. 

Hence, f(a±) > /(fo*). Thus, the value of x that minimizes / is located in the 
interval 

[04,63] = [0.6525,0.9443]. 
Note that b3 - a4 = 0.292 < 0.3. I 

7.3 Fibonacci Method 

Recall that the golden section method uses the same value of p throughout. 
Suppose now that we are allowed to vary the value p from stage to stage, so 
that at the fcth stage in the reduction process we use a value ρ&, at the next 
stage we use a value pfc+i, and so on. 

As in the golden section search, our goal is to select successive values of 
Pfc> 0 < pk < 1/2, such that only one new function evaluation is required at 
each stage. To derive the strategy for selecting evaluation points, consider 
Figure 7.5. From this figure we see that it is sufficient to choose the pk such 
that 

pfc+i(l - pk) = l-2pk. 

After some manipulations, we obtain 

pfc+i = 1 - —. 
1 - Pk 

There are many sequences pi, p2,... that satisfy the law of formation above 
and the condition that 0 < pk < 1/2. For example, the sequence pi = p2 = 
ps = · · · = (3 — Λ/5) /2 satisfies the conditions above and gives rise to the 
golden section method. 

Suppose that we are given a sequence p i , p 2 , . . . satisfying the conditions 
above and we use this sequence in our search algorithm. Then, after N iter-
ations of the algorithm, the uncertainty range is reduced by a factor of 

( l - f t ) ( l - / * ) · · · ( ! - P A T ) . 
Depending on the sequence p i , p2 , . . . , we get a different reduction factor. 
The natural question is as follows: What sequence p i ,p2 , . . . minimizes the 
reduction factor above? This problem is a constrained optimization problem 
that can be stated formally as 

minimize (1 - pi)(l - p2) · · · (1 - PN) 

subject to pfc+i = 1 , k = 1 , . . . , N — 1 
1 ~ Pk 

0<pk<\, fc = l , . . . ,W. 
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Iteration k 

Iteration k+1 

Pk i 1-2pw ■ Pk 

*k+1 Jk+1 

* i Pk + i ( 1 -Pk) 

- I 
- ► I 

1"Pk 

Figure 7.5 Selecting evaluation points. 

Before we give the solution to the optimization problem above, we need to 
introduce the Fibonacci sequence Fi , F2, F3, This sequence is defined as 
follows. First, let F_i = 0 and Fo = 1 by convention. Then, for k > 0, 

-Ffc+i = Fk + Fk-i. 

Some values of elements in the Fibonacci sequence are: 

Fi F2 F3 F4 F5 F6 F7 F8 

1 2 3 5 8 13 21 34 

It turns out that the solution to the optimization problem above is 

FN 

92 = 1 -

FN+I 

FN-I 

?N 

Pk 
FjV-fc+1 

PN 
F\ 

F2' 

where the F^ are the elements of the Fibonacci sequence. The resulting al-
gorithm is called the Fibonacci search method. We present a proof for the 
optimality of the Fibonacci search method later in this section. 

In the Fibonacci search method, the uncertainty range is reduced by the 
factor 

{1-nXl-&)...(!-pN) 
FN+I FN 

F\ 
F2 

1 Fi 
FN+I FN+I 
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Because the Fibonacci method uses the optimal values of pi, P2 , . . . , the re-
duction factor above is less than that of the golden section method. In other 
words, the Fibonacci method is better than the golden section method in that 
it gives a smaller final uncertainty range. 

We point out that there is an anomaly in the final iteration of the Fibonacci 
search method, because 

Recall that we need two intermediate points at each stage, one that comes 
from a previous iteration and another that is a new evaluation point. However, 
with PN = 1/2, the two intermediate points coincide in the middle of the 
uncertainty interval, and therefore we cannot further reduce the uncertainty 
range. To get around this problem, we perform the new evaluation for the 
last iteration using ρχ = 1/2 — ε, where ε is a small number. In other words, 
the new evaluation point is just to the left or right of the midpoint of the 
uncertainty interval. This modification to the Fibonacci method is, of course, 
of no significant practical consequence. 

As a result of the modification above, the reduction in the uncertainty 
range at the last iteration may be either 

or 
1 - (pN - ε) = - + ε = —^—, 

depending on which of the two points has the smaller objective function value. 
Therefore, in the worst case, the reduction factor in the uncertainty range for 
the Fibonacci method is 

l + 2g 

FN+I 

Example 7.2 Consider the function 
f(x) = x4- Ux3 + 60x2 - 70x. 

Suppose that we wish to use the Fibonacci search method to find the value of 
x that minimizes / over the range [0,2], and locate this value of x to within 
the range 0.3. 

After N steps the range is reduced by (1 + 2g)/F/v+1 in the worst case. We 
need to choose N such that 

1 + 2ε final range 0.3 
— < . . . , = —z- = 0.15. 
.Fjv+i initial range 2 

Thus, we need 

FN+1 - ΈΪ5"· 



If we choose ε < 0.1, then N = 4 will do. 
Iteration 1. We start with 

We then compute 

F4 5 

αι= a0+ pi(b0 - a0) = -, 
5 

h = a0 + (1 - pi)(6o - «o) = τ , 

/ ( d ) = -24.34, 
/(fc) = -18.65, 
/ ( G l ) < / (6i) . 

The range is reduced to 

[a0M 0, 

Iteration 2. We have 
F3 3 

ß2 = <k> + P2(h - a0) = - , 

, 3 
t>2 = O l = T , 

/ (a 2 ) = -21.69, 
/(&2) = / ( a i ) = -24.34, 
/ (a 2 ) > /(fc), 

so the range is reduced to 

[ö2,6l] = 

Iteration 3. We compute 

1 - P 3 

«3 = b2 

1 5 
2 ' 4 

Pi = 2 
F 3 " 3 ' 

3 
4 ' 

&3 = «2 + (1 - P3)(&1 - «2) = 1, 
f(as) = f{b2) = -24.34, 
f(h) = - 2 3 , 
/ (a 3 ) < /(fts). 
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The range is reduced to 

[02,63] = 2 ' 1 

Iteration 4- We choose ε = 0.05. We have 

1 F i l 

04 = a2 + {pi - s)(b3 - a2) = 0.725, 
, 3 
04 = a 3 = - , 

/(04) = -24.27, 
/ (M = f(a3) = -24.34, 
/(a4) > f(b4). 

The range is reduced to 
[a4,63] = [0.725,1]. 

Note that b3 - a4 = 0.275 < 0.3. I 

We now turn to a proof of the optimality of the Fibonacci search method. 
Skipping the rest of this section does not affect the continuity of the presen-
tation. 

To begin, recall that we wish to prove that the values of pi,P2, · · · ,PN 
used in the Fibonacci method, where pk = 1 — F/v-fc+i/F/v-fc+2, solve the 
optimization problem 

minimize (1 - pi)(l - p2) * * · (1 - PN) 
Pk 

subject to pk+i = 1 — , k — 1 , . . . , TV — 1 
1 - Pk 

0<pk<\, fc = l , . . . ,JV. 

It is easy to check that the values of p\, p2,... above for the Fibonacci search 
method satisfy the feasibility conditions in the optimization problem above 
(see Exercise 7.4). Recall that the Fibonacci method has an overall reduction 
factor of (1 — pi) · ■ · (1 — PN) = I/.FW+1. To prove that the Fibonacci search 
method is optimal, we show that for any feasible values of p i , . . . , p^? we have 
( 1 - Ρ Ι ) · · · ( 1 - Ρ Λ Γ ) > 1 / ^ + Ι . 

It is more convenient to work with r^ = 1 — pk rather than p&. The 
optimization problem stated in terms of r^ is 

minimize 7*1 · · · r/v 

subject to 7*fc+i = 1, fc = 1 , . . . , iV — 1 
Tk 

\ < r f c < l , fc = l , . . . ,W. 
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Note that if Τ Ί , Γ 2 , . . . satisfy r^+i — ^— 1, then rk > 1/2 if and only if 
rk+i < 1· Also, rk > 1/2 if and only if Tk-i < 2/3 < 1. Therefore, in the 
constraints above, we may remove the constraint r^ < 1, because it is implied 
implicitly by rk > 1/2 and the other constraints. Therefore, the constraints 
above reduce to 

nfe+i = l, fe = i , . . . , J V - i , 

rk 

rk > ^ k = l,...,N. 

To proceed, we need the following technical lemmas. In the statements of 
the lemmas, we assume that 7*1, Γ2,.. . is a sequence that satisfies 

rk+i = 1, 
rk 

L e m m a 7.1 For k>2, 

rk = ~ 

Proof. We proceed by induction. 

r\ 

rk > 2> fc = l , 2 , . 

Fk-2 - Fk-in 

Fk-3 - Fk_2ri' 

For A: = 2 we have 

1 - n _ F0- Fin 

r i F _ i - F 0 r i 

D 

and hence the lemma holds for k = 2. Suppose now that the lemma holds for 
k > 2. We show that it also holds for k + 1. We have 

rk+i = 1 
rk 

= -F f c-3 + Fk-2ri _ Ffc-2 - Ffc_iri 
Fk-2 - Fk-in Fk-2 ~ Fk-in 
Ffc-2 + Fk-s ~ (Fk-i + Ffc_2)ri 

Fk-2 - Fk-in 
iVx - Fkn 

Fk-2 - Fk-iri 

where we used the formation law for the Fibonacci sequence. 

Lemma 7.2 For k>2, 

( - l ) f c ( F f c _ 2 - F f c _ 1 r 1 ) > 0 . 

D 
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Proof. We proceed by induction. For k = 2, we have 

( - l ) 2 ( F 0 - F 1 r i ) = l - n . 

But r i = 1/(1 + r2) < 2/3, and hence 1 — r\ > 0. Therefore, the result holds 
for k = 2. Suppose now that the lemma holds for k > 2. We show that it also 
holds for k -f 1. We have 

( - l ) * + 1 ( ^ - i - Fkn) = (-l)*+V f c + i — ( F f c - i - F f cn). 

By Lemma 7.1, 
Fk-i - Fkn 

rk+i ■■ Ffc_2 - Ffc-in 
Substituting for l / r^+i, we obtain 

(-l) f c + 1(F f c_! - F f cn) = r f c + 1(-l) f c(F f c_2 - F ^ n ) > 0, 

which completes the proof. 

Lemma 7.3 For k>2, 

\&+ι«. ^ / i\fc+i Fk ( - l )* + 1 ri > (-1)* 
Fk+i 

D 

Proof. Because rk+\ = ^r— 1 and /> > | , we have r^+i < 1. Substituting 
for 7>+i from Lemma 7.1, we get 

Ffc- i -Ffcn < ] L 

Ffc_2 - Ffc-in 

Multiplying the numerator and denominator by (—l)k yields 

(-l)k+1(Fk-i-Fkn) 
(-l)k(Fk.2-Fk.iri) 

< 1. 

By Lemma 7.2, (—l)k(Fk-2 — ^fc-i^i) > 0, and therefore we can multiply 
both sides of the inequality above by (—l)k(Fk-2 — -Ffc-i^i) to obtain 

( - ΐ )* + 1 (Ρ*_! - Fkn) < (-i)*(F f c_2 - Ffc-xn). 

Rearranging yields 

( -1 )* + 1 (^_χ + Fk)n > (-l) fe+1(F fc_2 + Ffc_i). 

Using the law of formation of the Fibonacci sequence, we get 

( - l ) f e + 1 F f c + 1 n > (-l) f e + 1F f c , 
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which upon dividing by Ffc+i on both sides gives the desired result. I 

We are now ready to prove the optimality of the Fibonacci search method 
and the uniqueness of this optimal solution. 

Theorem 7.1 Let Γχ,... ,ΓΝ, N > 2, satisfy the constraints 

r-fc+i = 1, k = 1 , . . . , 7 V - 1 , 

rk> g, k = l,...,N. 

Then, 

Furthermore, 

1 
ri--rN > 

ri--rN 

FN+I 

1 

z/ and only ifrk — Fjsf-k+i/FN-k+2, k = 1 , . . . , N. In other words, the values 
of r i , . . . , ΓΑΓ ^sed m £Ae Fibonacci search method form a unique solution to 
the optimization problem. D 

Proof. By substituting expressions for η , . . . , r # from Lemma 7.1 and per-
forming the appropriate cancellations, we obtain 

ri · · · rN = (-l)N(FN-2 - FN-iri) = (-l)NFN-2 + FN^-I^+W 

Using Lemma 7.3 yields 

ri · · · rN > (-l)NFN-2 + FN^(-1)N^^-

— ( _ 1 ) (^V-2^V+i - FN-iFN)— . 

By Exercise 7.5, it is readily checked that the following identity holds: 
{-1)N(FN.2FN+1 - FN^FN) = 1. Hence, 

T\ --rN > — . 

From the above we see that 
1 

ri--rN 
FN+I 

if and only if 
FN 

FN+I 

This is simply the value of r\ for the Fibonacci search method. Note that 
fixing ri determines r2,..., r^ uniquely. I 

For further discussion on the Fibonacci search method and its variants, see 
[133]. 
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7.4 Bisection Method 

Again we consider finding the minimizer of an objective function / : R —> R 
over an interval [αο>&ο]· As before, we assume that the objective function / 
is unimodal. Further, suppose that / is continuously differentiate and that 
we can use values of the derivative / ' as a basis for reducing the uncertainty 
interval. 

The bisection method is a simple algorithm for successively reducing the 
uncertainty interval based on evaluations of the derivative. To begin, let 
χ(°) = (α0 + 6o)/2 be the midpoint of the initial uncertainty interval. Next, 
evaluate f'(x^). If f'(x^) > 0, then we deduce that the minimizer lies to 
the left of χ(°\ In other words, we reduce the uncertainty interval to [ao, x^]. 
On the other hand, if f'(x^) < 0, then we deduce that the minimizer lies to 
the right of χ(°\ In this case, we reduce the uncertainty interval to [x^°\6o]· 
Finally, if f'(x^) = 0, then we declare x^ to be the minimizer and terminate 
our search. 

With the new uncertainty interval computed, we repeat the process iter-
atively. At each iteration k, we compute the midpoint of the uncertainty 
interval. Call this point x^k\ Depending on the sign of f'{x^) (assuming 
that it is nonzero), we reduce the uncertainty interval to the left or right of 
x^k\ If at any iteration k we find that f'{x^) = 0, then we declare x^ to 
be the minimizer and terminate our search. 

Two salient features distinguish the bisection method from the golden sec-
tion and Fibonacci methods. First, instead of using values of / , the bisection 
methods uses values of / ' . Second, at each iteration, the length of the uncer-
tainty interval is reduced by a factor of 1/2. Hence, after N steps, the range 
is reduced by a factor of (1/2)N . This factor is smaller than in the golden 
section and Fibonacci methods. 

Example 7.3 Recall Example 7.1 where we wish to find the minimizer of 

f(x) = x4- Ux3 + 60x2 - 70x 

in the interval [0,2] to within a range of 0.3. The golden section method 
requires at least four stages of reduction. If, instead, we use the bisection 
method, we would choose N so that 

(0.5)" < 0.3/2. 

In this case, only three stages of reduction are needed. I 

7.5 Newton's Method 

Suppose again that we are confronted with the problem of minimizing a func-
tion / of a single real variable x. We assume now that at each measurement 
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point x^ we can determine / ( x ^ ) , / ' ( x ^ ) , and f"(x^k>)). We can fit a 
quadratic function through x^ that matches its first and second derivatives 
with that of the function / . This quadratic has the form 

q{x) = /(x ( / c )) + f'{x{k))(x - x{k)) + y,f(x{k))(x - x(fc))2. 

Note that q(xW) = /(x<fc>), q'(x^) = / '(x ( f c )), and q"{x^) = /"(χ(*>). 
Then, instead of minimizing / , we minimize its approximation q. The first-
order necessary condition for a minimizer of q yields 

0 = q\x) = /'(*<*>) + f"(xW)(x - *<*>). 

Setting x = x^k+1\ we obtain 

f"{xwy 

Example 7.4 Using Newton's method, we will find the minimizer of 

f(x) = -x2 - s i n x . 

Suppose that the initial value is x^ =0 .5 , and that the required accuracy is 
e = 10~5, in the sense that we stop when |x(fc+1) — x^\ < e. 

We compute 

f'(x) — x — cosx, f"{x) — 1 + sinx. 

Hence, 

(Λ\ ~ ~ 0.5 — cos0.5 
xW = 0.5 - — — 

1 +s in 0.5 
-0.3775 = ° · 5 - 1.479 

= 0.7552. 

Proceeding in a similar manner, we obtain 

*<">= *<« - & Ά =X"-°-^ =0.7391, 
f"(xW) 1.685 

Ί - 5 



118 ONE-DIMENSIONAL SEARCH METHODS 

x(k) X(k+1) 

Figure 7.6 Newton's algorithm with f"{x) > 0. 

Note that \x^ - x^\ < e = ΗΓ 5 . Furthermore, / ' (x ( 4 ) ) = -8 .6 x 10"6 « 0. 
Observe that f"(x^) = 1.673 > 0, so we can assume that x* « x^ is a strict 
minimizer. I 

Newton's method works well if f"(x) > 0 everywhere (see Figure 7.6). 
However, if f"(x) < 0 for some x, Newton's method may fail to converge to 
the minimizer (see Figure 7.7). 

Newton's method can also be viewed as a way to drive the first derivative 
of / to zero. Indeed, if we set g(x) = / ; (x) , then we obtain a formula for 
iterative solution of the equation g(x) = 0: 

x(fc+1) = x (*0 _ g(x{k)) 
g'{x(k))' 

In other words, we can use Newton's method for zero finding. 

X(k+1) x(k) x* 

Figure 7.7 Newton's algorithm with f"(x) < 0. 
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Figure 7.8 Newton's method of tangents. 

Example 7.5 We apply Newton's method to improve a first approximation, 
χ(°) = 12, to the root of the equation 

g(x) = x3 - 12.2x2 + lAbx + 42 = 0. 

We have g'{x) = 3x2 - 24Ax + 7.45. 
Performing two iterations yields 

cW = 12 102.6 

,(2) = 11.33 

146.65 
14.73 

116.11 

11.33, 

11.21. 

Newton's method for solving equations of the form g(x) = 0 is also referred 
to as Newton's method of tangents. This name is easily justified if we look at 
a geometric interpretation of the method when applied to the solution of the 
equation g(x) = 0 (see Figure 7.8). 

If we draw a tangent to g(x) at the given point x^k\ then the tangent line 
intersects the x-axis at the point x^k^l\ which we expect to be closer to the 
root x* of g(x) = 0. Note that the slope of g(x) at x^ is 

9<(x<'>)= X*"'» 

Hence, 

,(*+!) 

