PART 11

UNCONSTRAINED
OPTIMIZATION

CHAPTER 6

BASICS OF SET-CONSTRAINED AND
UNCONSTRAINED OPTIMIZATION

6.1 Introduction

In this chapter we consider the optimization problem

minimize f(x)
subject to x € Q.

The function f : R® — R that we wish to minimize is a real-valued function
called the objective function or cost function. The vector « is an n-vector of
independent variables: © = [z1,z2,... ,xn]T € R™. The variables zi,...,z,
are often referred to as decision variables. The set) is a subset of R™ called
the constraint set or feasible set.

The optimization problem above can be viewed as a decision problem that
involves finding the “best” vector & of the decision variables over all possible
vectors in (2. By the “best” vector we mean the one that results in the-smallest
value of the objective function. This vector is called the minimizer of f over
Q. It is possible that there may be many minimizers. In this case, finding any
of the minimizers will suffice.

An Introduction to Optimization, Fourth Edition. 81
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc.

82 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

There are also optimization problems that require maximization of the
objective function, in which case we seek mazximizers. Minimizers and maxi-
mizers are also called extremizers. Maximization problems, however, can be
represented equivalently in the minimization form above because maximizing
f is equivalent to minimizing — f. Therefore, we can confine our attention to
minimization problems without loss of generality.

The problem above is a general form of a constrained optimization prob-
lem, because the decision variables are constrained to be in the constraint
set Q. If Q = R”, then we refer to the problem as an wunconstrained opti-
mization problem. In this chapter we discuss basic properties of the general
optimization problem above, which includes the unconstrained case. In the
remaining chapters of this part, we deal with iterative algorithms for solving
unconstrained optimization problems.

The constraint “@x € 7 is called a set constraint. Often, the constraint
set Q takes the form Q@ = {z : h(z) = 0, g(z) < 0}, where h and g are
given functions. We refer to such constraints as functional constraints. The
remainder of this chapter deals with general set constraints, including the
special case where 2 = R™. The case where 2 = R" is called the unconstrained
case. In Parts III and IV we consider constrained optimization problems with
functional constraints.

In considering the general optimization problem above, we distinguish be-
tween two kinds of minimizers, as specified by the following definitions.

Definition 6.1 Suppose that f : R®™ — R is a real-valued function defined
on some set C R™. A point &* € Q is a local minimizer of f over Q if there
exists € > 0 such that f(x) > f(z*) for all x € O\ {z*} and |z — z*|| < e.
A point x* € Q is a global minimizer of f over Q if f(x) > f(z*) for all
z e\ {z*}. 1

If in the definitions above we replace “>” with “>,” then we have a strict
local minimizer and a strict global minimizer, respectively. In Figure 6.1, we
illustrate the definitions for n = 1.

If z* is a global minimizer of f over 2, we write f(2*) = mingeq f(x) and
z* = argming, g f(). If the minimization is unconstrained, we simply write
x* = argmin,, f(x) or £* = argmin f(x). In other words, given a real-valued
function f, the notation arg min f(x) denotes the argument that minimizes the
function f (a point in the domain of f), assuming that such a point is unique
(if there is more than one such point, we pick one arbitrarily). For example, if
f:R — Risgiven by f(z) = (z+1)2+3, then arg min f(z) = —1. If we write
argmingcq, then we treat “z € 1" to be a constraint for the minimization.
For example, for the function f above, arg min s f(z) = 0.

Strictly speaking, an optimization problem is solved only when a global
minimizer is found. However, global minimizers are, in general, difficult to
find. Therefore, in practice, we often have to be satisfied with finding local
minimizers.

CONDITIONS FOR LOCAL MINIMIZERS 83

A fx)

X+ Xo X3 x

Figure 6.1 Examples of minimizers: x;: strict global minimizer; x2: strict local
minimizer; x3: local (not strict) minimizer.