X 

r(*0 

(k) _ ~(fc+i) 

g(x{k)) 
g'(x(k))' 

Newton's method of tangents may fail if the first approximation to the root 
is such that the ratio g(x^)/g'(x^) is not small enough (see Figure 7.9). 
Thus, an initial approximation to the root is very important. 
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Figure 7.9 Example where Newton's method of tangents fails to converge to the 
root x* of g(x) = 0. 

7.6 Secant Method 

Newton's method for minimizing / uses second derivatives of / : 

x{k+i) = x(k) 
/ " ( # ) ) ' 

If the second derivative is not available, we may attempt to approximate it 
using first derivative information. In particular, we may approximate fff(x^) 
above with 

/ ' ( χ ( * ) ) - / ' ( χ ( * - ΐ ) ) 

x(k) _ x(k-i) 

Using the foregoing approximation of the second derivative, we obtain the 
algorithm 

~(k) „(k-l) 
x(fe+i) = XW 

x(k) _ x(k-l) 

/ / ( α : ( * ) ) _ / / ( χ ( * - ΐ ) ) · 

called the secant method. Note that the algorithm requires two initial points 
to start it, which we denote x^~^ and x^°\ The secant algorithm can be 
represented in the following equivalent form: 

( f c + 1 ) _ f (X(fc))X(fc- l )_^( x(fc- l ) ) x(fc) 
X ~ / , ( x ( f c ) ) - / , ( x ( f e - 1 ) ) 

Observe that, like Newton's method, the secant method does not directly 
involve values of f(x^). Instead, it tries to drive the derivative / ' to zero. 
In fact, as we did for Newton's method, we can interpret the secant method 
as an algorithm for solving equations of the form g(x) = 0. Specifically, the 
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x(k+2) x(k+1) x(k) x(k-1) 

Figure 7.10 Secant method for root finding. 

secant algorithm for finding a root of the equation g(x) = 0 takes the form 

„(fc) ~(fc-i) 
x(k+i) _ (fc) _ x x g(x(k)) 

g(xW) - g(xV°-»)9{X h 

or, equivalently, 

(fc+i) = 9(χΜ)χ«-ν - g(x(k-V)xW 
X g(XW) - gixV*-») 

The secant method for root finding is illustrated in Figure 7.10 (compare 
this with Figure 7.8). Unlike Newton's method, which uses the slope of g to 
determine the next point, the secant method uses the "secant" between the 
(k — l) th and kth points to determine the (k + l)th point. 

Example 7.6 We apply the secant method to find the root of the equation 

g(x) = x3 - 12.2x2 + 7.45x + 42 = 0. 

We perform two iterations, with starting points χ(~^ = 13 and x^ = 12. 
We obtain 

χΜ = 11.40, 

x& = 11.25. 

Example 7.7 Suppose that the voltage across a resistor in a circuit decays 
according to the model V(i) = e~Rt, where V(i) is the voltage at time t and 
R is the resistance value. 
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Given measurements Vi , . . . , Vn of the voltage at times t i , . . . , tn> respec-
tively, we wish to find the best estimate of R. By the best estimate we mean 
the value of R that minimizes the total squared error between the measured 
voltages and the voltages predicted by the model. 

We derive an algorithm to find the best estimate of R using the secant 
method. The objective function is 

/(Ä) = f>-e-«*)a. 

Hence, we have 

/ , ( Ä ) = 2 ^ ( V - - e - Ä t * ) e - Ä t * i < . 
2 = 1 

The secant algorithm for the problem is 

Rk — Rk-i 
-Rfc+l = Rk 

Σ Γ = ι ( ^ - e-Ä**<)e~Äfcti*i - (Vi ~ e-Kx-^e-Kx-iHi 
n 

Y^(Vi-e-RkU)e-Rktiti. x 
i= l 

Xv 

For further reading on the secant method, see [32]. Newton's method 
and the secant method are instances of quadratic fit methods. In Newton's 
method, x(fc+1) is the stationary point of a quadratic function that fits / ' and 
/ " at x^k\ In the secant method, x(fc+1) is the stationary point of a quadratic 
function that fits / ' at x^ and x^k_1\ The secant method uses only / ' (and 
not / " ) but needs values from two previous points. We leave it to the reader 
to verify that if we set χ^+^ to be the stationary point of a quadratic func-
tion that fits / at x^k\ χ^~λ\ and x^k~2\ we obtain a quadratic fit method 
that uses only values of / : 

(fc+i) = W ( * ( f c ) ) + a20/(x( fc-1)) + σ01/(χ(*-2>) 
2(ίΐ2/(*<*>) + <W(z ( f c-1 }) + W ( z ( f c - 2 ) ) ) 

where σ^ = (x ( / c - i )) 2 - (x ( fc~ j ))2 and <% = x^k~^ - x^k~^ (see Exercise 7.9) 
This method does not use / ' or / " , but needs values of / from three previous 
points. Three points are needed to initialize the iterations. The method is 
also sometimes called inverse parabolic interpolation. 

An approach similar to fitting (or interpolation) based on higher-order 
polynomials is possible. For example, we could set x^k+1^ to be a stationary 
point of a cubic function that fits / ' at x^k\ x^k~x\ and x^k~2\ 

It is often practically advantageous to combine multiple methods, to over-
come the limitations in any one method. For example, the golden section 
method is more robust but slower than inverse parabolic interpolation. Brent's 
method combines the two [17], resulting in a method that is faster than the 
golden section method but still retains its robustness properties. 
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► X 
Xo Xi X2 X3 

Figure 7.11 An illustration of the process of bracketing a minimizer. 

7.7 Bracketing 

Many of the methods we have described rely on an initial interval in which the 
minimizer is known to lie. This interval is also called a bracket, and procedures 
for finding such a bracket are called bracketing methods. 

To find a bracket [a, b] containing the minimizer, assuming unimodality, it 
suffices to find three points a < c < b such that /(c) < / (a) and /(c) < f(b). A 
simple bracketing procedure is as follows. First, we pick three arbitrary points 
xo < xi < #2- If / (# i ) < /(#o) and f(x\) < / ( ^ ) , then we are done—the 
desired bracket is [#0^2]· If not, say f(xo) > f(xi) > ffa), then we pick a 
point xs > X2 and check if /(#2) < /(#3)· If it holds, then again we are done— 
the desired bracket is [χι,Χβ]. Otherwise, we continue with this process until 
the function increases. Typically, each new point chosen involves an expansion 
in distance between successive test points. For example, we could double the 
distance between successive points, as illustrated in Figure 7.11. An analogous 
process applies if the initial three points are such that f(xo) < / (# i ) < /(#2)· 

In the procedure described above, when the bracketing process terminates, 
we have three points Xfc-2, #fc-i, and Xk such that f(xk-i) < f{xk-2) and 
f(xk-i) < f(xk)· The desired bracket is then [xfc_2,Xfc], which we can then 
use to initialize any of a number of search methods, including the golden 
section, Fibonacci, and bisection methods. Note that at this point, we have 
already evaluated /(χ^_2), f(xk-i), and f(xk)· If function evaluations are 
expensive to obtain, it would help if the point Xk-i inside the bracket also 
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coincides with one of the points used in the search method. For example, 
if we intend to use the golden section method, then it would help if Xk-ι ~ 
Xk-2 — p{%k — Xk-2), where p = (3 — \/5)/2. In this case, Xk-i would be 
one of the two points within the initial interval used in the golden section 
method. This is achieved if each successive point Xk is chosen such that 
Xk = Xk-i + (2 — p)(xk-i — Xk-2)- In this case, the expansion in the distance 
between successive points is a factor 2 — p « 1.618, which is less than double. 

7.8 Line Search in Multidimensional Optimization 

One-dimensional search methods play an important role in multidimensional 
optimization problems. In particular, iterative algorithms for solving such 
optimization problems (to be discussed in the following chapters) typically 
involve a line search at every iteration. To be specific, let / : W1 —► R 
be a function that we wish to minimize. Iterative algorithms for finding a 
minimizer of / are of the form 

xV<+»=xW+akdfik\ 

where x^ is a given initial point and a^ > 0 is chosen to minimize 

0fc(a) = /(*<*>+ad ( f c )). 

The vector er ' is called the search direction and α& is called the step size. 
Figure 7.12 illustrates a line search within a multidimensional setting. Note 
that choice of ctk involves a one-dimensional minimization. This choice ensures 
that under appropriate conditions, 

/(*( f c + i)) < /(»<*>). 

Any of the one-dimensional methods discussed in this chapter (including 
bracketing) can be used to minimize </>&. We may, for example, use the secant 
method to find α&. In this case we need the derivative of (j)k, which is 

0'fc(a) = d<*>T V/(a><fc) + ad ( fc )). 

This is obtained using the chain rule. Therefore, applying the secant method 
for the line search requires the gradient V / , the initial line-search point 
x^k\ and the search direction d> ' (see Exercise 7.11). Of course, other one-
dimensional search methods may be used for line search (see, e.g., [43] and 
[88]). 

Line-search algorithms used in practice involve considerations that we have 
not yet discussed thus far. First, determining the value of α& that exactly 
minimizes 4>k may be computationally demanding; even worse, the minimizer 
of φκ may not even exist. Second, practical experience suggests that it is 
better to allocate more computational time on iterating the multidimensional 
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Figure 7.12 Line search in multidimensional optimization. 

optimization algorithm rather than performing exact line searches. These 
considerations led to the development of conditions for terminating line-search 
algorithms that would result in low-accuracy line searches while still securing 
a sufficient decrease in the value of the / from one iteration to the next. The 
basic idea is that we have to ensure that the step size ctk is not too small or 
too large. 

Some commonly used termination conditions are as follows. First, let ε G 
(0,1), 7 > 1, and η G (ε, 1) be given constants. The Armijo condition ensures 
that Qfc is not too large by requiring that 

0fc(a fc)<0fc(O)+ea fc^(O). 

Further, it ensures that a& is not too small by requiring that 

0*(7<*fc) > 0*(O) + e7a*0!b(O). 

The Goldstein condition differs from Armijo in the second inequality: 

<£*(<**) >^(Ο)+ηα*0*(Ο) . 

The first Armijo inequality together with the Goldstein condition are often 
jointly called the Armijo-Goldstein condition. The Wolfe condition differs 
from Goldstein in that it involves only (fr'k: 

4>'k(ak) > ηφ'^0). 
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A stronger variation of this is the strong Wolfe condition: 

Wk{ak)\<nWkm-

A simple practical (inexact) line-search method is the Armijo backtracking 
algorithm, described as follows. We start with some candidate value for the 
step size α&. If this candidate value satisfies a prespecified termination condi-
tion (usually the first Armijo inequality), then we stop and use it as the step 
size. Otherwise, we iteratively decrease the value by multiplying it by some 
constant factor r G (0,1) (typically r = 0.5) and re-check the termination 
condition. If a^0^ is the initial candidate value, then after m iterations the 
value obtained is α& = τ^α^. The algorithm backtracks from the initial 
value until the termination condition holds. In other words, the algorithm 
produces a value for the step size of the form α^ = rma^ with m being the 
smallest value in {0,1,2, . . .} for which α^ satisfies the termination condition. 

For more information on practical line-search methods, we refer the reader 
to [43, pp. 26-40], [96, Sec. 10.5], [11, App. C], [49], and [50].x 

EXERCISES 

7.1 Suppose that we have a unimodal function over the interval [5,8]. Give 
an example of a desired final uncertainty range where the golden section 
method requires at least four iterations, whereas the Fibonacci method re-
quires only three. You may choose an arbitrarily small value of ε for the 
Fibonacci method. 

7.2 Let f(x) = x2 + 4cosx, x G i We wish to find the minimizer x* of / 
over the interval [1,2]. (Calculator users: Note that in cosx, the argument x 
is in radians.) 

a. Plot f(x) versus x over the interval [1,2]. 

b . Use the golden section method to locate x* to within an uncertainty of 
0.2. Display all intermediate steps using a table: 

Iteration k 

1 
2 

CLk 

? 

? 

bk 

? 

? 

/K) 
? 

? 

/(**) 
? 

? 

New uncertainty interval 

[?,?] 
[?,?] 

c. Repeat part b using the Fibonacci method, with ε = 0.05. Display all 
intermediate steps using a table: 

1We thank Dennis M. Goodman for furnishing us with references [49] and [50]. 
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Iteration k 

1 
2 

Pk 
? 

? 

Q>k 

? 

? 

&fc 
? 

? 

Hak) 
? 

? 

/(M 
? 

? 

New uncertainty interval 

[?,?] 
[?,?] 

d. Apply Newton's method, using the same number of iterations as in part 
b, with χ(°) = 1. 

7.3 Let / (#) = 8e1 - a : + 71og(x), where "log" represents the natural logarithm 
function. 

a. Use MATLAB to plot f(x) versus x over the interval [1,2], and verify 
that / is unimodal over [1,2]. 

b . Write a simple MATLAB program to implement the golden section 
method that locates the minimizer of / over [1,2] to within an uncertainty 
of 0.23. Display all intermediate steps using a table as in Exercise 7.2. 

c. Repeat part b using the Fibonacci method, with ε = 0.05. Display all 
intermediate steps using a table as in Exercise 7.2. 

7.4 Suppose that p i , . . . ,p ;v are the values used in the Fibonacci search 
method. Show that for each k = 1 , . . . , AT, 0 < pk < 1/2, and for each 
fc = l , . . . , 7 V - l , 

7.5 Show that if F 0 , F i , . . . is the Fibonacci sequence, then for each k = 
2 , 3 , . . . , 

^fc-2^fc+i - Fk-\Fk = (-1) . 

7.6 Show that the Fibonacci sequence can be calculated using the formula 

7.7 Suppose that we have an efficient way of calculating exponentials. Based 
on this, use Newton's method to devise a method to approximate log(2) [where 
"log" is the natural logarithm function]. Use an initial point of x^ = 1, and 
perform two iterations. 

7.8 Consider the problem of finding the zero of g(x) = (ex — l)/{ex + 1), 
x G R, where ex is the exponential of x. (Note that 0 is the unique zero of g.) 
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a. Write down the algorithm for Newton's method of tangents applied to 
this problem. Simplify using the identity sinha: = (ex — e~x)/2. 

b . Find an initial condition x^ such that the algorithm cycles [i.e., x^ = 
x{2) _ χ(4) _ . . . j Y O U n e e ( j n o^ explicitly calculate the initial condition; 
it suffices to provide an equation that the initial condition must satisfy. 
Hint: Draw a graph of g. 

c. For what values of the initial condition does the algorithm converge? 

7.9 Derive a one-dimensional search (minimization) algorithm based on 
quadratic fit with only objective function values. Specifically, derive an algo-
rithm that computes x^fc+1) based on x^k\ χ^~λ\ x^k~2\ f(x^), / ( x ^ - 1 ^ ) , 
and f{x(k-V). 
Hint: To simplify, use the notation σ^ = (x^k~^)2 — (x^k~^)2 and Sij = 
x{k-%) _ x(k-j)^ Y O U might alSo find it useful to experiment with your algo-
rithm by writing a MATLAB program. Note that three points are needed to 
initialize the algorithm. 

7.10 The objective of this exercise is to implement the secant method using 
MATLAB. 

a. Write a simple MATLAB program to implement the secant method to 
locate the root of the equation g(x) = 0. For the stopping criterion, use 
the condition |x^+ 1^ — x^\ < \χ(^\ε, where ε > 0 is a given constant. 

b . Let g(x) = (2x - l ) 2 + 4(4 - 1024x)4. Find the root of g(x) = 0 using the 
secant method with χ(~^ = 0, χ^ = 1, and ε = 10~5. Also determine 
the value of g at the solution obtained. 

7.11 Write a MATLAB function that implements a line search algorithm 
using the secant method. The arguments to this function are the name of 
the M-file for the gradient, the current point, and the search direction. For 
example, the function may be called linesearch_secant and be used by the 
function call alpha=linesearch_secant( ,grad , ,x ,d) , where grad.m is the 
M-file containing the gradient, x is the starting line search point, d is the 
search direction, and alpha is the value returned by the function [which we 
use in the following chapters as the step size for iterative algorithms (see, e.g., 
Exercises 8.25 and 10.11)]. 

Note: In the solutions manual, we used the stopping criterion \d Vf(x + 
ad) | < ε\ά V/ (x) | , where ε > 0 is a prespecified number, V / is the gradient, 
x is the starting line search point, and d is the search direction. The rationale 
for the stopping criterion above is that we want to reduce the directional 
derivative of / in the direction d by the specified fraction ε. We used a value 
of ε = 10 - 4 and initial conditions of 0 and 0.001. 
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7.12 Consider using a gradient algorithm to minimize the function 

2 l l 

with the initial guess x^ = [0.8, -0 .25]T . 

a. To initialize the line search, apply the bracketing procedure in Figure 7.11 
along the line starting at x^ in the direction of the negative gradient. 
Use ε = 0.075. 

b . Apply the golden section method to reduce the width of the uncertainty 
region to 0.01. Organize the results of your computation in a table format 
similar to that of Exercise 7.2. 

c. Repeat the above using the Fibonacci method. 

/(«)=i*r 





CHAPTER 8 

GRADIENT METHODS 

8.1 Introduction 

In this chapter we consider a class of search methods for real-valued functions 
on Rn . These methods use the gradient of the given function. In our discussion 
we use such terms as level sets, normal vectors, and tangent vectors. These 
notions were discussed in some detail in Part I. 

Recall that a level set of a function / : Rn —> R is the set of points x 
satisfying f(x) = c for some constant c. Thus, a point XQ G Rn is on the level 
set corresponding to level c if f(xo) = c. In the case of functions of two real 
variables, / : R2 —> R, the notion of the level set is illustrated in Figure 8.1. 

The gradient of / at x$, denoted Vf(xo), if it is not a zero vector, is 
orthogonal to the tangent vector to an arbitrary smooth curve passing through 
Xo on the level set f(x) = c. Thus, the direction of maximum rate of increase 
of a real-valued differentiable function at a point is orthogonal to the level 
set of the function through that point. In other words, the gradient acts in 
such a direction that for a given small displacement, the function / increases 
more in the direction of the gradient than in any other direction. To prove 
this statement, recall that (V/(sc),d), ||d|| = 1, is the rate of increase of / in 

An Introduction to Optimization, Fourth Edition. 131 
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Z=f(Xi,X2) 

Figure 8.1 Constructing a level set corresponding to level c for / . 

the direction d at the point x. By the Cauchy-Schwarz inequality, 

( V / ( x ) , d ) < | | V / ( x ) | | 

because ||d|| = 1. But if d = V/(aj)/ | |V/(x) | | , then 

(v/w-Ä>-|V/(·»· 
Thus, the direction in which Vf(x) points is the direction of maximum rate 
of increase of / at x. The direction in which — V/(a?) points is the direction of 
maximum rate of decrease of / at x. Hence, the direction of negative gradient 
is a good direction to search if we want to find a function minimizer. 

We proceed as follows. Let x^ be a starting point, and consider the point 
χ(°) — a V / ( a ; ^ ) . Then, by Taylor's theorem, we obtain 

/(x<°> - aV/(*<°>)) - / (x ( 0 ) ) - α | |ν / (χ(°)) | | 2 + o{a). 

Thus, if V/(aj(°)) φ 0, then for sufficiently small a > 0, we have 

/ ( χ ( ° ) - α ν / ( ^ ) ) < / ( χ ( 0 ) ) . 

This means that the point x^ ~ Q V / ( ^ 0 ' ) is an improvement over the point 
χ(°) if We are searching for a minimizer. 

To formulate an algorithm that implements this idea, suppose that we are 
given a point x^k\ To find the next point x^k+l\ we start at x^ and move 
by an amount —afcV/(x^fc^), where α^ is a positive scalar called the step size. 
This procedure leads to the following iterative algorithm: 

x( f c+1)= a j( f c)-a f cV/(x( f c)) . 



THE METHOD OF STEEPEST DESCENT 133 

We refer to this as a gradient descent algorithm (or simply a gradient algo-
rithm). The gradient varies as the search proceeds, tending to zero as we 
approach the minimizer. We have the option of either taking very small steps 
and reevaluating the gradient at every step, or we can take large steps each 
time. The first approach results in a laborious method of reaching the mini-
mizer, whereas the second approach may result in a more zigzag path to the 
minimizer. The advantage of the second approach is possibly fewer gradi-
ent evaluations. Among many different methods that use this philosophy the 
most popular is the method of steepest descent, which we discuss next. 

Gradient methods are simple to implement and often perform well. For 
this reason, they are used widely in practical applications. For a discussion 
of applications of the steepest descent method to the computation of opti-
mal controllers, we recommend [85, pp. 481-515]. In Chapter 13 we apply a 
gradient method to the training of a class of neural networks. 

8.2 The Method of Steepest Descent 

The method of steepest descent is a gradient algorithm where the step size 
a*: is chosen to achieve the maximum amount of decrease of the objec-
tive function at each individual step. Specifically, α^ is chosen to minimize 
0fc(a) = f{x^ — aVf(x^)). In other words, 

ak = argmin/(x ( f c ) - aV/(aj(fe))). 
a>0 

To summarize, the steepest descent algorithm proceeds as follows: At each 
step, starting from the point x^k\ we conduct a line search in the direction 
—Vf(x^) until a minimizer, χ^+1\ is found. A typical sequence resulting 
from the method of steepest descent is depicted in Figure 8.2. 

Observe that the method of steepest descent moves in orthogonal steps, as 
stated in the following proposition. 

Proposition 8.1 If {x^}kLo is a steepest descent sequence for a given func-
tion f : Rn —► R, then for each k the vector x(fc+1) — x^ is orthogonal to the 
vector x^^ - x^k+l\ D 

Proof. From the iterative formula of the method of steepest descent it follows 
that 

(x(fe+1> - a.(fe),x(fc+2) - a!<fc+1>) = afcafc+i<V/(aj<*>), V/(*(fc+1>)>. 

To complete the proof it is enough to show that 
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x ( ° ) ^ CQ>CI>C2>C3 

Figure 8.2 Typical sequence resulting from the method of steepest descent. 

To this end, observe that α^ is a nonnegative scalar that minimizes φΐζ{θί) = 
f(x^ — a\7f(x^)). Hence, using the FONC and the chain rule gives us 

= V/(*<*> - akVf(x^))T(-Vf(x^)) 

= - ( V / ( ^ t + 1 ) ) , V / ( x » ) } , 

which completes the proof. I 

The proposition above implies that Vf(x^) is parallel to the tangent plane 
to the level set {f(x) = /(a^fc+1^)} at χ^+1\ Note that as each new point is 
generated by the steepest descent algorithm, the corresponding value of the 
function / decreases in value, as stated below. 

Proposition 8.2 If{x^}^=0 is the steepest descent sequence for f : Rn —> R 
and i / V / ( » W ) φ 0, then /{x^1^ < f{x{k)). □ 

Proof. First recall that 

x(fc+i)= a . (fc)_ a f c V /(x( f c)) , 

where a^ > 0 is the minimizer of 

0fc(a) = /(*<*>-aV/(*<*>)) 

over all a: > 0. Thus, for a > 0, we have 
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By the chain rule, 

44(0) = ^ ( 0 ) = - ( V / ( * W - 0V/(*( f e))))TV/(*W) = - | | V / ( x W ) | | 2 < 0 

because V / ( a j ^ ) φ 0 by assumption. Thus, </4(0) < 0 and this implies that 
there is an ä > 0 such that (j>k(0) > 0&(α) for all a G (0, ä]. Hence, 

/ (α^ + 1 >) = 0fc(afc) < <t>k{a) < <j>k(0) = /(x<*>), 

which completes the proof. I 

In Proposition 8.2, we proved that the algorithm possesses the descent 
property: /(x( fc+1)) < f(x^) if V / ( x ^ ) Φ 0. If for some fc, we have 
V/(x ( f c )) = 0, then the point x^ satisfies the FONC. In this case, a?(fc+1> = 
χ(*0. We can use the above as the basis for a stopping (termination) criterion 
for the algorithm. 

The condition V/(ic^+ 1^) = 0, however, is not directly suitable as a practi-
cal stopping criterion, because the numerical computation of the gradient will 
rarely be identically equal to zero. A practical stopping criterion is to check 
if the norm | | V / ( x ^ ) | | of the gradient is less than a prespecified threshold, 
in which case we stop. Alternatively, we may compute the absolute difference 
|/(;r(fc+1)) — f(x^)\ between objective function values for every two succes-
sive iterations, and if the difference is less than some prespecified threshold, 
then we stop; that is, we stop when 

|/(X(*+D) - /(χ(*))| < ε, 

where ε > 0 is a prespecified threshold. Yet another alternative is to compute 
the norm ||x^fc+1^ — x^\\ of the difference between two successive iterates, 
and we stop if the norm is less than a prespecified threshold: 

\\χν°+ν-χΜ\\<ε. 

Alternatively, we may check "relative" values of the quantities above; for 
example, 

| / ( « ( f c + 1 ) ) - / ( g ( f c ) ) | ^ 

\f(xW)\ 
or 

||x(fc+i)_a.(*0|| 

P̂ l <£ 

The two (relative) stopping criteria above are preferable to the previous (abso-
lute) criteria because the relative criteria are "scale-independent." For exam-
ple, scaling the objective function does not change the satisfaction of the crite-
rion |/(a?(fc+1))-/(;c(fc))|/|/(x(fc))| < e. Similarly, scaling the decision variable 
does not change the satisfaction of the criterion ||£c^+1^ — aj(fe)||/||ic(fc))|| < e. 
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To avoid dividing by very small numbers, we can modify these stopping cri-
teria as follows: 

| / ( g < f c + 1 > ) - / ( * < * > ) ! 

max{l, |/(*<*>)|} 
or 

||aj(*+i)_a.(fc)|| 
< ε. 

max{l, ||x(fc)||} 
Note that the stopping criteria above are relevant to all the iterative algo-
rithms we discuss in this part. 
Example 8.1 We use the method of steepest descent to find the minimizer 
of 

f(xi,X2,xs) = (xi ~ 4)4 + (x2 - 3)2 + 4(x3 + 5)4. 
The initial point is x^ = [4,2, — 1]T . We perform three iterations. 

We find that 

V/ (* ) = [4(xi - 4)3,2(x2 - 3), 16(x3 + 5)3]T . 

Hence, 
V/ (x ( 0 ) ) = [0,-2,1024]T . 

To compute x^\ we need 

a0 = argmin/(x (°) - aV/ (x ( 0 ) ) ) 

= argmin(0 + (2 + 2a - 3)2 + 4 ( - l - 1024a + 5)4) 
a>0 

= argmin</>o(a). 
a>0 

Using the secant method from Section 7.6, we obtain 

a0 = 3.967 x 10 - 3 . 

For illustrative purpose, we show a plot of φο(α) versus a in Figure 8.3, 
obtained using MATLAB. Thus, 

x{l) = x{0) - a 0 V/(x ( 0 ) ) = [4.000,2.008, -5.062]T . 

To find x^2\ we first determine 

V/ (« ( 1 ) ) = [0.000,-1.984,-0.003875]T. 

Next, we find a i , where 

a i = argmin(0 + (2.008 + 1.984a - 3)2 + 4(-5.062 + 0.003875a + 5)4) 
a>0 

= arg min 0i (a). 
a>0 
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Φο(α) 
7000 

0.002 0.004 0.006 0.008 
a 

0.01 

Figure 8.3 Plot of φο(α) versus a. 

Φΐ(α) 

Figure 8.4 Plot of φι(α) versus a. 
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φ2(α) 
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α 

Figure 8.5 Plot of φι (a) versus a. 

Using the secant method again, we obtain OL\ = 0.5000. Figure 8.4 depicts a 
plot of φι(α) versus a. Thus, 

XW = a . ( i ) _ α ι ν / ( χ ( 1 ) ) = [4.000,3.000,-5.060]T. 

To find χ(3\ we first determine 

V/(;z (2 )) = [0.000,0.000,-0.003525]T 

and 

a2 = argmin(0.000 + 0.000 + 4(-5.060 + 0.003525a + 5)4) 
a>0 

= arg min 02(a). 
α>0 

We proceed as in the previous iterations to obtain a2 = 16.29. A plot of φ2(θί) 
versus a is shown in Figure 8.5. 

The value of x^ is 

x ( 3 ) = [4.000,3.000,-5.002]T. 

Note that the minimizer of / is [4 ,3 , -5] T , and hence it appears that we 
have arrived at the minimizer in only three iterations. The reader should be 
cautioned not to draw any conclusions from this example about the number 
of iterations required to arrive at a solution in general. 

It goes without saying that numerical computations, such as those in this 
example, are performed in practice using a computer (rather than by hand). 
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The calculations above were written out explicitly, step by step, for the pur-
pose of illustrating the operations involved in the steepest descent algorithm. 
The computations themselves were, in fact, carried out using a MATLAB 
program (see Exercise 8.25). I 

Let us now see what the method of steepest descent does with a quadratic 
function of the form 

f(x) = -xTQx - bTx, 

where Q G R n X n is a symmetric positive definite matrix, 6 G Rn , and x G M.n. 
The unique minimizer of / can be found by setting the gradient of / to zero, 
where 

V/ (x ) = Qx - 6, 

because D (xTQx) = xT(Q + QT) = 2xTQ, and D(bTx) = bT. There is 
no loss of generality in assuming Q to be a symmetric matrix. For if we are 
given a quadratic form xT Ax and Αφ A , then because the transposition 
of a scalar equals itself, we obtain 

(xT Ax)T = xT ATx — xT Ax. 

Hence, 

χγΑχ=1-χγΑχ+1-χτΑΎχ 

= ^xT(A + AT)x 

= 2χΤ®χ· 

Note that 
(A + A T ) T = Q T = A + AT = Q. 

The Hessian of / is F(x) = Q = Q > 0. To simplify the notation we 
write gW = Vf(x^). Then, the steepest descent algorithm for the quadratic 
function can be represented as 

x<*+i>=a.(*)-afcf l<fc>, 

where 

ak = argmin/(ic(A:) - ag^) 

= arg min (\{x{k) - ag^)TQ(x^ - ag™) - (x{k) - ag^)Tb) . 

In the quadratic case, we can find an explicit formula for ak- We proceed 
as follows. Assume that g^ φ 0, for if gW = 0, then x^ = x* and the 
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g(or 

Figure 8.6 Steepest descent method applied to /(xi , X2) = x\ + %\> 

algorithm stops. Because α^ > 0 is a minimizer of 4>k(oi) = f(x^ — ag^), 
we apply the FONC to 4>k(&) to obtain 

φ',(α) = ( * « - a f l W ) T Q ( - f l W ) - bT(-g ( f e )) · 

Therefore, </>'fc(a) = 0 if agWTQgW = (x^TQ - bT)g(-k\ But 

x^TQ-bT=g^T. 

Hence, 

«fc = gWTQg(k)' 

In summary, the method of steepest descent for the quadratic takes the 
form 

where 

Example 8.2 Let 

β(*+ΐ) - xw _ g{k)Tg{k)
 (k) 

gW = Vf(x{k)) = Qx{k) -b. 

f(xi,X2) =Xi+xl-

Then, starting from an arbitrary initial point x^ G M2, we arrive at the 
solution x* = 0 G M2 in only one step. See Figure 8.6. 

However, if 
x2 

f{xux2) = y + x\, 

then the method of steepest descent shuffles ineffectively back and forth when 
searching for the minimizer in a narrow valley (see Figure 8.7). This ex-
ample illustrates a major drawback in the steepest descent method. More 
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Figure 8.7 Steepest descent method in search for minimizer in a narrow valley. 

sophisticated methods that alleviate this problem are discussed in subsequent 
chapters. I 

To understand better the method of steepest descent, we examine its con-
vergence properties in the next section. 

8.3 Analysis of Gradient Methods 

Convergence 

The method of steepest descent is an example of an iterative algorithm. This 
means that the algorithm generates a sequence of points, each calculated on 
the basis of the points preceding it. The method is a descent method because 
as each new point is generated by the algorithm, the corresponding value of 
the objective function decreases in value (i.e., the algorithm possesses the 
descent property). 

We say that an iterative algorithm is globally convergent if for any arbitrary 
starting point the algorithm is guaranteed to generate a sequence of points 
converging to a point that satisfies the FONC for a minimizer. When the 
algorithm is not globally convergent, it may still generate a sequence that 
converges to a point satisfying the FONC, provided that the initial point is 
sufficiently close to the point. In this case we say that the algorithm is locally 
convergent How close to a solution point we need to start for the algorithm 
to converge depends on the local convergence properties of the algorithm. A 
related issue of interest pertaining to a given locally or globally convergent 
algorithm is the rate of convergence; that is, how fast the algorithm converges 
to a solution point. 

In this section we analyze the convergence properties of descent gradient 
methods, including the method of steepest descent and gradient methods 
with fixed step size. We can investigate important convergence characteristics 
of a gradient method by applying the method to quadratic problems. The 
convergence analysis is more convenient if instead of working with / we deal 
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with 
V(x) = f{x) + \x*TQx* = \{χ - x*)TQ(x - x*), 

where Q = QT > 0. The solution point x* is obtained by solving Qx = 
6; that is, x* = Q~lb. The function V differs from / only by a constant 
^x*TQx*. We begin our analysis with the following useful lemma that applies 
to a general gradient algorithm. 

Lemma 8.1 The iterative algorithm 

X(k+l) = X(k) _ ^gik) 

with g^ = Qx^ — b satisfies 

y(*(fc+1)) = ( i -7*m* ( f c )) , 

where if gW = 0, then η^ = 1, and if g^ φ 0, then 

gWTQgW ^gWTg(k) N 
7fc _ akgWTQ-lg{k) \Zg(k)TQg(k) <*") ' 

D 

Proof. The proof is by direct computation. Note that if g^> = 0, then the 
desired result holds trivially. In the remainder of the proof, assume that 
g(k) φ 0. We first evaluate the expression 

K(gW)-V(g<* + 1 ) ) 
V(xW) 

To facilitate computations, let yW = x^ - x*. Then, Vfo^) = 
\y(k)rQy{k). Hence, 

ν(χ(*+!)) = i(x(fc+1> - a;')TQ(ar<fc+1> - x*) 

= \{x^ -x*- akgW)TQ(xW - x* - afcfl<*>) 

= \y{k)TQy^ - akg^QyW + \α\9^Qg^. 

Therefore, 

V(xW) - V(x(k+V) _ 2ak9W
rQyW - a2

kgWTQgW 
V{Xik)) ~ y(k)TQy(k) 

Because 
gW = QXW - b = Qx{k) _ QX* = Qy(k)^ 
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we have 

y{k)TQy^=9^TQ-l9{k\ 

g(k)TQyW=gWTgW. 

Therefore, substituting the above, we get 

y ( g W ) - y ( a ( f c + i ) ) _ gWTQgW ( g^Tg^ 
V(x(k)) ~ akg(k)TQ-^g(k) {^gWTQgik) 

■ 
Note that j k < 1 for all fc, because j k = 1 - V[x^k+^)/V(x^) and V is 

a nonnegative function. If 7/- = 1 for some fc, then V(ic(fe+1)) = 0, which is 
equivalent to x^k+1>} = x*. In this case we also have that for alH > k + 1, 
χ{ι) _ x* a n ( j ^ — 1. It turns out that 7^ = 1 if and only if either gW = 0 
or gW is an eigenvector of Q (see Lemma 8.3). 

We are now ready to state and prove our key convergence theorem for 
gradient methods. The theorem gives a necessary and sufficient condition for 
the sequence {x^} generated by a gradient method to converge to x*] that 
is, x^ —> x* or limfc^oo x^ = x*. 

Theorem 8.1 Let {x^} be the sequence resulting from a gradient algorithm 
xik+i) — x(

k) — afcgf(/c). Let 7fc be as defined in Lemma 8.1, and suppose that 
7fc > 0 for all k. Then, {x^} converges to x* for any initial condition x^ 
if and only if 

00 

J^7fc = 00. 
k=0 

D 

Proof From Lemma 8.1 we have V(x(k+^) = (1 — 7^) V(x^), from which 
we obtain 

ν(χ^)=(γ[(1-ΊΛν(χ^). 

Assume that 7^ < 1 for all fc, for otherwise the result holds trivially. Note 
that x^ —► x* if and only if V(x^) —► 0. By the equation above we see that 
this occurs if and only if Πί1ο(1 ~~ Ίί) — 0> which, in turn, holds if and only 
if Y^LQ — log(l — 7i) = 00 (we get this simply by taking logs). Note that by 
Lemma 8.1, 1 — 7$ > 0 and log(l — 7*) is well-defined [log(0) is taken to be 
—00]. Therefore, it remains to show that Σ ° ^ 0 ~~ l°s(l"" Ί%) = °° ^ a n d οη^Υ 
if 

00 

We first show that J^SoTi = °° ^ m P^ e s that Σ ^ ο — l°s(l ~~ 7») — °°. 
For this, first observe that for any x G R, x > 0, we have log(x) < x — 1 

= Tfc-
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[this is easy to see simply by plotting log(x) and x — 1 versus x]. Therefore, 
log(l - 7i) < 1 - 7i - 1 = -7», and hence - l og ( l - 7<) > 7». Thus, if 
Σ £ 0 7* = oo> t h e n clearly £ ~ 0 - log(l - 7*) = 00. 