6.2 Conditions for Local Minimizers

In this section we derive conditions for a point &* to be a local minimizer. We
use derivatives of a function f : R™ — R. Recall that the first-order derivative
of f, denoted Df, is

of of . of

Oxy Oz’ " Oxp |

Note that the gradient V£ is just the transpose of Df; that is, Vf = (Df)7.
The second derivative of f : R® — R (also called the Hessian of f) is

Dfé{

H@ - 2@
F(z) £ D*f(z) = : :
@) - S

Example 6.1 Let f(x1,22) = 5z1 + 822 + 7122 — 27 — 272. Then,
19} 0
Df(@) = (V@) = | <L (@), 2L (@)| = [5 + 22 — 201,8 + o1 — 4a2)
8.’171 6(1)2

and
Thx) 2k (w)} [_z 1}
F =D2 — 8?1 8x228x1 — .
(x) f(=) L;alagm() %(w) 1 —4

Given an optimization problem with constraint set 0, a minimizer may lie
either in the interior or on the boundary of . To study the case where it lies
on the boundary, we need the notion of feasible directions.

84 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Q

d,

Figure 6.2 Two-dimensional illustration of feasible directions; di is a feasible
direction, d2 is not a feasible direction.

Definition 6.2 A vector d € R", d # 0, is a feasible direction at x € § if
there exists ap > 0 such that « + ad € Q for all a € [0, ag]. [|

Figure 6.2 illustrates the notion of feasible directions.

Let f : R® — R be a real-valued function and let d be a feasible direction
at ¢ € . The directional derivative of f in the direction d, denoted 8f/0d,
is the real-valued function defined by

of _ . fl@+ad) - f(z)
Bd(m) = lim, a ’
If ||d|| = 1, then 8f/0d is the rate of increase of f at @ in the direction d.

To compute the directional derivative above, suppose that « and d are given.
Then, f(z + ad) is a function of o, and

af
ad

(¢) = - f(@ +ad)

a=0
Applying the chain rule yields
of d

In summary, if d is a unit vector (||d|| = 1), then (Vf(x),d) is the rate of
increase of f at the point & in the direction d.

=Vf(z)'d=(Vf(z),d) =d Vi)

=0

Example 6.2 Define f : R — R by f(x) = z12273, and let
g tr iy’
127272
The directional derivative of f in the direction d is

1/2
Of (a) = V(@) d = [zasa,zrzn,oaza) | 12 | = ZEREDTEVINT:

od 1/v3

CONDITIONS FOR LOCAL MINIMIZERS 85

Note that because ||d|| = 1, the above is also the rate of increase of f at in
the direction d. [|

We are now ready to state and prove the following theorem.

Theorem 6.1 First-Order Necessary Condition (FONC). Let 2 be a
subset of R™ and f € C! a real-valued function on Q0. Ifx* is a local minimizer
of f over Q, then for any feasible direction d at x*, we have

d'Vf(z*) > 0.

Proof. Define
zla)=z"+ade Q.

Note that «(0) = &*. Define the composite function

Then, by Taylor’s theorem,
f(@" +ad) — f(z*) = ¢(e) = $(0) = ¢/ (O)a + o(c) = ad” VF(2(0)) + o(a),

where o > 0 [recall the definition of o(a) (“little-oh of ”) in Part I]. Thus,
if ¢(a) > ¢(0), that is, f(z* + ad) > f(x*) for sufficiently small values of
o > 0 (x* is a local minimizer), then we have to have d' Vf(z*) > 0 (see
Exercise 5.8).

Theorem 6.1 is illustrated in Figure 6.3.
An alternative way to express the FONC is

of .
%(‘D)ZO

for all feasible directions d. In other words, if * is a local minimizer, then
the rate of increase of f at * in any feasible direction d in {2 is nonnegative.
Using directional derivatives, an alternative proof of Theorem 6.1 is as follows.
Suppose that * is a local minimizer. Then, for any feasible direction d, there
exists @ > 0 such that for all a € (0, &),

f(x*) < f(@" +ad).
Hence, for all o € (0, &), we have

fl&" + od) - f(x7)

[0

> 0.

Taking the limit as o — 0, we conclude that

of .
54 %) 20

86 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

<Vf(X1),d1)<0

V(x4)

=3 f=2 f=1

Figure 6.3 Illustration of the FONC for a constrained case; &1 does not satisfy the
FONC, whereas x; satisfies the FONC.

A special case of interest is when x* is an interior point of €2 (see Sec-
tion 4.4). In this case, any direction is feasible, and we have the following
result.