Finally, we show that X ^ 0 — log(l — 7») = 00 implies that X]°^0 7* = °°-
We proceed by contraposition. Suppose that Σ ^ 0 ^ < °°- Then, it must 
be that 7̂  —► 0. Now observe that for x G M, x < 1 and x sufficiently 
close to 1, we have log(x) > 2(x — 1) [as before, this is easy to see simply 
by plotting log(x) and 2(x — 1) versus #]. Therefore, for sufficiently large i, 
log(l - 7<) > 2(1 - 7i - 1) = -27», which implies that - l og ( l - 7^ < 27». 
Hence, Σ ϊ ο 7 χ < oo implies that Σιίο ~ ^ β ί 1 ~ 7t) < °°-

This completes the proof. I 

The assumption in Theorem 8.1 that 7^ > 0 for all k is significant in that it 
corresponds to the algorithm having the descent property (see Exercise 8.23). 
Furthermore, the result of the theorem does not hold in general if we do not 
assume that 7^ > 0 for all A;, as shown in the following example. 

Example 8.3 We show, using a counterexample, that the assumption that 
7fc > 0 in Theorem 8.1 is necessary for the result of the theorem to hold. 
Indeed, for each k = 0 ,1 ,2 , . . . , choose otk in such a way that 72/e = —1/2 
and 72&+1 = 1/2 (we can always do this if, for example, Q = In). From 
Lemma 8.1 we have 

y(a.(2(*+D)) = (1 _ i /2)( l + 1/2)V(*<2*>) = (3/4)V(a5<2*>). 

Therefore, V(x^2k>>) -» 0. Because V{x^2k+l">) = (3/2)V{xW), we also have 
that y(x(2fc+1)) -» 0. Hence, V(x^) -> 0, which implies that ajW -> 0 (for 
all a;(0)). On the other hand, it is clear that 

A 1 

for all k. Hence, the result of the theorem does not hold if 7^ < 0 for some A;. 

■ 
Using the general theorem above, we can now establish the convergence of 

specific cases of the gradient algorithm, including the steepest descent algo-
rithm and algorithms with fixed step size. In the analysis to follow, we use 
Rayleigh's inequality, which states that for any Q = QT > 0, we have 

(Q)H«H2 < xTQx < Amax(Q)||x||2, 

where Amin(Q) denotes the minimal eigenvalue of Q and Amax(Q) denotes the 
maximal eigenvalue of Q. For Q = Q > 0, we also have 

Amin(Q ) — T 77v\"' 

^maxlW ) = T 77y\' 
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and 

Lemma 8.2 Let Q = QT > 0 be an n x n real symmetric positive definite 
matrix. Then, for any x G Rn , we have 

(Q) (xTx)2 

^ A m a x (Q) 
Amax(Q) " {xTQx)(xTQ-1x) ~ Am i n(Q) ' 

D 

Proof. Applying Rayleigh's inequality and using the properties of symmetric 
positive definite matrices listed previously, we get 

(xTx)2
 < ||x||4 _ A m a x ( Q ) 

(XTQX)(XTQ~1X) ~ XminiQ^xW^miniQ-^Wxll2 Am i n(Q) 

and 

(xTx)2
 > \\x\\4 _ Aml„(Q) 

(xTQx)(xTQ-1x) ~ Amax(Q)|| iC||2Amax(Q-1)||a ;||2 Amax(Q)· 

We are now ready to establish the convergence of the steepest descent 
method. 

Theorem 8.2 In the steepest descent algorithm, we have x^ —> x* for any 

Proof IfflfW = Ofor some A;, then x^ = x* and the result holds. So assume 
that gW ^ 0 for all k. Recall that for the steepest descent algorithm, 

Oik = 
g(k)Tg(k) 

g(k)TQg(k)' 

Substituting this expression for a^ in the formula for 7^ yields 

(g(fc>y*>)2 

lk (gWTQgW)(gWTQ~1gW)' 

Note that in this case 7/- > 0 for all k. Furthermore, by Lemma 8.2, we have 
7fc > (Amin(Q)/Amax(Q)) > 0. Therefore, we have ^fcLo^fe = °°> a n d hence 
by Theorem 8.1 we conclude that x^ —> x*. I 

Consider now a gradient method with fixed step size; that is, ctk = et G R 
for all k. The resulting algorithm is of the form 

*(*+!)= a ; « _ a f l<*). 
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D 

We refer to the algorithm above as a fixed-step-size gradient algorithm. The 
algorithm is of practical interest because of its simplicity. In particular, the 
algorithm does not require a line search at each step to determine ctk, because 
the same step size a is used at each step. Clearly, the convergence of the 
algorithm depends on the choice of a, and we would not expect the algorithm 
to work for arbitrary a. The following theorem gives a necessary and sufficient 
condition on a for convergence of the algorithm. 

Theorem 8.3 For the fixed-step-size gradient algorithm, x^ —» x* for any 
χ(°ϊ if and only if 

^max(Q) 

Proof <=: By Rayleigh's inequality we have 

Xmin(Q)9WT9W <gMTQgW < \m^Q)g{k)19(fe) 

and 

Therefore, substituting the above into the formula for 7^, we get 

Therefore, 7/- > 0 for all k, and 5 f̂cL07fc = °°· Hence, by Theorem 8.1 we 
conclude that x^ —» x*. 

=>: We use contraposition. Suppose that either a < 0 or a > 2/Amax(Q). 
Let χ(°ϊ be chosen such that x^ — x* is an eigenvector of Q corresponding 
to the eigenvalue Amax(Q). Because 

x(fc+l) = x{k) _ a(Qx{k) _ty= x(k) _ a(Qx{k) _ QX*^ 

we obtain 

x{k+l) _ χ* = x(k) _ χ* _ a(Qx{k) _ Qx*j 

= (In-aQ)(*< f c>-**) 
= (In-aQ)k+1(xW-x*) 

= ( l - a A m a x ( Q ) ) f c + 1 ( ^ ° ) - x * ) , 

where in the last line we used the property that x^ — x* is an eigenvector of 
Q. Taking norms on both sides, we get 

||χ(*+ι) - x*|| = |i _ aAm a x(Q)| f c + 1 \\x™ _ χ · | | . 
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Because a < 0 or a > 2/Amax(Q), 

| l - c * A m a x ( Q ) | > l . 

Hence, ||x(fc+1) — aj*|| cannot converge to 0, and thus the sequence {x^} does 
not converge to x*. I 

Example 8.4 Let the function / be given by 

f{X)=xAi 2fL+xTM+24. 

We wish to find the minimizer of / using a fixed-step-size gradient algorithm 

x(k+i) = x(fc) _ a V / ( x W ) i 

where a G R is a fixed step size. 
To apply Theorem 8.3, we first symmetrize the matrix in the quadratic 

term of / to get 

/ ( * ) = \xT 
8 2v^ 

2\/2 10 x + x + 24. 

The eigenvalues of the matrix in the quadratic term are 6 and 12. Hence, 
using Theorem 8.3, the algorithm converges to the minimizer for all x^ if 
and only if a lies in the range 0 < a < 2/12. I 

Convergence Rate 

We now turn our attention to the issue of convergence rates of gradient algo-
rithms. In particular, we focus on the steepest descent algorithm. We first 
present the following theorem. 

Theorem 8.4 In the method of steepest descent applied to the quadratic func-
tion, at every step k we have 

(Q) v ' ' 
D 

Proof In the proof of Theorem 8.2, we showed that 7^ > Amin(Q)/Amax(Q). 
Therefore, 

V(xW) - F(*(fc+1>) ^ Amin(Q) 
— = 7fe > V(x(k)) Amax(Q) 
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and the result follows. I 

Theorem 8.4 is relevant to our consideration of the convergence rate of the 
steepest descent algorithm as follows. Let 

r = ^ ^ = IIQIIIIQ- 1 l l , 

called the condition number of Q. Then, it follows from Theorem 8.4 that 

n*(fc+1)) < (i - 1 ) v(x^). 

The term (1 — 1/r) plays an important role in the convergence of {V(x^)} 
to 0 (and hence of {x^} to x*). We refer to (1 — 1/r) as the convergence 
ratio. Specifically, we see that the smaller the value of (1 — 1/r), the smaller 
y(#(*+!)) will be relative to V(x^), and hence the "faster" V(x^) converges 
to 0, as indicated by the inequality above. The convergence ratio (1 — 1/r) 
decreases as r decreases. If r = 1, then Amax(Q) = Amin(Q), corresponding to 
circular contours of / (see Figure 8.6). In this case the algorithm converges 
in a single step to the minimizer. As r increases, the speed of convergence of 
{V(x^)} (and hence of {x^}) decreases. The increase in r reflects that fact 
that the contours of / are more eccentric (see, e.g., Figure 8.7). We refer the 
reader to [88, pp. 238, 239] for an alternative approach to the analysis above. 

To investigate the convergence properties of {x^} further, we need the 
following definition. 

Definition 8.1 Given a sequence {x^} that converges to x*, that is, 
limfc^oo ||x(fc) — a5*|| = 0, we say that the order of convergence is p, where 
p e R, if 

If for all p > 0, 

0 < hm V T M ^ < °°-
k^oo \\xW -x*\\P 

,. ||χ(*+1> - x* hm 
fc-^oo \\x(k) -X*\\P 

then we say that the order of convergence is oo. I 

Note that in the definition above, 0/0 should be understood to be 0. 
The order of convergence of a sequence is a measure of its rate of conver-

gence; the higher the order, the faster the rate of convergence. The order of 
convergence is sometimes also called the rate of convergence (see, e.g., [96]). 
If p = 1 (first-order convergence) and limfc-+oc ||χ^+1^ — x*| | / | |a5^ —x*\\ = 1, 
we say that the convergence is sublinear. If p = 1 and l im^oo ||a;(fc+1) — 
a;*||/||aj(fc) — x*|| < 1, we say that the convergence is linear. If p > 1, we say 
that the convergence is superlinear. If p = 2 (second-order convergence), we 
say that the convergence is quadratic. 
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Example 8.5 1. Suppose that x^ = l/k and thus x^ —> 0. Then, 

|g(fc+i)| _ l/(fc + l) _ k? 

\x(V\p ~ 1/kP ~ k + 1' 

If p < 1, the sequence above converges to 0, whereas if p > 1, it grows to 
oo. If p = 1, the sequence converges to 1. Hence, the order of convergence 
is 1 (i.e., we have linear convergence). 

2. Suppose that x^ = 7fc, where 0 < 7 < 1, and thus x^ —> 0. Then, 

|„.(fc+l)| -.fc+1 

|x(fc)|p (7
fc)P J J 

If p < 1, the sequence above converges to 0, whereas if p > 1, it grows 
to 00. If p = 1, the sequence converges to 7 (in fact, remains constant at 
7). Hence, the order of convergence is 1. 

3. Suppose that x^ — 7 ^ \ where q > 1 and 0 < 7 < 1, and thus x^ —► 0. 
Then, 

u(fc+i)i ~(<7fc+1) , fc+1 fcx , . k 

\XW\P (<y(Qk))P 1 1 

If p < q, the sequence above converges to 0, whereas if p > q, it grows to 
00. If p = g, the sequence converges to 1 (in fact, remains constant at 1). 
Hence, the order of convergence is q. 

4. Suppose that x^ = 1 for all &, and thus x^ —► 1 trivially. Then, 

|s(fc+i)_l | _ 0 _ Q 

\x(k) _ I |P " OP ~ 

for all p. Hence, the order of convergence is 00. 

The order of convergence can be interpreted using the notion of the order 
symbol O, as follows. Recall that a = O(h) ("big-oh of ft") if there exists 
a constant c such that \a\ < c\h\ for sufficiently small h. Then, the order of 
convergence is at least p if 

\\x^k+V -x*\\=0(\\x{k) -χ*ψ) 

(see Theorem 8.5 below). For example, the order of convergence is at least 2 
if 

\\xtk+l)-x*\\=0(\\x{k) -x*\\2) 

(this fact is used in the analysis of Newton's algorithm in Chapter 9). 
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Theorem 8.5 Let {x^} be a sequence that converges to x*. / / 

\\x^1)^X*\\=0(\\xik)-X*\\p), 

then the order of convergence (if it exists) is at least p. □ 

Proof Let s be the order of convergence of {x^}. Suppose that 

\\χ&+ν-χ*\\=0(\\χΜ-χ*\\ρ). 

Then, there exists c such that for sufficiently large k, 

| | <Β<*+Ι )_ Χ *" 

x 
(fc) _ x*\\p 

< C . 

Hence, 

ll*«^)-**!! l l ^ ^ - ^ l l ^ w . ^ p - a 
||x(fc) - a j * | | e \\x^ -x*\\p 

<c\\x^ -x*\\p~s. 

Taking limits yields 

||aj(fc+1) - x*\\ 
lim ^ V 1 < c lim ||*(*> - * Τ " * . 

fc-^oo ||a;(*0 -x*\\s ~ fc-oo" " 
Because by definition s is the order of convergence, 

| | a ; ( * + i ) _ χ * | | 

fc^oo \\X(k) -X*\\s 

Combining the two inequalities above, we get 

c lim \\x^ -x*\\p-s>0. 
k—>oo 

Therefore, because l im^oo \\x^ — x*\\ — 0, we conclude that s > p; that is, 
the order of convergence is at least p. I 

By an argument similar to the above, we can show that if 

| | a ; ( f c + 1 ) -»* | |=o( | |« ( f c ) -a5* | | p ) , 

then the order of convergence (if it exists) strictly exceeds p. 

Example 8.6 Suppose that we are given a scalar sequence {x^} that con-
verges with order of convergence p and satisfies 

| x ( * + i ) _ 2 | Λ hm , ,Μ——-z- = 0. 
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The limit of {x^} must be 2, because it is clear from the equation that 
|x(fc+i) — 2| —► 0. Also, we see that | χ^ + 1 ) - 2| = ο(|ζ<*> - 2|3). Hence, we 
conclude that p > 3. I 

It turns out that the order of convergence of any convergent sequence can-
not be less than 1 (see Exercise 8.3). In the following, we provide an example 
where the order of convergence of a fixed-step-size gradient algorithm exceeds 
1. 

Example 8.7 Consider the problem of finding a minimizer of the function 
/ : R -> R given by 

Suppose that we use the algorithm x^k+l^ — x^ — aff(x^) with step size 
a = 1/2 and initial condition x^ = 1. (The notation / ' represents the 
derivative of / . ) 

We first show that the algorithm converges to a local minimizer of / . In-
deed, we have f'{x) = 2x — x2. The fixed-step-size gradient algorithm with 
step size a = 1/2 is therefore given by 

χ ( * + υ = χ ( * ) _ α / ' ( χ ( * ) ) = Ι(χ(*))2. 

With χ(°ϊ = 1, we can derive the expression x^ — (1/2)2 - 1 . Hence, the 
algorithm converges to 0, a strict local minimizer of / . 

Next, we find the order of convergence. Note that 

|a?(fc+1>| _ 1 
|χ(*0|2 ~ 2' 

Therefore, the order of convergence is 2. I 

Finally, we show that the steepest descent algorithm has an order of con-
vergence of 1 in the worst case; that is, there are cases for which the order of 
convergence of the steepest descent algorithm is equal to 1. To proceed, we 
will need the following simple lemma. 

Lemma 8.3 In the steepest descent algorithm, if g^ φ 0 for all k, then 
7fc = 1 if and only if g^ is an eigenvector of Q. □ 

Proof. Suppose that g^ φ 0 for all k. Recall that for the steepest descent 
algorithm, 

(gwyfc>)2 

lk (g(fc)TQg(fe))(g(fe)TQ-1g(fc))' 
Sufficiency is easy to show by verification. To show necessity, suppose that 
7fc = 1. Then, V{x^k+1^) = 0, which implies that x^k+i^> = x*. Therefore, 

x* = x{k) - akg
{k). 
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Premultiplying by Q and subtracting b from both sides yields 

0 = gW-akQgW, 

which can be rewritten as 

QgW = - l f l « 
Oik 

Hence, gW is an eigenvector of Q. I 

By the lemma, if g^ is not an eigenvector of Q, then 7& < 1 (recall that 
7fc cannot exceed 1). We use this fact in the proof of the following result on 
the worst-case order of convergence of the steepest descent algorithm. 

Theorem 8.6 Let {x^} be a convergent sequence of iterates of the steepest 
descent algorithm applied to a function f. Then, the order of convergence of 
{x^} is 1 in the worst case; that is, there exist a function f and an initial 
condition x^ such that the order of convergence of {x^} is equal to 1. D 

Proof Let / : Rn —» R be a quadratic function with Hessian Q. Assume that 
the maximum and minimum eigenvalues of Q satisfy Amax(Q) > Xmin(Q). To 
show that the order of convergence of {x^} is 1, it suffices to show that there 
exists χ(°) such that 

||a5<fc+1>-x*H > c | | x ( f c ) - x * | | 

for some c > 0 (see Exercise 8.2). Indeed, by Rayleigh's inequality, 

y ( > + D ) = i ( a ^ + 1 ) - ** ) T Q(a^ + 1 ) - x*) 

<Xm^Q)\\X(k+V-x*\\2. 

Similarly, 
V ^ k ) ) > ^ ^ l l x ( k ) _ x ^ 2 m 

2 
Combining the inequalities above with Lemma 8.1, we obtain 

Therefore, it suffices to choose x^ such that 7^ < d for some d < 1. 
Recall that for the steepest descent algorithm, assuming that g^ φ 0 for 

all fc, 7fc depends on g^ according to 

(<7 ( / c )V f c ))2 

Ik = (g(VTQg(k))(g(k)TQ-lg(k)} 
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First consider the case where n = 2. Suppose that χ(°> Φ x* is chosen such 
that χ(°ϊ — x* is not an eigenvector of Q. Then, gW = Q(x^ — x*) φ 0 is 
also not an eigenvector of Q. By Proposition 8.1, gW = (x(fc+1) —x^)/ak is 
not an eigenvector of Q for any k [because any two eigenvectors corresponding 
to Amax(Q) and Amin(Q) are mutually orthogonal]. Also, g^ lies in one of 
two mutually orthogonal directions. Therefore, by Lemma 8.3, for each k, the 
value of 7^ is one of two numbers, both of which are strictly less than 1. This 
proves the n = 2 case. 

For the general n case, let V\ and V2 be mutually orthogonal eigenvectors 
corresponding to Amax(Q) and Amin(Q). Choose x^ such that x^ —x*^0 
lies in the span of v\ and v% but is not equal to either. Note that g^ = 
Q(x^ — x*) also lies in the span of V\ and V2, but is not equal to either. 
By manipulating cc(fc+1) = x^ — akg^ as before, we can write </(fc+1) = 
(I — OLkQ)g^'. Any eigenvector of Q is also an eigenvector of I — a^Q. 
Therefore, gW lies in the span of v\ and v2 for all k; that is, the sequence 
{g^} is confined within the two-dimensional subspace spanned by v\ and 
V2. We can now proceed as in the n = 2 case. I 

In the next chapter we discuss Newton's method, which has order of con-
vergence at least 2 if the initial guess is near the solution. 

E X E R C I S E S 

8.1 Perform two iterations leading to the minimization of 

/ O i , x 2 ) = xi + 2 X 2 + 9Xi + x 2 + 3 

using the steepest descent method with the starting point x^ = 0. Also 
determine an optimal solution analytically. 

8.2 Let {x^} be a sequence that converges to cc*. Show that if there exists 
c > 0 such that 

| | ^ + 1 ) _ χ * | | >c\\xW-X*\\* 

for sufficiently large /c, then the order of convergence (if it exists) is at most 
p. 

8.3 Let {x^} be a sequence that converges to x*. Show that there does not 
exist p < 1 such that 

b m ' - ^ " - - ; ' > t t 
fc-+oo \\x(k) -X*\\P 

8.4 Consider the sequence {x^} given by x^ = 2 2 . 
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a. Write down the value of the limit of {x^}. 

b . Find the order of convergence of {x^}. 

8.5 Consider the two sequences {x^} and {y^} defined iteratively as fol-
lows: 

x(k+i)=ax(k)^ 

where a G R, b G R, 0 < a < 1, b > 1, χ^ φ 0, y^ φ 0, and \y^>\ < 1. 

a. Derive a formula for x^ in terms of x^ and a. Use this to deduce that 
x<*> -» 0. 

b . Derive a formula for yW in terms of y^ and b. Use this to deduce that 
yW _ , 0. 

c. Find the order of convergence of {x^} and the order of convergence of 

{y{k)}. 

d. Calculate the smallest number of iterations k such that \x^\ < c | x^ | , 
where 0 < c < 1. 
Hint: The answer is in terms of a and c. You may use the notation \z\ 
to represent the smallest integer not smaller than z. 

e. Calculate the smallest number of iterations k such that \y^\ < c|?/°)|, 
where 0 < c < 1. 

f. Compare the answer of part e with that of part d, focusing on the case 
where c is very small. 

8.6 Suppose that we use the golden section algorithm to find the minimizer 
of a function. Let Uk be the uncertainty range at the kth. iteration. Find the 
order of convergence of {uk}. 

8.7 Suppose that we wish to minimize a function / : R —> R that has a 
derivative / ' . A simple line search method, called derivative descent search 
(DDS), is described as follows: given that we are at a point x^h\ we move 
in the direction of the negative derivative with step size a; that is, x^k+1^ = 
x(k) _ af'(x(

k)^ where a > 0 is a constant. 
In the following parts, assume that / is quadratic: f(x) = \ax2 — bx + c 

(where a, 6, and c are constants, and a > 0). 

a. Write down the value of x* (in terms of a, 6, and c) that minimizes / . 
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b . Write down the recursive equation for the DDS algorithm explicitly for 
this quadratic / . 

c. Assuming that the DDS algorithm converges, show that it converges to 
the optimal value x* (found in part a). 

d. Find the order of convergence of the algorithm, assuming that it does 
converge. 

e. Find the range of values of a for which the algorithm converges (for this 
particular / ) for all starting points x^. 

8.8 Consider the function 

f(x) = 3{χ2
λ + x\) + 4xix2 + 5xi + 6x2 + 7, 

where x = [xi ,x2]T £ I^2· Suppose that we use a fixed-step-size gradient 
algorithm to find the minimizer of / : 

x (W)=x ( * ) -QV / (x ( f c ) ) . 

Find the largest range of values of a for which the algorithm is globally con-
vergent. 

8.9 This exercise explores a zero-finding algorithm. 
Suppose that we wish to solve the equation h(x) = 0, where 

. , , |~4 + 3χι + 2χ21 
h(x) = \ v J [l + 2xi+3x2J 

Consider using an algorithm of the form cc^+1^ — x^ — ah(x^), where a 
is scalar constant that does not depend on k. 

a. Find the solution of h(x) = 0. 

b . Find the largest range of values of a such that the algorithm is globally 
convergent to the solution of h(x) = 0. 

c. Assuming that a is outside the range of values in part b, give an example 
of an initial condition x^ of the form [xi, 0]T such that the algorithm is 
guaranteed not to satisfy the descent property. 

8.10 Consider the function / : R2 —► R given by 

3 
f(x) = -{x\ + x\) + (1 + a)xix2 - (xi + x2) + b, 
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where a and b are some unknown real-valued parameters. 

a. Write the function / in the usual multivariable quadratic form. 

b . Find the largest set of values of a and b such that the unique global 
minimizer of / exists, and write down the minimizer (in terms of the 
parameters a and b). 

c. Consider the following algorithm: 

5 

Find the largest set of values of a and b for which this algorithm converges 
to the global minimizer of / for any initial point χ(°\ 

8.11 Consider the function / : R -+ R given by f(x) = \{x - c)2, c G R. We 
are interested in computing the minimizer of / using the iterative algorithm 

x(^)=x(V-akf(xW), 

where / ' is the derivative of / and ak is a step size satisfying 0 < o^ < 1. 

a. Derive a formula relating /(x^fc+1^) with f(x^), involving α^. 

b . Show that the algorithm is globally convergent if and only if 
oo 

Σα*= °°· 
k=0 

Hint: Use part a and the fact that for any sequence {a^} C (0,1), we 
have 

oo oo 

J | ( l - a f c ) = 0<^>^a f c = oo. 
k=0 fc=0 

8.12 Consider the function / : R —► R given by f(x) = x3 — x. Suppose that 
we use a fixed-step-size algorithm x(fc+1) = x^ — aff(x^) to find a local 
minimizer of / . Find the largest range of values of a such that the algorithm 
is locally convergent (i.e., for all XQ sufficiently close to a local minimizer #*, 
we have x^ —► x*). 

8.13 Consider the function / given by f(x) = (x — l ) 2 , x G R. We are 
interested in computing the minimizer of / using the iterative algorithm 
x(k+i) — x(k) _ a 2~ / c / / (x^^) , where / ' is the derivative of / and 0 < a < 1. 
Does the algorithm have the descent property? Is the algorithm globally 
convergent? 
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8.14 Let / : R —> R, / G C3, with first derivative / ' , second derivative / " , 
and unique minimizer x*. Consider a fixed-step-size gradient algorithm 

X(*+D = XW _ a / ' ( a . (* ) ) . 

Suppose that f"(x*) φ 0 and a = l/f"(x*). Assuming that the algorithm 
converges to #*, show that the order of convergence is at least 2. 

8.15 Consider the problem of minimizing f(x) = \\ax — 6||2, where a and b 
are vectors in Rn, and a φ 0. 

a. Derive an expression (in terms of a and b) for the solution to this problem. 

b . To solve the problem, suppose that we use an iterative algorithm of the 
form 

a-ik+D = x(k) _ a / ' ^ W ) , 

where f is the derivative of / . Find the largest range of values of a (in 
terms of a and 6) for which the algorithm converges to the solution for 
all starting points x^°\ 

8.16 Consider the optimization problem 

minimize \\Ax — 6||2, 

where A e R m X n , m > n, and b G Rm . 

a. Show that the objective function for this problem is a quadratic function, 
and write down the gradient and Hessian of this quadratic. 

b . Write down the fixed-step-size gradient algorithm for solving this opti-
mization problem. 

c. Suppose that 

Find the largest range of values for a such that the algorithm in part b 
converges to the solution of the problem. 

8.17 Consider a function / : Rn -» Rn given by f(x) = Ax + i>, where 
A G R n x n and b G Rn . Suppose that A is invertible and x* is the zero of / 
[i.e., f(x*) — 0]. We wish to compute x* using the iterative algorithm 

where a S 1 , a > 0. We say that the algorithm is globally monotone if for 
any χ(°>, ||x(fc+!) - x*|| < ||xW - x*|| for all Jfe. 
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a. Assume that all the eigenvalues of A are real. Show that a necessary 
condition for the algorithm above to be globally monotone is that all the 
eigenvalues of A are nonnegative. 
Hint: Use contraposition. 

b . Suppose that 

A = 
3 2 

2 3 
b = 

3 
- 1 

Find the largest range of values of a for which the algorithm is globally 
convergent (i.e., x^ —> x* for all x^). 

8.18 Let / : Rn -► R be given by f(x) = \χΎQx - xTb, where b <E Rn and 
Q is a real symmetric positive definite n x n matrix. Suppose that we apply 
the steepest descent method to this function, with χ^ φ Q~xb. Show that 
the method converges in one step, that is, x^ — Q~1b, if and only if x^ is 
chosen such that g^ = Qx^ — b is an eigenvector of Q. 

8.19 Suppose that we apply the steepest descent algorithm cc^+i) _ x(k) _ 
&k9^ to a quadratic function / with Hessian Q > 0. Let Amax and Amin be 
the largest and smallest eigenvalue of Q, respectively. Which of the following 
two inequalities are possibly true? (When we say here that an inequality is 
"possibly" true, we mean that there exists a choice of / and x^ such that 
the inequality holds.) 

a. a0 > 2/Amax. 

b . a0 > 1/Amin. 

8.20 Suppose that we apply a fixed-step-size gradient algorithm to minimize 

f{x) = xT "3/2 2 ' 
0 3/2 

x + xT ' 3 " 
- 1 

- 2 2 . 

a. Find the range of values of the step size for which the algorithm converges 
to the minimizer. 

b . Suppose that we use a step size of 1000 (which is too large). Find an 
initial condition that will cause the algorithm to diverge (not converge). 

8.21 Consider a fixed-step-size gradient algorithm applied to each of the 
functions / : R2 —> R in parts a and b below. In each case, find the largest 
range of values of the step size a for which the algorithm is globally convergent. 

a. f(x) = 1 + 2xi + Z(x\ + xl) + 4xix2. 
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b. f(x) = x - O . T 3 3 
1 3 

χ + [16,23]χ + π2 

8.22 Let / : Rn -+ R be given by f{x) = \χΎQx - xTb, where b G Rn and 
Q is a real symmetric positive definite n x n matrix. Consider the algorithm 

where £<*> = Qx^ - b, ak = 9{k)T g(k) / g{k)T Qg{k\ and β € R is a given 
constant. (Note that the above reduces to the steepest descent algorithm if 
β = 1.) Show that {a^)} converges to x* = Q~lb for any initial condition 
χ<°) if and only if 0 < β < 2. 

8.23 Let / : Rn -> R be given by / (« ) = \xTQx - xTb, where 6 G Rn 

and Q is a real symmetric positive definite nxn matrix. Consider a gradient 
algorithm 

x(k+i) = x(k) _ akg(k)^ 

where g^ = Qx^ — b is the gradient of / at x^ and ak is some step size. 
Show that the algorithm has the descent property [i.e., f(x^k+1^) < f(x^k>}) 
whenever g^ φ 0] if and only if 7/~ > 0 for all k. 

8.24 Given / : Rn —> R, consider the general iterative algorithm 
x(k+i) = xw + afcd(fc)5 

where (Γλ\(Γ2\... are given vectors in Rn and α& is chosen to minimize 
/ ( x W + a d ( f c ) ) ; t h a t i s , 

ak = argmin/(ic ( /c ) + ad{k)). 

Show that for each &, the vector x(fc+1) — x^ is orthogonal to V/(x^fc+1^) 
(assuming that the gradient exists). 

8.25 Write a simple MATLAB program for implementing the steepest de-
scent algorithm using the secant method for the line search (e.g., the MAT-
LAB function of Exercise 7.11). For the stopping criterion, use the condition 
HiJ^II < ε, where ε — 10 - 6 . Test your program by comparing the output 
with the numbers in Example 8.1. Also test your program using an initial 
condition of [—4,5,1]T, and determine the number of iterations required to 
satisfy the stopping criterion. Evaluate the objective function at the final 
point to see how close it is to 0. 

8.26 Apply the MATLAB program from Exercise 8.25 to Rosenbrock's func-
tion: 

/ ( x ) = 100 (x 2 - z? ) 2 + ( l - z i ) 2 . 
Use an initial condition of x^ = [—2, 2]T . Terminate the algorithm when the 
norm of the gradient of / is less than 10 - 4 . 





CHAPTER 9 

NEWTON'S METHOD 

9.1 Introduction 

Recall that the method of steepest descent uses only first derivatives (gra-
dients) in selecting a suitable search direction. This strategy is not always 
the most effective. If higher derivatives are used, the resulting iterative al-
gorithm may perform better than the steepest descent method. Newton's 
method (sometimes called the Newton-Raphson method) uses first and second 
derivatives and indeed does perform better than the steepest descent method 
if the initial point is close to the minimizer. The idea behind this method is 
as follows. Given a starting point, we construct a quadratic approximation to 
the objective function that matches the first and second derivative values at 
that point. We then minimize the approximate (quadratic) function instead 
of the original objective function. We use the minimizer of the approximate 
function as the starting point in the next step and repeat the procedure itera-
tively. If the objective function is quadratic, then the approximation is exact, 
and the method yields the true minimizer in one step. If, on the other hand, 
the objective function is not quadratic, then the approximation will provide 

An Introduction to Optimization, Fourth Edition. 161 
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f.q 

Current Point 

Predicted Minimizer* 
x(k+i) · . 

Figure 9.1 Quadratic approximation to the objective function using first and 
second derivatives. 

only an estimate of the position of the true minimizer. Figure 9.1 illustrates 
this idea. 

We can obtain a quadratic approximation to the twice continuously differ-
entiable objection function / : Rn —► R using the Taylor series expansion of / 
about the current point x^k\ neglecting terms of order three and higher. We 
obtain 

f(x) « /(x<*>) + (a: - *(*>) V f c ) + \(x ~ x(k))TF{x^)(x - *<*>) = q(x), 

where, for simplicity, we use the notation g^ = Vf(x^). Applying the 
FONC to q yields 

0 = Wq{x) = g{k) + F(x^)(x - *<*>). 

If F(x^) > 0, then q achieves a minimum at 

a.(*+i)=a.(fc)_jF(a.(fc))-i^(fc). 

This recursive formula represents Newton's method. 

Example 9.1 Use Newton's method to minimize the Powell function: 

/ (x i ,x 2 ,^3 ,^4) = {x\ + IOX2)2 + 5(x3 - X4)2 + (x2 - 2χβ)4 + 10(xi -Xi)4· 

Use as the starting point x^ = [3, —1,0,1]T. Perform three iterations. 
Note that / (x ( 0 ) ) = 215. We have 

V/(a) 

2(xi + 10x2) + 40(xi - x4)
3 ' 

20(xi + 10x2) + 4(x2 - 2x3)
3 

10(a?3 - X4) ~ 8(^2 - 2x 3)
3 

—10(0:3 - X4) - 40(xi - X4) 3 
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and F(x) is given by 

2 + 120(xi - x4)2 

20 
0 

-120(xi - x4)
2 

Iteration 1 

20 0 -120 (x i - z 4 ) 2 

200 + 12(x2 - 2x3)2 -24(x2 - 2x3)2 0 
-24(x2 - 2x3)2 10 + 48(x2 - 2x3)

2 -10 
0 -10 10 + 120(ari - x4)2. 

F(*(°>) = 

(0 )N-1 *VU>) 

^(°) = [306, -144, -2 , -310] T , 

' 482 20 0 -480" 
20 212 -24 0 
0 -24 58 -10 

-480 0 -10 490 

" 0.1126 -0.0089 0.0154 0.1106 
-0.0089 0.0057 0.0008 -0.0087 
0.0154 0.0008 0.0203 0.0155 

_ 0.1106 -0.0087 0.0155 0.1107 

F ( a j ( 0 ) ) - V 0 ) = [1.4127,-0.8413,-0.2540,0.7460]T. 

Hence, 

XW = x ( o ) _ F ( a : ( 0 ) ) - V 0 ) = [1-5873,-0.1587,0.2540,0.2540]T, 

f(x™) = 31.8. 

Iteration 2 

0 ( 1 ) = [94.81,-1.179,2.371,-94.81]T, 

215.3 20 0 -213.3 
20 205.3 -10.67 0 
0 -10.67 31.34 -10 

-213.3 0 -10 223.3 

F i a j ' ^ J - V 1 ' = [0.5291,-0.0529,0.0846,0.0846]T. 

F(x™) = 

Hence, 

x(2) = x ( 1 ) _ ^ ( χ ( ΐ ) ) - ι ^ ( ΐ ) = [1.0582,-0.1058,0.1694,0.1694]T, 

f(x&) = 6.28. 
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Iteration 3 

gW = [28.09, -0.3475,0.7031, -28.08]T , 

Γ 96.80 20 0 -94.80] 

r,/ (2U 2 0 2 0 2 · 4 -4.744 0 
F(x{ }) = \ K J 0 -4.744 19.49 -10 

[-94.80 0 -10 104.80j 

x(3) = [0.7037,-0.0704,0.1121,0.1111]T, 

f(x&) = 1.24. 

■ 
Observe that the kth iteration of Newton's method can be written in two 

steps as 

1. Solve F(xW)d{k) = -gW for d{k\ 

2. S e t x ^ + 1 ) = ^ ) + d ( / c ) . 

Step 1 requires the solution of an n x n system of linear equations. Thus, an 
efficient method for solving systems of linear equations is essential when using 
Newton's method. 

As in the one-variable case, Newton's method can also be viewed as a 
technique for iteratively solving the equation 

g(x) = 0, 

where a ; G l n and g : Rn —► Rn . In this case F(x) is the Jacobian matrix of 
g at x\ that is, F(x) is the n x n matrix whose (i,j) entry is (dgi/dxj)(x), 
ij = 1 ,2 , . . . ,n. 

9.2 Analysis of Newton's Method 

As in the one-variable case there is no guarantee that Newton's algorithm 
heads in the direction of decreasing values of the objective function if F(x^) 
is not positive definite (recall Figure 7.7 illustrating Newton's method for 
functions of one variable when / " < 0). Moreover, even if F(x^) > 0, 
Newton's method may not be a descent method; that is, it is possible that 
/(x( fc+1)) > f(x^). For example, this may occur if our starting point x^ is 
far away from the solution. See the end of this section for a possible remedy 
to this problem. Despite these drawbacks, Newton's method has superior 
convergence properties when the starting point is near the solution, as we 
shall see in the remainder of this section. 

The convergence analysis of Newton's method when / is a quadratic func-
tion is straightforward. In fact, Newton's method reaches the point x* such 
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that V/(aj*) = 0 in just one step starting from any initial point χ(°\ To see 
this, suppose that Q — QT is invertible and 

f(x) = -xTQx — xTb. 

Then, 
g(x) = Vf(x) = Qx-b 

and 
F(x) = Q. 

Hence, given any initial point χ(°\ by Newton's algorithm 

x ( i )= a . (o)_ j F ( a . (o) ) - i^(o) 

= XW-Q-1[QXW-b] 

= Q1b 

= x*. 

Therefore, for the quadratic case the order of convergence of Newton's algo-
rithm is oo for any initial point x^ (compare this with Exercise 8.18, which 
deals with the steepest descent algorithm). 