Corollary 6.1 Interior Case. Let Q be a subset of R® and f € C' a real-
valued function on Q. If * is a local minimizer of f over Q and if ** is an
interior point of 2, then

Vf(z*) = 0.
O

Proof. Suppose that f has a local minimizer =* that is an interior point of
). Because =* is an interior point of €2, the set of feasible directions at =* is
the whole of R™. Thus, for any d € R”, d" Vf(z*) > 0 and ~d' Vf(z*) > 0.
Hence, dTVf(a:*) = 0 for all d € R™, which implies that V f(x*) = 0. | |

Example 6.3 Consider the problem

minimize 3} + 0.523 + 3z5 + 4.5

subject to 1,29 > 0.

a. Is the first-order necessary condition (FONC) for a local minimizer sat-
isfied at & = [1,3]?

b. Is the FONC for a local minimizer satisfied at = = [0,3]T?

c. Is the FONC for a local minimizer satisfied at = [1,0]T?

CONDITIONS FOR LOCAL MINIMIZERS 87

% 1 2
X1

w
IS

Figure 6.4 Level sets of the function in Example 6.3.

d. Is the FONC for a local minimizer satisfied at & = [0,0]"?

Solution: First, let f : R2 — R be defined by f(x) = 2? + 0.52% + 3z, + 4.5,
where & = [z1,22]". A plot of the level sets of f is shown in Figure 6.4.

a. At © = [1,3]7, we have Vf(z) = [2z1,22 + 3] = [2,6]". The point
= [1,3]7 is an interior point of @ = {x : z1 > 0,z2 > 0}. Hence, the
FONC requires that Vf(a) = 0. The point = = [1,3]"T does not satisfy
the FONC for a local minimizer.

b. At & = [0,3]7, we have Vf(z) = [0,6]T, and hence d' Vf(z) = 6da,
where d = [dl,dg]T. For d to be feasible at x, we need d; > 0, and ds
can take an arbitrary value in R. The point « = [0,3]" does not satisfy
the FONC for a minimizer because d5 is allowed to be less than zero. For
example, d = [1,—1]T is a feasible direction, but d'Vvf (x) = -6 <0.

c. Atz = [1,0]T, we have Vf(x) = [2,3]", and hence d' V f(x) = 2d;+3d>.
For d to be feasible, we need d; > 0, and d; can take an arbitrary
value in R. For example, d = [-5,1]7 is a feasible direction. But
d"Vf(x) = =7 < 0. Thus, z = [1,0]7 does not satisfy the FONC
for a local minimizer.

d. Atz =1[0,0]7, we have Vf(z) = [0,3]7, and hence d' Vf(x) = 3da. For
d to be feasible, we need dy > 0 and d; > 0. Hence, = [0,0]" satisfies
the FONC for a local minimizer. [

Example 6.4 Figure 6.5 shows a simplified model of a cellular wireless sys-
tem (the distances shown have been scaled down to make the calculations

88 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Primary 2 | Neighboring
Base Station 1‘ > Base Station
b Ny

Signal Interference
1 1
\
| Mobile

Figure 6.5 Simplified cellular wireless system in Example 6.4.

simpler). A mobile user (also called a mobile) is located at position z (see
Figure 6.5).

There are two base station antennas, one for the primary base station
and another for the neighboring base station. Both antennas are transmitting
signals to the mobile user, at equal power. However, the power of the received
signal as measured by the mobile is the reciprocal of the squared distance
from the associated antenna (primary or neighboring base station). We are
interested in finding the position of the mobile that maximizes the signal-to-
interference ratio, which is the ratio of the signal power received from the
primary base station to the signal power received from the neighboring base
station.

We use the FONC to solve this problem. The squared distance from the
mobile to the primary antenna is 1 4 2, while the squared distance from the
mobile to the neighboring antenna is 1 + (2 — x)2. Therefore, the signal-to-
interference ratio is

2
floy=1HEE
We have
by 22 -2)1+2%) —22(1+(2—12)%)
@)= (1+422)2
_ Az?—20-1)

(1+x2)2

By the FONC, at the optimal position z* we have f'(z*) = 0. Hence, either
* =1—+/2or z* = 1+ /2. Evaluating the objective function at these two
candidate points, it easy to see that z* = 1 — /2 is the optimal position. W

The next example illustrates that in some problems the FONC is not helpful
for eliminating candidate local minimizers. However, in such cases, there may
be a recasting of the problem into an equivalent form that makes the FONC
useful.

CONDITIONS FOR LOCAL MINIMIZERS 89

Example 6.5 Consider the set-constrained problem

minimize f(x)
subject to = € Q,

where Q = {[z1,23]" : 22 + 23 = 1}.

a.
b.

C.

d.

Consider a point £* € Q. Specify all feasible directions at a*.
Which points in Q satisfy the FONC for this set-constrained problem?

Based on part b, is the FONC for this set-constrained problem useful for
eliminating local-minimizer candidates?

Suppose that we use polar coordinates to parameterize points ¢ € €2 in
terms of a single parameter 6:

z1 = cosl To = sinf.

Now use the FONC for unconstrained problems (with respect to) to
derive a necessary condition of this sort: If * € §2 is a local minimizer,
then d' Vf(z*) = 0 for all d satisfying a “certain condition.” Specify
what this certain condition is.

Solution:

a.

b.

There are no feasible directions at any x*.

Because of part a, all points in € satisfy the FONC for this set-
constrained problem.

. No, the FONC for this set-constrained problem is not useful for eliminat-

ing local-minimizer candidates.

. Write h(8) = f(g(8)), where g : R — R? is given by the equations relating

6 to & = [z1,z2)7. Note that Dg(f) = [—siné,cosd]T. Hence, by the
chain rule,

H'(6) = Df(g(6))Dg(6) = Dg(8) "V £(9(6)).

Notice that Dg(f) is tangent to Q at & = g(6). Alternatively, we could
say that Dg(8) is orthogonal to & = ¢(0).

Suppose that * € Q is a local minimizer. Write £* = g(8*). Then
#* is an unconstrained minimizer of h. By the FONC for unconstrained
problems, #'(8*) = 0, which implies that d' V f(x*) = 0 for all d tangent
to Q at «* (or, alternatively, for all d orthogonal to z*). |

We now derive a second-order necessary condition that is satisfied by a
local minimizer.

90 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Theorem 6.2 Second-Order Necessary Condition (SONC). Let Q C
R", f € C? a function on 2, * a local minimizer of f over Q, and d a feasible
direction at *. If d' Vf(x*) =0, then

d"F(z*)d >0,
where F is the Hessian of f. |

Proof. We prove the result by contradiction. Suppose that there is a feasible
direction d at =* such that d' Vf(x*) = 0 and d' F(z*)d < 0. Let x(a) =
x* + ad and define the composite function ¢(a) = f(z* + ad) = f(z(a)).
Then, by Taylor’s theorem,

a?

2 + 0(&2),

¢(a) = ¢(0) + ¢"(0)

where by assumption, ¢'(0) = d' Vf(x*) = 0 and ¢”/(0) = d' F(z*)d < 0.
For sufficiently small a,

a?

5 +o(c?) <0,

$(a) — $(0) = ¢"(0)

that is,
f(@* + od) < f(z7),

which contradicts the assumption that &* is a local minimizer. Thus,

¢"(0) =d" F(z*)d > 0.

Corollary 6.2 Interior Case. Let x* be an interior point of Q@ C R™. If
x* is a local minimizer of f: Q2 — R, f € C?, then

Vi) =0,
and F(x*) is positive semidefinite (F(x*) > 0); that is, for all d € R",
d'F(z*)d > 0.
0O

Proof. If x* is an interior point, then all directions are feasible. The result
then follows from Corollary 6.1 and Theorem 6.2. |

In the examples below, we show that the necessary conditions are not
sufficient.

Example 6.6 Consider a function of one variable f(z) = 2%, f : R — R.
Because f/(0) = 0, and f”(0) = 0, the point z = 0 satisfies both the FONC
and SONC. However, z = 0 is not a minimizer (see Figure 6.6). |

CONDITIONS FOR LOCAL MINIMIZERS 91

Ax)
f(x)=x3

i

Figure 6.6 The point 0 satisfies the FONC and SONC but is not a minimizer.