To analyze the convergence of Newton's method in the general case, we 
use results from Section 5.1. Let {x^} be the Newton's method sequence 
for minimizing a function / : Rn —► R. We show that {x^} converges to the 
minimizer x* with order of convergence at least 2. 

Theorem 9.1 Suppose that f G C3 and x* G W1 is a point such that 
V/(a?*) = 0 and F(x*) is invertible. Then, for all x^ sufficiently close 
to x*, Newton's method is well-defined for all k and converges to x* with an 
order of convergence at least 2. D 

Proof. The Taylor series expansion of V / about x^ yields 

V/ (« ) - V/ (x ( 0 ) ) - F(x^)(x - x^) = 0(\\x - x ( 0 ) | |2) . 

Because by assumption f £ C3 and F(x*) is invertible, there exist constants 
ε > 0, C\ > 0, and c2 > 0 such that if χ(°\χ G {x : \\x — x*|| < ε}, we have 

||V/(a?) - V/ (x ( 0 ) ) - F(x^)(x - x^)\\ < cx\\x - a ^ f 

and by Lemma 5.3, F(x)~1 exists and satisfies 

\\F(x)-l\\<c2. 

The first inequality above holds because the remainder term in the Taylor 
series expansion contains third derivatives of / that are continuous and hence 
bounded on {x : \\x — x*\\ < ε}. 
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Suppose that x^ e {x : \\x — x*\\ < ε}. Then, substituting x = x* in the 
inequality above and using the assumption that V/(x*) = 0, we get 

\\F(xW)(x<® - x*) - V/(ir ( 0 )) | | < ci| |x (0 ) - x*||2. 

Now, subtracting x* from both sides of Newton's algorithm and taking norms 
yields 

\\χ™ - x*\\ = ||x(0) - x* - Fix^^Vfix^W 

= | | F ( x ( 0 ) ) - 1 ( F ( x ^ ) ( x ^ - x*) - V/(x ( 0 ) ) ) | | 

< WFix^y^lWFix^ix^ - x*) - V/(x ( 0 ) ) | | . 

Applying the inequalities above involving the constants c\ and c2 gives 

\\χΜ-χ*\\ <c i c 2 | | x ( 0 ) - i r * | | 2 . 

Suppose that x^ is such that 

| | * ( 0 ) - * ! < — , 
C l C 2 

where a € (0,1). Then, 

| |a; ( 1 )-a;*| | < a| |x ( 0 ) - x*\\. 

By induction, we obtain 

||a.(*+i) - os*|| < ciC2||a:(ls) - aj*||2, 
Ua-ifc+i) — as*|| < a\\xw - x*\\. 

Hence, 
lim ||x<*> - sc*|| = 0, 

and therefore the sequence {x^} converges to x*. The order of convergence 
is at least 2 because \\x<<k+l>>-x*|| < cic2 | |x ( / c )-ir*| |2; that is, | | x ^ + 1 ) - x * | | = 
0(||xW-x*||2). ■ 

Warning: In the Theorem 9.1, we did not state that x* is a local minimizer. 
For example, if x* is a local maximizes then provided that / G C3 and F(x*) 
is invertible, Newton's method would converge to x* if we start close enough 
to it. 

As stated in Theorem 9.1, Newton's method has superior convergence prop-
erties if the starting point is near the solution. However, the method is not 
guaranteed to converge to the solution if we start far away from it (in fact, it 
may not even be well-defined because the Hessian may be singular). In par-
ticular, the method may not be a descent method; that is, it is possible that 
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/(ic(fc+1)) > f(x^). Fortunately, it is possible to modify the algorithm such 
that the descent property holds. To see this, we need the following result. 

Theorem 9.2 Let {x^} be the sequence generated by Newton's method for 
minimizing a given objective function f(x). If the Hessian F(x^) > 0 and 
g{k) _ v / (a ;^ ) ) φ 0, then the search direction 

<*(*> = - F ( * < * > ) - V f c ) = *(/c+1) - *{k) 

from x^ to χ^+^ is a descent direction for f in the sense that there exists 
an ä > 0 such that for all a G (0, ä) , 

f(x(k)+ad{k))<f(x^). 

D 

Proof Let 
(j){a) = f{x{k) +adw). 

Then, using the chain rule, we obtain 

φ'(α) = Vf{x{k) + ad{k))Jd{k\ 

Hence, 
<//(()) = Vf(x{k))Td{k) = -0(fc>TF(a5<fc>)-Vfc) < 0, 

because F(x^)~1 > 0 and g^ φ 0. Thus, there exists an ä > 0 so that for 
all a G (0, α), φ(α) < φ(0). This implies that for all a G (0, ä) , 

f(xW+adW)<f(x^), 

which completes the proof. I 

Theorem 9.2 motivates the following modification of Newton's method: 
x(k+D=x(k)_akF{x(k)rig(k)y 

where 
ak = axgmin/(x<fc> - aF(a: ( f c ))-^ ( f c )) ; 

a>0 

that is, at each iteration, we perform a line search in the direction 
-F(x<*>)-V f c ) · By Theorem 9.2 we conclude that the modified Newton's 
method has the descent property; that is, 

/(*(fc+i>) < /(*<*>) 

whenever gW φ 0. 
A drawback of Newton's method is that evaluation of F(x^) for large n 

can be computationally expensive. Furthermore, we have to solve the set of 
n linear equations F(x^)d^ ' = —g^k\ In Chapters 10 and 11 we discuss 
methods that alleviate this difficulty. 

Another source of potential problems in Newton's method arises from the 
Hessian matrix not being positive definite. In the next section we describe a 
simple modification of Newton's method to overcome this problem. 
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9.3 Levenberg-Marquardt Modification 

If the Hessian matrix F(x^) is not positive definite, then the search direction 
(Γ ' = — F(x^)~1g^ may not point in a descent direction. A simple tech-
nique to ensure that the search direction is a descent direction is to introduce 
the Levenberg-Marquardt modification of Newton's algorithm: 

x<*+D = XW - (F(xW) + / i f c / r V 0 , 

where μ^ > 0. 
The idea underlying the Levenberg-Marquardt modification is as follows. 

Consider a symmetric matrix F, which may not be positive definite. Let 
λ ι , . . . , λη be the eigenvalues of F with corresponding eigenvectors v i , . . . , vn. 
The eigenvalues λ ι , . . . , λη are real, but may not all be positive. Next, consider 
the matrix G — F + μΐ, where μ > 0. Note that the eigenvalues of G are 
λι + μ, . . . , λη + μ. Indeed, 

Gvi = {F + μΙ)υ{ 

= Fvi + μΐνι 

= XiVi + μνί 

which shows that for all i = 1 , . . . , n, Vi is also an eigenvector of G with 
eigenvalue λζ + μ. Therefore, if μ is sufficiently large, then all the eigenvalues 
of G are positive and G is positive definite. Accordingly, if the parameter μ^ 
in the Levenberg-Marquardt modification of Newton's algorithm is sufficiently 
large, then the search direction d^ = —(F(x^) + μ/0Ι)~1^^^ always points 
in a descent direction (in the sense of Theorem 9.2). In this case if we further 
introduce a step size α^ as described in Section 9.2, 

β(*+υ = XW - ak(F(xW) + M*J)-V f c ) , 

then we are guaranteed that the descent property holds. 
The Levenberg-Marquardt modification of Newton's algorithm can be made 

to approach the behavior of the pure Newton's method by letting μ^ —> 0. 
On the other hand, by letting μ^ —► oo, the algorithm approaches a pure 
gradient method with small step size. In practice, we may start with a small 
value of μ& and increase it slowly until we find that the iteration is descent: 
/ ( t f ^ 1 ) ) < / (* (* ) ) . 

9.4 Newton's Method for Nonlinear Least Squares 

We now examine a particular class of optimization problems and the use of 
Newton's method for solving them. Consider the following problem: 

m 

minimize y j ( r f (#) ) 2 , 
2 = 1 
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where r̂  : Rn —» R, i = 1 , . . . , ra, are given functions. This particular problem 
is called a nonlinear least-squares problem. The special case where the rt- are 
linear is discussed in Section 12.1. 

Example 9.2 Suppose that we are given m measurements of a process at 
m points in time, as depicted in Figure 9.2 (here, m = 21). Let t i , . . . , t m 
denote the measurement times and y i , . . . , ym the measurement values. Note 
that t\ = 0 while £21 = 10- We wish to fit a sinusoid to the measurement 
data. The equation of the sinusoid is 

y = Asm(ujt + φ) 

with appropriate choices of the parameters A, ω, and φ. To formulate the 
data-fitting problem, we construct the objective function 

^ ( ^ - Α β ί η Μ ί + ^))2 , 
2 = 1 

representing the sum of the squared errors between the measurement values 
and the function values at the corresponding points in time. Let x — [A, ω, φ]τ 

represent the vector of decision variables. We therefore obtain a nonlinear 
least-squares problem with 

ri(x) = 2/i - ^4sin(u;£i + φ). 

Defining r = [ n , . . . , r m ] T , we write the objective function as f(x) = 
r(x)Tr(x). To apply Newton's method, we need to compute the gradient 
and the Hessian of / . The j t h component of Vf(x) is 

(V/M), £(.) _*£>,(.)£(.). 
dx 

2 = 1 

Denote the Jacobian matrix of r by 

J(x) 
fe(«) 

&r(«) 

few 

few 
Then, the gradient of / can be represented as 

V/(«) = 2J(x)Tr(x). 
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Figure 9.2 Measurement data for Example 9.2. 

Next, we compute the Hessian matrix of / . The (k,j)th component of the 
Hessian is given by 

d2f ( g ) =
 d (df(x)) 

dxkdxj dxk \dxj ) 

-έ(φ.<.>&(->) 

Letting S(x) be the matrix whose (A:,j)th component is 

we write the Hessian matrix as 

F(x) = 2(J(x)TJ(x) + S(x)). 

Therefore, Newton's method applied to the nonlinear least-squares problem 
is given by 

x(k+i) = x(k) _ ( j ( x ) T j ( x ) + 3(Χ))-^(Χ)ΤΓ{Χ). 



EXERCISES 1 7 1 

In some applications, the matrix S(x) involving the second derivatives of 
the function r can be ignored because its components are negligibly small. In 
this case Newton's algorithm reduces to what is commonly called the Gauss-
Newton method: 

x(fc+i) = x(k) _ (j(x)
Tj(x))-ij(x)

T
r(x). 

Note that the Gauss-Newton method does not require calculation of the second 
derivatives of r . 

Example 9.3 Recall the data-fitting problem in Example 9.2, with 

ri(x) = 2/i - Asm(u;ti + φ), 2 = 1, . . . ,21. 

The Jacobian matrix J(x) in this problem is a 21 x 3 matrix with elements 
given by 

(J(ic)) ( M ) = -sin(u;ti + 0), 
(J(x))(i,2) = -UAcos(uU + 0), 
(J(»))(i,3) = -Acos(uti + φ), i = 1 , . . . ,21. 

Using the expressions above, we apply the Gauss-Newton algorithm to find the 
sinusoid of best fit, given the data pairs (ti, y i ) , . . . , (tm, ym) . Figure 9.3 shows 
a plot of the sinusoid of best fit obtained from the Gauss-Newton algorithm. 
The parameters of this sinusoid are: A = 2.01, ω = 0.992, and φ = 0.541. I 

A potential problem with the Gauss-Newton method is that the matrix 
J(x)TJ(x) may not be positive definite. As described before, this problem 
can be overcome using a Levenberg-Marquardt modification: 

x{k+i) = x(k) _ (j^Yj(x} + ßkIyij(xYr(xy 

This is referred to in the literature as the Levenberg-Marquardt algorithm, 
because the original Levenberg-Marquardt modification was developed specif-
ically for the nonlinear least-squares problem. An alternative interpretation 
of the Levenberg-Marquardt algorithm is to view the term μ^I as an approx-
imation to S(x) in Newton's algorithm. 

E X E R C I S E S 

9.1 Let / : R —> R be given by f(x) = (x — xo)4, where XQ G R is a constant. 
Suppose that we apply Newton's method to the problem of minimizing / . 

a. Write down the update equation for Newton's method applied to the 
problem. 
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Figure 9.3 Sinusoid of best fit in Example 9.3. 

b . Let y^ = \x^ — XQ\, where x^ is the fcth iterate in Newton's method. 
Show that the sequence {y^} satisfies 2/(fc+1) = |?/ fc). 

c. Show that x^ —► XQ for any initial guess χ(°\ 

d. Show that the order of convergence of the sequence {x^} in part b is 1. 

e. Theorem 9.1 states that under certain conditions, the order of conver-
gence of Newton's method is at least 2. Why does that theorem not hold 
in this particular problem? 

9.2 This question relates to the order of convergence of the secant method, 
using an argument similar to that of the proof of Theorem 9.1. 

a. Consider a function / : R —> R, / G C 2 , such that x* is a local minimizer 
and f"(x*) φ 0. Suppose that we apply the algorithm x^k+l^ = x^ — 
&kf'(x^) such that {a*;} is a positive step-size sequence that converges 
to l/f"(x*). Show that if x^ —► x*, then the order of convergence of 
the algorithm is superlinear (i.e., strictly greater than 1). 

b . Given part a, what can you say about the order of convergence of the 
secant algorithm? 
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9.3 Consider the problem of minimizing f(x) = xs = (^/χ)4, x G l . Note 
that 0 is the global minimizer of / . 

a. Write down the algorithm for Newton's method applied to this problem. 

b . Show that as long as the starting point is not 0, the algorithm in part a 
does not converge to 0 (no matter how close to 0 we start). 

9.4 Consider Rosenbrock's Function: f(x) = 100(^2— #i) 2 + (l—#i)2> where 
x = [xi,X2]T (known to be a "nasty" function—often used as a benchmark 
for testing algorithms). This function is also known as the banana function 
because of the shape of its level sets. 

a. Prove that [1,1]T is the unique global minimizer of / over R2. 
l T , apply two iterations of Newton's method. 

d -

b . With a starting point of [0,0 
i - 1 

1 Hint: 
a b 
c d ad — be a 

c. Repeat part b using a gradient algorithm with a fixed step size of α^ 
0.05 at each iteration. 

9.5 Consider the modified Newton's algorithm 

x(*+ 1 )=aj ( f e ) -a f c F(x( f c ) ) -V* ) , 

where α& = argmin a > 0 f(x^ — aF(x^)~1g^). Suppose that we apply 
the algorithm to a quadratic function f{x) = ^xTQx — x T 6 , where Q = 
Q > 0. Recall that the standard Newton's method reaches point x* such 
that V/(cc*) = 0 in just one step starting from any initial point χ(°\ Does 
the modified Newton's algorithm above possess the same property? 





CHAPTER 10 

CONJUGATE DIRECTION METHODS 

10.1 Introduction 

The class of conjugate direction methods can be viewed as being intermediate 
between the method of steepest descent and Newton's method. The conjugate 
direction methods have the following properties: 

1. Solve quadratics of n variables in n steps. 

2. The usual implementation, the conjugate gradient algorithm, requires no 
Hessian matrix evaluations. 

3. No matrix inversion and no storage of an n x n matrix are required. 

The conjugate direction methods typically perform better than the method 
of steepest descent, but not as well as Newton's method. As we saw from 
the method of steepest descent and Newton's method, the crucial factor in 
the efficiency of an iterative search method is the direction of search at each 
iteration. For a quadratic function of n variables f(x) = ^xTQx — x T 6 , 
x G Rn , Q = Q > 0, the best direction of search, as we shall see, is in 
the Q-conjugate direction. Basically, two directions S1' and cl·2' in Rn are 

An Introduction to Optimization, Fourth Edition. 175 
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said to be Q-conjugate if cr1 ' QdS1' = 0. In general, we have the following 
definition. 

Definition 10.1 Let Q be a real symmetric n x n matrix. The directions 
d(0), d(1), d ( 2 ) , . . . , d ( m ) are Q-conjugate if for all i φ j , we have d{i)TQd{j) = 
0. ■ 

Lemma 10.1 Let Q be a symmetnc positive definite n x n matrix. If the 
directions d(0), d ( 1 ) , . . . , d{k) e Rn, k < n — 1, are nonzero and Q-conjugate, 
then they are linearly independent. □ 

Proof. Let cto,..., ak be scalars such that 

a0d
{0) + a id ( 1 ) + · · · + akS

k) = 0. 

Premultiplying this equality by d>^ Q, 0 < j < A:, yields 

OLjd{j)TQd{j) = 0, 

because all other terms d^TQd^ = 0, i φ j , by Q-conjugacy. But 
Q = QT > 0 and d{j) φ 0; hence αά = 0, j = 0 ,1 , . . . ,k . Therefore, 

k < n — 1, are linearly independent. I 

Example 10.1 Let 

Q = 

\3 

0 
[l 

0 
4 
2 

Γ 
2 
3 

Note that Q = Q > 0. The matrix Q is positive definite because all its 
leading principal minors are positive: 

Δι = 3 > 0, Δ 2 = det 3 0 
0 4 

= 12 > 0, Δ 3 = det Q = 20 > 0. 

Our goal is to construct a set of Q-conjugate vectors c r ° \ d^\ d^2\ 
Let d<°> = [1,0,0]T, d™ = [d?\d£\dP]T, d^ = [ 4 2 ) , 4 2 ) , 4 2 ) ] τ . We 

require that d ( 0 ) TQd ( 1 ) = 0. We have 

d^TQd^ = [1,0,0] 
"3 0 1" 
0 4 2 
1 2 3 

m 
4υ 

41}J 
M^+d^. 

Let 4 ! ) = 1, 4 X ) = 0> 4 X ) = - 3 - T h e n > rf(1) = [1 ,0 , -3] T , and thus 
d^TQd^ = 0. 
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To find the third vector cl·2', which would be Q-conjugate with cl·0' and 
d(1), we require that d(0)T Qd{2) = 0 and d(1)TQd(2) = 0. We have 

d^Qd™ =3di2)+42)=0, 
d^TQd^ = -6d{2)-8d{2)=0. 

If we take <r2' = [1,4,—3]T, then the resulting set of vectors is mutually 
conjugate. I 

This method of finding Q-conjugate vectors is inefficient. A systematic 
procedure for finding Q-conjugate vectors can be devised using the idea un-
derlying the Gram-Schmidt process of transforming a given basis of Rn into 
an orthonormal basis of Mn (see Exercise 10.1). 

10.2 The Conjugate Direction Algorithm 

We now present the conjugate direction algorithm for minimizing the 
quadratic function of n variables 

f(x) = -xTQx - xTb, 

where Q = Q T > 0 , x G R n . Note that because Q > 0, the function / has a 
global minimizer that can be found by solving Qx = b. 

Basic Conjugate Direction Algorithm. Given a starting point x^ 
and Q-conjugate directions d^0\d^\..., <rn _ 1 ' ; for k > 0, 

g(k) =Vf(x(k)) = QxW -b, 

g( fe)Td ( fc ) 

ak~~d^TQdW 

Theorem 10.1 For any starting point χ(°\ the basic conjugate direction al-
gorithm converges to the unique x* (that solves Qx = b) in n steps; that is, 
χ(ηϊ=χ*. D 

Proof. Consider x* — χ(°) e Rn . Because the a^ are linearly independent, 
there exist constants ft, i = 0 , . . . , n — 1, such that 

tf*-z(°>=/3od(0) + --- + /?n-id ( n- 1 ) . 

Now premultiply both sides of this equation by d^k' Q, 0 < k < n, to obtain 

d^TQ(x* - *«») = ßkS
k)TQd<k\ 
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where the terms Φ ' Q<r%' = 0, k ψ i, by the Q-conjugate property. Hence, 

d ( f c ) TQ(x*-x< 0 ) ) 
ßk 

dWTQd(k) ■ 

Now, we can write 

Therefore, 

So writing 

x<*> = x<°> + a0d<°> + · · · + a ^ - i d ^ - 1 ) . 

x<fc> - *<°> = a0d<0> + · · · + α*-!^*"1*. 

x* - x<0> = (x* - x « ) + (x<fe> - x<0') 

and premultiplying the above by S ' Q, we obtain 

d (* ) TQ(x* - xW) = d<*>TQ(x· - x<*>) = - d < f c > y * \ 

because gW — Qx^ — b and Qx* = 6. Thus, 

^ f c ~ d( f c>TQd( f e>_a fe 

and x* = χ(η\ which completes the proof. 

Example 10.2 Find the minimizer of 

f(xi,x2) = 2χΤ 
~4 
2 

2 

2 
X -xT - 1 

1 
, X € 

using the conjugate direction method with the initial point χ(°) = [0,0]T, and 
Q-conjugate directions d(0) = [1,0]T and d(1) = [ -§ , | ] T . 

We have 
l(°) 

and hence 

<*0 = 
g(°)Td ( 0 ) 

'd<0>TQd<0> 

-& = [ i , - i ] T , 

[1,-1] 

[1,0] 
4 2 

2 2 

Thus, 

x(1) = x ( ° ) + a 0 d ( 0 ) 0 
0 

1 
" 4 

1 
0 = 

1 
4 

0 
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To find x^2\ we compute 

gM = Qx^ -b = 
"4 2" 
2 2 

1 
4 

0 
-

- 1 
1 = 

0 
3 
2 

and 

oil 
g ( i>T d (P 

'd^TQd^ 

[0 , -

Γ_3 3] 
L 8' 4J 

§] 

"4 

2 

2" 

2 

3" 
8 

3 
4 

3] 
8 3 

4 J 

2. 

Therefore, 

( i ) _ 
1" 
4 

0 
+ 2 

3 
8 

3 
4 

= 
- 1 

3 
2 _ 

x W = ^ + a i d ^ = 

Because / is a quadratic function in two variables, x^ = x*. I 

For a quadratic function of n variables, the conjugate direction method 
reaches the solution after n steps. As we shall see below, the method also 
possesses a certain desirable property in the intermediate steps. To see this, 
suppose that we start at x^ and search in the direction er0 ' to obtain 

- ' - - - ( # & ) - ■ 

We claim that 
g(DTd(0) = α 

To see this, 

g^Td^ = (QxW - &)Trf(°> 

= x(°)TQd(0) - { $ $ * ) d(°)TQd(0) - &Td(0) 

= g ( o ) T d ( o ) _ g ( o ) T d ( o ) = a 

The equation g^Td^ ' = 0 implies that £*o has the property that ao = 
arg min φο{α), where φ0(α) = /(χ(°) + ad ( 0 ) ) . To see this, apply the chain 
rule to get 

^ ( a ) = V/(*(°> + ad(°>)T<i(0)· da 
Evaluating the above at a = ao, we get 

d^(ao)=gWdW=0. 
da 
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Because φο is a quadratic function of a, and the coefficient of the a2 term in 
0o is d^TQd^ > 0, the above implies that a0 = argmin a G R0o(a). 

Using a similar argument, we can show that for all A:, 

0(fc+i)Td(*) = 0 

and hence 
ak = argmin/(ic ( fc) + aSk)). 

In fact, an even stronger condition holds, as given by the following lemma. 

Lemma 10.2 In the conjugate direction algorithm, 

0(*+i)Td«) = o 

for all k, 0 < k <n — 1, and 0 < i < k. □ 

Proof. Note that 

Q ( a ^ + 1 ) - a<*>) = Qx(k+V - b - (QxW - b) = 0<fc+1> - g™, 

because g^ = Qx^ — 6. Thus, 

fl(*+i)=fl<O+afcQd<fc>. 

We prove the lemma by induction. The result is true for k = 0 because 
g^Td^ = 0, as shown before. We now show that if the result is true for 
k - 1 (i.e., gWTd(i) = 0, i < k - 1), then it is true for k (i.e., g(k+VTd{i) = 0, 
i <k). Fix k > 0 and 0 < i < k. By the induction hypothesis, g^Td^ = 0. 
Because 

0<fc+1)=ff<fc)+afcQd<*>, 

and Sk'TQdl·1' = 0 by Q-conjugacy, we have 

g(k+i)Td(i) = g{k)Td(i) + akdWrQd(i) = Q 

It remains to be shown that 

g(k+DTd(k) = Q 

Indeed, 

g(k+l)Td(k) = (Qx(k+1) _ 6)Td(fc) 

_ ( (k) _ 9{k)Td{k)
 (k)\ (k) _ T (k) 

= 0, 
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Figure 10.1 Illustration of Lemma 10.2. 

because Qx^ —b — g(k\ 
Therefore, by induction, for all 0 < k < n — 1 and 0 < i < &, 

g{k + l)Td{i) = Q 

By Lemma 10.2 we see that ^(fc+1) is orthogonal to any vector from the 
subspace spanned by S°\ dSl\ . . . , er \ Figure 10.1 illustrates this statement. 

The lemma can be used to show an interesting optimal property of the 
conjugate direction algorithm. Specifically, we now show that not only does 
/(x ( f c + 1 )) satisfy /(x ( f c + 1 )) = mina/(«<*) +ad ( f c ) ) , as indicated before, but 
also 

/(x(fe+1)) 

In other words, if we write 

min / x 
a0,...,ak \ 

(0) + yZ a ^ (0 
i=0 

V f c - ^ + s p a n [ d ^ , d ^ , . . . , d ^ ] , 

then we can express /(α?^+1^) = mina.Gyfc f(x). As k increases, the subspace 
span[d ( 0 ) ,d ( 1 ) , . . . ,d(fc)] "expands," and will eventually fill the whole of Rn 

(provided that the vectors d^'^cl·1',..., are linearly independent). Therefore, 
for some sufficiently large k, x* will lie in Vk- For this reason, the above result 
is sometimes called the expanding subspace theorem (see, e.g., [88, p. 266]). 

To prove the expanding subspace theorem, define the matrix D^ by 
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that is, d( i ) is the ith column of D{k). Note that x^ + lZ(D{k)) = Vk. Also, 

*(*+!) = x ( 0 ) + £ a . d ( 0 

= x(o) + £)(fc)a) 

where a = [<*o,..., a/c]T· Hence, 

x ( f c + 1 ) 6 a . ( 0 ) + ^ ( D ( f c ) ) = V f c . 

Now, consider any vector x G V&. There exists a vector a such that x = x^ + 
D^a. Let 0&(α) = f(x^ + D^a). Note that </>fc is a quadratic function 
and has a unique minimizer that satisfies the FONC (see Exercises 6.33 and 
10.7). By the chain rule, 

D<i>k(a) = V / (* ( 0 ) + Df f cO)TD ( f c ) . 

Therefore, 

D0 fc(a) - V / (* ( 0 ) + D{k)a)TD{k) 

= V/ (a^+ 1 ) ) T
J D^) 

= 0(fe+1)T£>(fc). 

By Lemma 10.2, g(k^)TD(k) = 0 T . Therefore, a satisfies the FONC for the 
quadratic function <^, and hence a is the minimizer of </>&; that is, 

/ ( x ^ 1 ) ) = min/(x(°) + Dwa) = min / ( x ) , 
a xEVk 

which completes the proof of our result. 
The conjugate direction algorithm is very effective. However, to use the 

algorithm, we need to specify the Q-conjugate directions. Fortunately, there 
is a way to generate Q-conjugate directions as we perform iterations. In 
the next section we discuss an algorithm that incorporates the generation of 
Q-conjugate directions. 

10.3 The Conjugate Gradient Algorithm 

The conjugate gradient algorithm does not use prespecified conjugate direc-
tions, but instead computes the directions as the algorithm progresses. At 
each stage of the algorithm, the direction is calculated as a linear combina-
tion of the previous direction and the current gradient, in such a way that all 
the directions are mutually Q-conjugate—hence the name conjugate gradient 
algorithm. This calculation exploits the fact that for a quadratic function of 
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n variables, we can locate the function minimizer by performing n searches 
along mutually conjugate directions. 

As before, we consider the quadratic function 

f(x) = ];XTQx - xTb, x e Rn, 

where Q = Q > 0. Our first search direction from an initial point x^ is in 
the direction of steepest descent; that is, 

Thus, 

where 

d<°> = - f l < ° > . 

O ( 0 ) T J ( 0 ) 

In the next stage, we search in a direction d^1' that is Q-conjugate to cr0 ' . 
We choose er1 ' as a linear combination of g^ and <r°\ In general, at the 
(fc + l)th step, we choose cr + 1 ' to be a linear combination of g(k+1) and d> \ 
Specifically, we choose 

d(*+D = _S(*+D + ßkS
k), k = 0 ,1 ,2 , . . . . 

The coefficients /?&, k = 1,2,.. . , are chosen in such a way that d^fc+1^ is 
Q-conjugate to c r ° \ d^\ . . . , d^k\ This is accomplished by choosing ßk to be 

The conjugate gradient algorithm is summarized below. 

1. Set k := 0; select the initial point χ(°). 

2. g(°) = V/(x<°>). If ff<°> = 0, stop; else, set d(0) = -gW. 

o. ak - d(k)TQd(k) ■ 

4. x(fe+1> = XW + akd
{k). 

5. ö(fc+1) = V/(x<fe+1)). If g(fc+1) = 0, stop. 

7. d<*+i> = _ff(*+i) + /? f cd< f c ) . 

8. Set k :— /c + 1; go to step 3. 
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Proposition 10.1 In the conjugate gradient algorithm, the directions 
d(0), d ( 1 ) , . . . , d ( n _ 1 ) are Q-conjugate. D 

Proof. We use induction. We first show that (T°> Qd>1' = 0. To this end we 
write 

Substituting for 

P° d^TQd^ 

in the equation above, we see that d ( 0 ) TQd ( 1 ) = 0. 
We now assume that S°\d^\... ,<rfc\ fc < n — 1, are Q-conjugate di-

rections. From Lemma 10.2 we have gfr+^dW = 0, j = 0 , 1 , . . . , fc. Thus, 
g(k+i) is orthogonal to each of the directions d^, d>1',..., d^k'. We now show 
that 

g{k+1)Tg{j) = 0, j = o,i,...,k. 

Fix j e {0 , . . . , fc}. We have 

dÜ) = _ f f Ü ) + / j . _ l d Ü - i ) . 

Substituting this equation into the previous one yields 

fl(*+i)Tdü) = o = _fl(*+i)TflÜ) + ^ . . ^ + υ τ ^ - ΐ ) . 

Because g(.k+1')Td(j~1) = 0, it follows that gC'+^gU) = o. 
We are now ready to show that d^k+1'TQd^' = 0, j = 0 , . . . , fc. We have 

d(k+DTQdU) = {_g(k+i)+ßkd(k))TQd(j)_ 

If j < A:, then cr ^ Qd' ·" = 0, by virtue of the induction hypothesis. Hence, 
we have 

d(fc+i)TQdG·) = _g(k+i)TQdU)_ 

But g^'+1) = flfW) + ajQd(j). Because flf(fc+1)T
gW = 0, i = 0 , . . . , fc, 

d(*+DTQ do·) = _ g ( f c + i ) T ( g ( j + 1 ) - g ( j ) ) = 0 

Thus, 
d{k+1)TQd{j) = 0 , j = 0 , . . . , fc - 1. 

It remains to be shown that d ( fc+1)TQd ( fe) = 0. We have 

d(*+i)TQd(fc) = (_fl(fc+D +ßkdW)TQdW. 

Using the expression for ßk, we get <r ' Qd> ' = 0, which completes the 
proof. I 
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Example 10.3 Consider the quadratic function 

3 3 
/(xi,x2 ,X3) = -zx\ +2x2 + -x\ + £i#3 + 2x2X3 - 3xx - x 3 . 

We find the minimizer using the conjugate gradient algorithm, using the start-
ing point χ(°) = [0,0,0]T. 

We can represent / as 

f{x) = -xTQx-xTb, 

where 

Q = 
"3 
0 
1 

0 il 
4 2 
2 3J 

b = 

We have 

g(x) = V / (x ) = Qx-b= [3xi + x3 - 3,4x2 + 2x3, xi + 2x2 + 3x3 - 1]T . 

Hence, 

9<°> = [ - 3 , 0 , - l ] T , 

d(0) = -ff(0), 

5(°)Td(0> 10 
ao = -

d(o)TQd(o) 3 6 
= _ = 0.2778 

and 
x d ) = x(°) +a0d

(0) = [0.8333,0,0.2778]T. 

The next stage yields 

ö ( 1 ) = V/ (x ( 1 ) ) = [-0.2222,0.5556,0.6667]T, 

We can now compute 

Sl) = -g{1) + ß0d
{0) = [0.4630, -0.5556, -0.5864]T . 

Hence, 

«l = — T ^ F — = 0.2187 

and 
,(2) 

d^TQdW 

= x ( 1 ) + a id ( 1 ) = [0.9346, -0.1215,0.1495]T. 
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To perform the third iteration, we compute 

t,(2) = V/ (x ( 2 ) ) = [-0.04673, -0.1869,0.1402]T, 

g(2)TQd ( 1 ) 

d{2) = -gW +ß1d
{1) = [0.07948,0.1476,-0.1817]T. 

Hence, 

and 

Note that 

o(2)Td (2 ) 

a 2 = —75rf or; = ° · 8 2 3 1 

d ( 2 ) T Qd ( 2 ) 

x(3) = x(2) + a 2 d ( 2 ) = [1.000,0.000,0.000]T. 

g(3> = V/(e<3>) = 0, 
as expected, because / is a quadratic function of three variables. Hence, 
x*=xW. I 

10.4 The Conjugate Gradient Algorithm for Nonquadratic Prob-
lems 

In Section 10.3, we showed that the conjugate gradient algorithm is a conju-
gate direction method, and therefore minimizes a positive definite quadratic 
function of n variables in n steps. The algorithm can be extended to general 
nonlinear functions by interpreting f(x) = ^xTQx — xTb as a second-order 
Taylor series approximation of the objective function. Near the solution such 
functions behave approximately as quadratics, as suggested by the Taylor se-
ries expansion. For a quadratic, the matrix Q, the Hessian of the quadratic, 
is constant. However, for a general nonlinear function the Hessian is a ma-
trix that has to be reevaluated at each iteration of the algorithm. This can 
be computationally very expensive. Thus, an efficient implementation of the 
conjugate gradient algorithm that eliminates the Hessian evaluation at each 
step is desirable. 

Observe that Q appears only in the computation of the scalars a& and ßk · 
Because 

ak = argmin/(ic ( fc) +ad ( ; c ) ) , 
a>0 

the closed-form formula for α& in the algorithm can be replaced by a numeri-
cal line search procedure. Therefore, we need only concern ourselves with the 
formula for ßk. Fortunately, elimination of Q from the formula is possible and 
results in algorithms that depend only on the function and gradient values at 
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each iteration. We now discuss modifications of the conjugate gradient algo-
rithm for a quadratic function for the case in which the Hessian is unknown 
but in which objective function values and gradients are available. The mod-
ifications are all based on algebraically manipulating the formula ßk in such 
a way that Q is eliminated. We discuss three well-known modifications. 

Hestenes-Stiefel Formula. Recall that 

_ g(k^)TQd{k) 

ßk~ d^TQd^ ' 

The Hestenes-Stiefel formula is based on replacing the term Q<r ^ by the 
term (g^k+1^ — g^)/otk- The two terms are equal in the quadratic case, as 
we now show. Now, cc(fc+1) = x^ -ho^cr^. Premultiplying both sides by Q, 
subtracting b from both sides, and recognizing that g^ = Qx^ — 6, we get 
fl(fc+i) = g(k) +akQd(V^ which we can rewrite as Qd{k) = (g(k+V -g^k))/ak. 
Substituting this into the original equation for ßk gives the Hestenes-Stiefel 
formula 

= fl(*+i)Tto(fc+i)_g(fc)] 

dfik)T\g(k+1)-gW] 

Polak-Ribiere Formula. Starting from the Hestenes-Stiefel formula, we 
multiply out the denominator to get 

g(k+l)T[g{k+l)_g{k)] 

By Lemma 10.2, d ( f c ) V f c + 1 ) = 0. Also, since d{k) = -gW +/?fc_id(fc~1), and 
premultiplying this by g^T, we get 

g(k)Td(k) = -g(k)Tg(k)+ßk_ig(k)Td(k-l) = _ff(*)Tfl(fc)) 

where once again we used Lemma 10.2. Hence, we get the Polak-Ribiere 
formula 

gfr+l)T\g(k+l) -gW] 
fa = g(k)Tg(k) ' 

Fletcher-Reeves Formula. Starting with the Polak-Ribiere formula, we 
multiply out the numerator to get 

g(k+l)Tg(k+l) _g(k+l)Tg(k) 

fa = g(k)Tg(k) * 

We now use the fact that g(k+1)TgW = 0, which we get by using the equation 

g(k+i)Td(k) = _g(k+i)Tgw +/3jb_1^(*+DTd(fc-i) 

and applying Lemma 10.2. This leads to the Fletcher-Reeves formula 

g(k+l)T g(k+l) 

fa = g(k)Tg(k) ' 
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The formulas above give us conjugate gradient algorithms that do not re-
quire explicit knowledge of the Hessian matrix Q. All we need are the objec-
tive function and gradient values at each iteration. For the quadratic case the 
three expressions for ßk are exactly equal. However, this is not the case for a 
general nonlinear objective function. 

We need a few more slight modifications to apply the algorithm to gen-
eral nonlinear functions in practice. First, as mentioned in our discus-
sion of the steepest descent algorithm (Section 8.2), the stopping criterion 
V/(cc(fc+1)) = 0 is not practical. A suitable practical stopping criterion, such 
as those discussed in Section 8.2, needs to be used. 