Example 6.7 Consider a function f : R? — R, where f(z) = z? — z3. The
FONC requires that Vf(z) = [221, —2x2]T = 0. Thus, = [0,0]" satisfies
the FONC. The Hessian matrix of f is

2 0

Flz) =
@ =15

The Hessian matrix is indefinite; that is, for some d; € R? we have le Fd; >0

(e-g., d1 = [1,0]T) and for some dy we have dj Fdy < 0 (e.g., dy = [0,1]7).

Thus, = [0,0] T does not satisfy the SONC, and hence it is not a minimizer.

The graph of f(z) = z? — 22 is shown in Figure 6.7. [|

Figure 6.7 Graph of f(z) = «? — 2%. The point 0 satisfies the FONC but not
SONC; this point is not a minimizer.

92 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

We now derive sufficient conditions that imply that x* is a local minimizer.

Theorem 6.3 Second-Order Sufficient Condition (SOSC), Interior
Case. Let f € C? be defined on a region in which * is an interior point.
Suppose that

1. Vf(z*)=0.
2. F(z*) > 0.
Then, x* is a strict local minimizer of f. a

Proof. Because f € C2, we have F(z*) = F' (x*). Using assumption 2 and
Rayleigh’s inequality it follows that if d # 0, then 0 < Amin(F(z*))||d|? <
d' F(z*)d. By Taylor’s theorem and assumption 1,

Amin(F(z*))
2

f@ +d) — f(@®) = 2d" Fa*)d+ of[d?) >

5 dll” + o(lld]*).

Hence, for all d such that ||d|| is sufficiently small,
fl&* +d) > f(z"),

which completes the proof. [|

Example 6.8 Let f(z) = 27 + 23. We have V f(x) = [271,22,]T = 0 if and
only if = [0,0]T. For all « € R?, we have

CHNE

The point & = [0,0]T satisfies the FONC, SONC, and SOSC. It is a strict
local minimizer. Actually, z = [0,0]" is a strict global minimizer. Figure 6.8
shows the graph of f(z) = 22 + 3. [|

In this chapter we presented a theoretical basis for the solution of non-
linear unconstrained problems. In the following chapters we are concerned
with iterative methods of solving such problems. Such methods are of great
importance in practice. Indeed, suppose that one is confronted with a highly
nonlinear function of 20 variables. Then, the FONC requires the solution of
20 nonlinear simultaneous equations for 20 variables. These equations, being
nonlinear, will normally have multiple solutions. In addition, we would have
to compute 210 second derivatives (provided that f € C?) to use the SONC
or SOSC. We begin our discussion of iterative methods in the next chapter
with search methods for functions of one variable.

EXERCISES 93

Figure 6.8 Graph of f(z) = 2% + 23.
EXERCISES

6.1 Consider the problem

minimize f(x)
subject to x € Q,
where f € C2. For each of the following specifications for Q, =*, and f, de-

termine if the given point z* is: (i) definitely a local minimizer; (ii) definitely
not a local minimizer; or (iii) possibly a local minimizer.

a. f:R2 SR, Q={x=[z,20]" : 21 > 1}, 2* = [1,2]7, and gradient
Vi) =[1,1]".

b. f:R? - R, Q= {x = [z1,29]" : 21 > Lz > 2}, o* = [1,2]7, and
gradient Vf(z*) = [1,0]T.

c. f:R2-R,Q={x=[z1,22]" : 21 > 0,72 > 0}, z* = [1,2]", gradient
Vf(z*) =[0,0]T, and Hessian F(x*) = I (identity matrix).

d. f:R? R Q= {x=[z1,22]" : 21 > 1,22 > 2}, 2* = [1,2]7, gradient
Vf(z*) =[1,0]T, and Hessian

1 0
F(z*) = .
(") [0 _1]
6.2 Find minimizers and maximizers of the function

1 1
flz1,z2) = ng — 4z + gmg — 16z2.

94 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

6.3 Show that if * is a global minimizer of f over 2, and &* € ' C Q, then
x* is a global minimizer of f over .

6.4 Suppose that z* is a local minimizer of f over §2, and Q@ C €. Show
that if «* is an interior point of 2, then =* is a local minimizer of f over §V'.
Show that the same conclusion cannot be made if * is not an interior point
of 2.

6.5 Consider the problem of minimizing f : R — R, f € C3, over the
constraint set Q. Suppose that 0 is an interior point of 2.

a. Suppose that 0 is a local minimizer. By the FONC we know that f/(0) =
0 (where f’ is the first derivative of f). By the SONC we know that
F"(0) > 0 (where f” is the second derivative of f). State and prove a
third-order necessary condition (TONC) involving the third derivative at

0, f///(o) .

b. Give an example of f such that the FONC, SONC, and TONC (in part
a) hold at the interior point 0, but 0 is not a local minimizer of f over
Q. (Show that your example is correct.)

c. Suppose that f is a third-order polynomial. If 0 satisfies the FONC,
SONC, and TONC (in part a), then is this sufficient for 0 to be a local
minimizer?

6.6 Consider the problem of minimizing f : R — R, f € C3, over the
constraint set 2 = [0, 1]. Suppose that z* = 0 is a local minimizer.

a. By the FONC we know that f'(0) > 0 (where f’ is the first derivative
of f). By the SONC we know that if f’(0) = 0, then f”(0) > 0 (where
f" is the second derivative of f). State and prove a third-order necessary
condition involving the third derivative at 0, f"/(0).

b. Give an example of f such that the FONC, SONC, and TONC (in part
a) hold at the point 0, but 0 is not a local minimizer of f over Q = [0, 1].

6.7 Let f:R"™ — R, g € R™, and 2 C R™. Show that
o + argmin f(x) = argmin f(y),
zEN ye!

where Q' = {y : y —xg € Q}.

6.8 Consider the following function f : R? — R:

o=a [} Yeve [7] o

EXERCISES 95

a. Find the gradient and Hessian of f at the point [1,1]T.

b. Find the directional derivative of f at [1,1]T with respect to a unit vector
in the direction of maximal rate of increase.

c. Find a point that satisfies the FONC (interior case) for f. Does this
point satisfy the SONC (for a minimizer)?

6.9 Consider the following function:
f(d,‘l,.'l,‘g) = CU%IEQ + J;‘gxl.

a. In what direction does the function f decrease most rapidly at the point
z©® =[2,1]T?

b. What is the rate of increase of f at the point (% in the direction of
maximum decrease of f7

c. Find the rate of increase of f at the point (%) in the direction d = [3,4] .

6.10 Consider the following function f : R? — R:

2
R

T
T+
-1 1 *

f@) =a" [:

a. Find the directional derivative of f at [0,1]7 in the direction [1,0].

b. Find all points that satisfy the first-order necessary condition for f.

Does f have a minimizer? If it does, then find all minimizer(s); otherwise,
explain why it does not.

6.11 Consider the problem

minimize — 3

subject to |zg| < x?
Z1 Z 07

where z1,z2 € R.

a. Does the point [z3,z2]7 = O satisfy the first-order necessary condition
for a minimizer? That is, if f is the objective function, is it true that
d"Vf(0) > 0 for all feasible directions d at 07

b. Is the point [a:l,arz]T = 0 a local minimizer, a strict local minimizer, a
local maximizer, a strict local maximizer, or none of the above?

96 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

6.12 Consider the problem

minimize f(x)
subject to x € Q,

where f: R? — R is given by f(x) = 5z5 with = [z1,29] ", and Q = {z =
[:El,:liz]T : .’13% + 29 2> 1}

a. Does the point * = [0,1]7 satisfy the first-order necessary condition?
b. Does the point ¢* = [0,1]" satisfy the second-order necessary condition?

c. Is the point * = [0,1]T a local minimizer?

6.13 Consider the problem

minimize f(x)

subject to x € €,

where f : R? — R is given by f(x) = —3z; with ¢ = [z;,22]", and Q = {z =
[1,22]7 : 21 + 23 < 2}. Answer each of the following questions, showing
complete justification.

a. Does the point z* = [2,0] " satisfy the first-order necessary condition?
b. Does the point * = [2,0]" satisfy the second-order necessary condition?

c. Is the point * = [2,0]" a local minimizer?

6.14 Consider the problem

minimize f(x)
subject to x € €2,

where Q = {z € R? : 22 + 2% > 1} and f(z) = z».
a. Find all point(s) satisfying the FONC.
b. Which of the point(s) in part a satisfy the SONC?

c. Which of the point(s) in part a are local minimizers?