For nonquadratic problems, the algorithm will not usually converge in n 
steps, and as the algorithm progresses, the "Q-conjugacy" of the direction 
vectors will tend to deteriorate. Thus, a common practice is to reinitialize the 
direction vector to the negative gradient after every few iterations (e.g., n or 
n + 1) and continue until the algorithm satisfies the stopping criterion. 

A very important issue in minimization problems of nonquadratic functions 
is the line search. The purpose of the line search is to minimize 0&(α) = 
f(x^ + aS )) with respect to a > 0. A typical approach is to bracket or 
box in the minimizer and then estimate it. The accuracy of the line search 
is a critical factor in the performance of the conjugate gradient algorithm. If 
the line search is known to be inaccurate, the Hestenes-Stiefel formula for ßk 
is recommended [69]. 

In general, the choice of which formula for ßk to use depends on the ob-
jective function. For example, the Polak-Ribiere formula is known to perform 
far better than the Fletcher-Reeves formula in some cases but not in others. 
In fact, there are cases in which the g^h\ k = 1,2,... , are bounded away from 
zero when the Polak-Ribiere formula is used (see [107]). In the study by Pow-
ell in [107], a global convergence analysis suggests that the Fletcher-Reeves 
formula for ßk is superior. Powell further suggests another formula for β^: 

f g ( f c + i ) T [ g ( f c + i ) _ g ( f c ) n 

^ = Π 1 3 Χ \ 0 ' ^WTgW / · 

For general results on the convergence of conjugate gradient methods, we 
refer the reader to [135]. For an application of conjugate gradient algorithms 
to Wiener filtering, see [116], [117], and [118]. 

Conjugate gradient algorithms are related to Krylov subspace methods 
(see Exercise 10.6). Krylov-subspace-iteration methods, initiated by Magnus 
Hestenes, Eduard Stiefel, and Cornelius Lanczos, have been declared one of 
the 10 algorithms with the greatest influence on the development and practice 
of science and engineering in the twentieth century [40]. 

For control perspective on the conjugate gradient algorithm, derived from 
a proportional-plus-derivative (PD) controller architecture, see [4]. In addi-
tion, these authors offer a control perspective on Krylov-subspace-iteration 
methods as discrete feedback control systems. 



EXERCISES 189 

E X E R C I S E S 

10.1 (Adopted from [88, Exercise 9.8(1)]) Let Q be a real symmetric pos-
itive definite n x n matrix. Given an arbitrary set of linearly independent 
vectors {p^°\ . . . ,p^n_1^} in Rn, the Gram-Schmidt procedure generates a set 
of vectors {d ( 0 ) , . . . , d ( n - 1 ) } as follows: 

d<0>=p<0\ 

έ ί d(t)TQd(t) 

Show that the vectors dr°\ . . . , (Γη~ι* are Q-conjugate. 

10.2 Let / : Rn -+ R be the quadratic function 

/(a;) = -xTQx - xTb, 

where Q = Q T > 0. Given a set of directions {d(0), d ( 1 ) , . . .} C Rn, consider 
the algorithm 

a j(*+l)=x(*)+e f cd( f c) , 

where α& is the step size. Suppose that g( fc+1)Td ( i ) = 0 for all fc = 0 , . . . , n — 1 
and t = 0 , . . . , fe, where g^+V = V / ( a ^ + 1 ) ) . Show that if gWTdw φ 0 for 
all k = 0 , . . . , n — 1, then dS°\ . . . , d^n~^ are Q-conjugate. 

10.3 Let / : Rn -► R be given by f(x) = ±xTQa; - x T 6 , where 6 G Rn 

and Q is a real symmetric positive definite n x n matrix. Show that in the 
conjugate gradient method for this / , d{k)TQd{k) = -d ( fc )T 'Qg{k). 

10.4 Let Q be a real nx n symmetric matrix. 

a. Show that there exists a Q-conjugate set {d^\ . . . , d ^ } such that each 
dy* (i = 1 , . . . , n) is an eigenvector of Q. 
Hint: Use the fact that for any real symmetric nxn matrix, there exists 
a set { u i , . . . , v n } of its eigenvectors such that vjvj = 0 for all i,j = 
Ι , . , . , π , %φ j . 

b . Suppose that Q is positive definite. Show that if {d^\.. .,d^n'} is a 
Q-conjugate set that is also orthogonal (i.e., cr*' d^' = 0 for all i,j = 
l , . . . , n , i ^ j), and d'2' φ 0, i = 1 , . . . , n, then each d ^ , i = 1 , . . . , n, is 
an eigenvector of Q. 

10.5 Consider the following algorithm for minimizing a function / : 

x<*+i>=a.(*)+a fcd<*>, 
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where α^ = argmina f(x^ + adP^). Let g^ = Vf(x^) (as usual). 
Suppose that / is quadratic with Hessian Q. We choose Sk+1^ = 

lk9^k+l>} + d^k\ and we wish the directions and (Γ + 1 ' to be Q-conjugate. 
Find a formula for 7^ in terms of <r \ g^k+l\ and Q. 

10.6 Consider the algorithm 

with ah G R scalar and x^ = 0, applied to the quadratic function / : Rn —► R 
given by 

f(x) = -xTQx - bTx, 

where Q > 0. As usual, write gW = V / ( x ^ ) . Suppose that the search 
directions are generated according to 

d(*+i)=a f c9( f c+1)+& f ed( f e\ 

where a& and bk are real constants, and by convention we take c r 1 ' = 0. 

a. Define the subspace Vk = span[6, Qb,..., Q - 16] (called the Krylov sub-
space of order fc). Show that dP^ G Vk+i and x^ G Vfc. 
Hint: Use induction. Note that Vo = {0} and Vi = span[6]. 

b . In light of part a, what can you say about the "optimality" of the conju-
gate gradient algorithm with respect to the Krylov subspace? 

10.7 Consider the quadratic function / : Rn —► R given by 

f(x) = -xTQx - xTb, 

where Q = QT > 0. Let D G R n x r be of rank r and x0 G Rn . Define the 
function φ : W -► R by 

φ(α) = /(χ0 + Όα). 

Show that φ is a quadratic function with a positive definite quadratic term. 

10.8 Consider a conjugate gradient algorithm applied to a quadratic function. 

a. Show that the gradients associated with the algorithm are mutually or-
thogonal. Specifically, show that g^+^gW = 0 for all 0 < k < n - 1 
and 0 < i < k. 
Hint: Write g& in terms of d ( i ) and d{i~l\ 

b . Show that the gradients associated with the algorithm are Q-conjugate 
if separated by at least two iterations. Specifically, show that 
g{k+i)TQg{i) = 0 for all 0 < fc < n - 1 and 0 < i < fc - 1. 
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10.9 Represent the function 

/(a?i,x2) = 2Xi +x2 - 3 x i x 2 -X2-7 

in the form f(x) = ^xTQx — xTb + c. Then use the conjugate gradient 
algorithm to construct a vector d'1 ' that is Q-conjugate with d^0' = V/(x^0^), 
where x^ = 0 . 

10.10 Let / ( x ) , x = [xi ,x2]T G M2, be given by 

5 1 
f(x) = -x\ + -x\ + 2xix2 - 3xi - x2. 

a. Express f(x) in the form of f(x) = \xTQx — xTb. 

b . Find the minimizer of / using the conjugate gradient algorithm. Use a 
starting point of x^ = [0,0]T. 

c. Calculate the minimizer of / analytically from Q and 6, and check it with 
your answer in part b. 

10.11 Write a MATLAB program to implement the conjugate gradient al-
gorithm for general functions. Use the secant method for the line search 
(e.g., the MATLAB function of Exercise 7.11). Test the different formulas 
for ßk on Rosenbrock's function (see Exercise 9.4) with an initial condition 
χ(°ϊ = [—2,2]T. For this exercise, reinitialize the update direction to the 
negative gradient every six iterations. 





CHAPTER 11 

QUASI-NEWTON METHODS 

11.1 Introduction 

Newton's method is one of the more successful algorithms for optimization. If 
it converges, it has a quadratic order of convergence. However, as pointed out 
before, for a general nonlinear objective function, convergence to a solution 
cannot be guaranteed from an arbitrary initial point χ(°\ In general, if the 
initial point is not sufficiently close to the solution, then the algorithm may 
not possess the descent property [i.e., f(x^k+1^) jt f(x^) for some k]. 

Recall that the idea behind Newton's method is to locally approximate the 
function / being minimized, at every iteration, by a quadratic function. The 
minimizer for the quadratic approximation is used as the starting point for 
the next iteration. This leads to Newton's recursive algorithm 

a . (*+ 1 ) = a .W_ j F ( a .W)- i Ä | ( fc) . 

We may try to guarantee that the algorithm has the descent property by 
modifying the original algorithm as follows: 

x(*+i)=xW-akF(xW)-1gVe\ 

An Introduction to Optimization, Fourth Edition. 193 
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where ak is chosen to ensure that 

/(*(fc+i>) < /(*<fe)). 

For example, we may choose ak = argmin a > 0 f(x^ — aF(x^)~1g^) 
(see Theorem 9.2). We can then determine an appropriate value of ak by 
performing a line search in the direction —F(x^)~1g^k\ Note that al-
though the line search is simply the minimization of the real variable function 
φΐζ{θί) = f{x^ — aF(x^)~1g^), it is not a trivial problem to solve. 

A computational drawback of Newton's method is the need to evaluate 
F(x^) and solve the equation F(x^)d{k) = -g^k) [i.e., compute d{k) = 
—F(x^)~1g^]. To avoid the computation of F(x^)~l, the quasi-Newton 
methods use an approximation to F(x^)~1 in place of the true inverse. 
This approximation is updated at every stage so that it exhibits at least 
some properties of F(x^)~1. To get some idea about the properties that an 
approximation to F(x^)~1 should satisfy, consider the formula 

x(k+i)=x(k)-aHkgW, 

where Hk is an n x n real matrix and a is a positive search parameter. 
Expanding / about x^ yields 

/ ( a ^ + D ) = /(*(*)) + f fWT(x( fe+D - XW) + ο(||χ(*+1> - a;<fc>||) 

= /(*<*>) - agWTHkgW + o(\\Hkg^\\a). 

As a tends to zero, the second term on the right-hand side of this equation 
dominates the third. Thus, to guarantee a decrease in / for small a, we have 
to have 

/ ) TW f c )>o. 
A simple way to ensure this is to require that Hk be positive definite. We 
have proved the following result. 

Proposition 11.1 Let f G C1, x{k) G Rn , g{k) = V / («W) φ 0, and 
Hk an n x n real symmetric positive definite matrix. If we set cc(fc+1) = 
x(fc) - akHkg^k\ where ak = argmina>0 /(x ( f c ) - aHkg^), then ak > 0 
and / (x ( f c + 1 )) <f(x{k)). ü 

In constructing an approximation to the inverse of the Hessian matrix, 
we should use only the objective function and gradient values. Thus, if we 
can find a suitable method of choosing Hk, the iteration may be carried out 
without any evaluation of the Hessian and without the solution of any set of 
linear equations. 

11.2 Approximating the Inverse Hessian 

Let HQ,HI,H2, .. · be successive approximations of the inverse F(x^)~x 

of the Hessian. We now derive a condition that the approximations should 
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satisfy, which forms the starting point for our subsequent discussion of quasi-
Newton algorithms. To begin, suppose first that the Hessian matrix F(x) of 
the objective function / is constant and independent of x. In other words, 
the objective function is quadratic, with Hessian F(x) = Q for all x, where 
Q = QT. Then, 

Ä ( f c + i ) _ y W = Q ( a . ( f c + i ) _ x W ) . 

Let 

and 

Then, we may write 
Ag(k) = QAx(k). 

We start with a real symmetric positive definite matrix HQ. Note that given 
fc, the matrix Q - 1 satisfies 

Q~lAg{i) = Ax{i\ 0<i<k. 

Therefore, we also impose the requirement that the approximation fffc+i of 
the Hessian satisfy 

H^AgW = Δα (<) , 0<i<k. 

If n steps are involved, then moving in n directions Δατ° \ Δατ1 ' , . . . , Αχ^η~^ 
yields 

ΗηΔβ<°>=Δ*<°>, 

HnAgW = Axw, 

HnAg{n-x) = Ax^-V. 

This set of equations can be represented as 

Hn[AgV\Ag^,...,Ag^\ = [Αχ^,Αχ^,... ,Ax^~% 

Note that Q satisfies 

Q[Ax<°\AxW,..., Δ ί ' " - 1 »] = [AgM, Ag^,..., Ag^} 

and 

Q-1[Ag^\Ag^\...1Ag^-^] = [Ax^\Ax^\...,Ax^-1\ 

Therefore, if [Ag^°\ Ag^\ . . . ,Δ# ( η _ 1 ) ] is nonsingular, then Q _ 1 is deter-
mined uniquely after n steps, via 

Q-l=Hn = [Ax(0\Ax^,...,Ax^-%Ag^\Ag^,...,A9(n-l)rl. 
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As a consequence, we conclude that if Hn satisfies the equations HnAg^ = 
Ax{i\ 0 < i < n - 1, then the algorithm χ<*+1) = χΜ - akHkg(k\ 
ak = a rgmin a > 0 / (£C^ — aHkg^), is guaranteed to solve problems with 
quadratic objective functions in n + 1 steps, because the update χ(η + 1) = 
x(n) _ anHng(n) is equivalent to Newton's algorithm. In fact, as we shall see 
below (Theorem 11.1), such algorithms solve quadratic problems of n variables 
in at most n steps. 

The considerations above illustrate the basic idea behind the quasi-Newton 
methods. Specifically, quasi-Newton algorithms have the form 

d « = -HkgW, 

ak = argmin/(a; ( fe) + ad(k)), 
a>0 

χ ( * + ΐ ) = χ ( * ) + α ^ * > , 

where the matrices Ho, Hi,... are symmetric. In the quadratic case these 
matrices are required to satisfy 

Hk+1Ag(i) = Ax^\ 0 < z < f c , 

where Δχ ( ΐ ) = χ^+^ - a?« = a<d(<) and Ag{i) = g^+V - g& = QAx^. It 
turns out that quasi-Newton methods are also conjugate direction methods, 
as stated in the following. 

Theorem 11.1 Consider a quasi-Newton algorithm applied to a quadratic 
function with Hessian Q = Q such that for 0 < k < n — 1, 

Hk+1Ag{i) =Ax{i\ 0<i<k, 

where Hk+1 = Hj+1. If a{ φ 0, 0 < i < k, then rf(0),... ,d ( fc+1) are Q-
conjugate. D 

Proof. We proceed by induction. We begin with the k = 0 case: that d(0) 

and d(1) are Q-conjugate. Because OLQ φ 0, we can write d^ = Αχ^/αο· 
Hence, 

d^Qd^ = -gWHlQd(0) 

m x ΟΔχ ( 0 ) 

_fl(DT 

= - 9 ( 1 ) T 

a0 
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But gW^dr·0' = 0 as a consequence of ao > 0 being the minimizer of φ(α) = 
/(aj<°> + ad{0)) (see Exercise 11.1). Hence, d ( 1 ) T Qd ( 0 ) = 0. 

Assume that the result is true for k — 1 (where k < n — 1). We now prove 
the result for fc, that is, that d^°\... ,*rfc+1) are Q-conjugate. It suffices to 
show that d ( f c + 1 ) TQd ( i ) = 0, 0 < i < k. Given i, 0 < i < fc, using the same 
algebraic steps as in the k = 0 case, and using the assumption that cti φ 0, 
we obtain 

d ( fe + i )T Q d ( i ) = _ f l ( * + i ) T H f c + l Q d « ) 

= _ s (*+ i )T d (O i 

Because are Q-conjugate by assumption, we conclude from 
Lemma 10.2 that ^( f c+1)Td ( i ) = 0. Hence, d ( f c + 1 ) TQd ( i ) = 0, which com-
pletes the proof. I 

By Theorem 11.1 we conclude that a quasi-Newton algorithm solves a 
quadratic of n variables in at most n steps. 

Note that the equations that the matrices Hk are required to satisfy do 
not determine those matrices uniquely. Thus, we have some freedom in the 
way we compute the Hk- In the methods we describe, we compute Hk+i by 
adding a correction to Hk- In the following sections we consider three specific 
updating formulas. 

11.3 The Rank One Correction Formula 

In the rank one correction formula, the correction term is symmetric and has 
the form akz^z^T, where ak e R and z^ G Rn. Therefore, the update 
equation is 

Hk^=Hk + akz^z^T. 

Note that 

rankz ( fc )z ( fc )T = rank 

W 

M 
[«* (*:) ,(*) = 1 

/ 

and hence the name rank one correction [it is also called the single-rank sym-
metric (SRS) algorithm]. The product z^z^T is sometimes referred to as 
the dyadic product or outer product Observe that if Hk is symmetric, then 
so is iffc+i· 

Our goal now is to determine ak and z^k\ given Hk, Δ Α < * \ Δβ<*\ so 
that the required relationship discussed in Section 11.2 is satisfied; namely, 
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Hk+iAg^1' = Δχ(*\ i = 1 , . . . , k. To begin, let us first consider the condition 
JTfc+iA<7^ = Ax^k\ In other words, given Hk, Ag(fc), and Ax(fe), we wish 
to find ak and z^ to ensure that 

Hk+1AgW = (Hk + akzWzWT)AgW = Ax^. 

First note that z^TAg^ is a scalar. Thus, 

Ax^ - HfcAfl(fc) = ( a ^ ' V ' ) ^ , 

and hence 
Ak) = A g W - H f c A g W 

a f e ( 2 W T A 9 « ) 
We can now determine 

(fc) (fc)T = (AxW - HfcAg(fc))(AxW - HfcAg<*>)T 

* a t ( 2 « T A S W ) 2 

Hence, 

(Ax<fc) - HkAg(k)){Axik) - HkAg(k))T 

Hk+\ = Hk + 
afe(zWTAf lW)2 

,(*) 

The next step is to express the denominator of the second term on the right-
hand side of the equation above as a function of the given quantities Hk, 
Ag(fe), and Aa?(fe). To accomplish this, premultiply Aa;(fe) - HkAg^ 
(akzWJ'Agw)zW by Ag(k)r to obtain 

Ag^TAx^ - AgWTHkAgW = Aff<
fe>Tα**<*>z<*>TAg^. 

Observe that ak is a scalar and so is Ag(fe)Tz(fe) = z ( fe)TAg ( fe). Thus, 

Afl<
fc>TA*<*> - AgWTHkAgW = ak(z^TAg^)2. 

Taking this relation into account yields 

„ „ , (Ax{k) - HkAgW)(AxW - HkAg^)T 

fe+1 fe+ AgWT(AxM-HkAgM) 

We summarize the above development in the following algorithm. 

Rank One Algorithm 

1. Set k := 0; select x^ and a real symmetric positive definite ϋ"ο· 

2. If flf(fc) = 0, stop; else, d{k) = -Hkg^k\ 
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