6.15 Consider the problem

minimize f(x)

subject to x € 2

EXERCISES 97

where f : R? — R is given by f(z) = 3z; with = [z1,22], and Q = {z =
[1,22)" : 21 + 23 > 2}. Answer each of the following questions, showing
complete justification.

a. Does the point * = [2,0]" satisfy the first-order necessary condition?
b. Does the point &* = [2,0]" satisfy the second-order necessary condition?

c. Is the point z* = [2,0]" a local minimizer?
Hint: Draw a picture with the constraint set and level sets of f.

6.16 Consider the problem

minimize f(x)
subject to =z € Q,

where & = [z1,72]", f: R? — R is given by f(z) = 42? — 2%, and Q = {x :
22 +2z1 — 22 > 0,71 > 0,22 > 0}.

a. Does the point z* = 0 = [0,0] satisfy the first-order necessary condi-
tion?

b. Does the point * = 0 satisfy the second-order necessary condition?

c. Is the point £* = 0 a local minimizer of the given problem?

6.17 Consider the problem

maximize f(x)

subject to x € 2,
where @ C {x € R? : z; > 0,2zp > 0} and f : Q@ — R is given by
f(z) = log(z1) + log(z2) with & = [z1,2,]", where “log” represents natu-

ral logarithm. Suppose that x* is an optimal solution. Answer each of the
following questions, showing complete justification.

a. Is it possible that «* is an interior point of Q7
p

b. At what point(s) (if any) is the second-order necessary condition satisfied?

6.18 Suppose that we are given n real numbers, z1,...,Z,. Find the number
T € R such that the sum of the squared difference between Z and the numbers
above is minimized (assuming that the solution Z exists).

6.19 An art collector stands at a distance of x feet from the wall, where a
piece of art (picture) of height a feet is hung, b feet above his eyes, as shown in

98 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

Picture

Eye A ———————————————

-+ >

Figure 6.9 Art collector’s eye position in Exercise 6.19.

‘,

— » Sensor
X

Figure 6.10 Simplified fetal heart monitoring system for Exercise 6.20.

Figure 6.9. Find the distance from the wall for which the angle 8 subtended
by the eye to the picture is maximized.

Hint: (1) Maximizing 6 is equivalent to maximizing tan(6).

(2) If 8 = 82 — 64, then tan(f) = (tan(f2) — tan(61))/(1 + tan(f2) tan(6;)).

6.20 Figure 6.10 shows a simplified model of a fetal heart monitoring system
(the distances shown have been scaled down to make the calculations simpler).
A heartbeat sensor is located at position z (see Figure 6.10).

The energy of the heartbeat signal measured by the sensor is the reciprocal
of the squared distance from the source (baby’s heart or mother’s heart).
Find the position of the sensor that maximizes the signal-to-interference ratio,
which is the ratio of the signal energy from the baby’s heart to the signal
energy from the mother’s heart.

6.21 An amphibian vehicle needs to travel from point A (on land) to point
B (in water), as illustrated in Figure 6.11. The speeds at which the vehicle
travels on land and water are v; and v, respectively.

EXERCISES 99

Figure 6.11 Path of amphibian vehicle in Exercise 6.21.

a. Suppose that the vehicle traverses a path that minimizes the total time
taken to travel from A to B. Use the first-order necessary condition to
show that for the optimal path above, the angles #; and 65 in Figure 6.11
satisfy Snell’s law:

sin 91 m
sin 92 V2)

b. Does the minimizer for the problem in part a satisfy the second-order
sufficient condition?

6.22 Suppose that you have a piece of land to sell and you have two buyers.
If the first buyer receives a fraction z; of the piece of land, the buyer will pay
you Ui(z;) dollars. Similarly, the second buyer will pay you Usz(z2) dollars
for a fraction of zo of the land. Your goal is to sell parts of your land to the
two buyers so that you maximize the total dollars you receive. (Other than
the constraint that you can only sell whatever land you own, there are no
restrictions on how much land you can sell to each buyer.)

a. Formulate the problem as an optimization problem of the kind

maximize f(x)
subject to x € Q

by specifying f and Q. Draw a picture of the constraint set.

100 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

b. Suppose that U;(z;) = a;x;, ¢ = 1,2, where a; and as are given positive
constants such that a; > ap. Find all feasible points that satisfy the
first-order necessary condition, giving full justification.

c. Among those points in the answer of part b, find all that also satisfy the
second-order necessary condition.

6.23 Let f:R? — R be defined by

f(m)=(3"1_$2)4+$¥—$%—2$1+2$2+1,

where & = [71,72]". Suppose that we wish to minimize f over R?. Find all
points satisfying the FONC. Do these points satisfy the SONC?

6.24 Show that if d is a feasible direction at a point & € €, then for all
B > 0, the vector 8d is also a feasible direction at .

6.25 Let Q = {x € R® : Az = b}. Show that d € R" is a feasible direction
at ¢ € Q if and only if Ad = 0.

6.26 Let f:R? — R. Consider the problem

minimize f(x)

subject to z1,x2 > 0,
where & = [11,z2]". Suppose that V f(0) # 0, and

o of

Oz 0) < Oz 0) <o

Show that 0 cannot be a minimizer for this problem.

6.27 Let c € R", ¢ # 0, and consider the problem of minimizing the function
f(z) = c'x over a constraint set @ C R™. Show that we cannot have a
solution lying in the interior of 2.

6.28 Consider the problem

maximize c¢1z1 + coxo
subject to 1 +x2 <1
T1,72 > 0,

where ¢; and ¢y are constants such that ¢; > ¢; > 0. This is a linear program-
ming problem (see Part III). Assuming that the problem has an optimal fea-
sible solution, use the first-order necessary condition to show that the unique
optimal feasible solution z* is [1,0]T.

EXERCISES 101

Hint: First show that £* cannot lie in the interior of the constraint set. Then,
show that &* cannot lie on the line segments L1 = {& : z; = 0,0 < 22 < 1},
Ly={x:0< 2 <1,x2=0},L3={w:0§az1<1,x2=1—x1}.

6.29 Line Fitting. Let [z1,1]",...,[Zn,¥n], 7 > 2, be points on the R?
plane (each z;,y; € R). We wish to find the straight line of “best fit” through
these points (“best” in the sense that the average squared error is minimized);
that is, we wish to find a,b € R to minimize

1 n
fla,b) = ;Z (ax; +b— y1
=1
a. Let
- 1<
X=E;$i,
1 n
?z_zyiv
i
— 1&
X2=—fo,
ni:l
W:

Lo o
E;yiy
— 1<

X =;;xiyi.

Show that f(a,b) can be written in the form 2" Qz — 2¢" z + d, where
z=1a,b]",Q= Q' ¢ R_sz_,c € | R2_and d € R, and find expressions for
Q, c, and d in terms of X, Y, X2, Y2 and XY.

h<

b. Assume that the z;, i = 1,...,n, are not all equal. Flﬂ the parameters
a* and b* for the line of best fit in terms of X, 2 Y2 and XY.
Show that the point [a*,b*] " is the only local minimizer of f

Hint: X2 — (X)? = 121 Nz — X)2

c. Show that if a* and b* are the parameters of the line of best fit, then
Y = a*X + b* (and hence > once we have computed a*, we can compute
b* using the formula * =Y — a*X).

6.30 Suppose that we are given a set of vectors {&(1),...,2®}, 2 ¢ R",
i =1,...,p. Find the vector £ € R™ such that the average squared distance
(norm) between & and (1, ..., x®),

1< .
- Z ”a_: - :B(z)HQ,
et

102 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

is minimized. Use the SOSC to prove that the vector found above is a strict
local minimizer. How is & related to the centroid (or center of gravity) of the
given set of points {z(1),...,x®}?

6.31 Consider a function f : € — R, where C R”™ is a convex set and
f € Ct. Given z* € Q, suppose that there exists ¢ > 0 such that dTVf(z*) >
c||d|| for all feasible directions d at *. Show that x* is a strict local minimizer
of f over Q.

6.32 Prove the following generalization of the second-order sufficient condi-

tion:

Theorem: Let (2 be a convex subset of R”, f € C? a real-valued function on
Q, and =* a point in Q2. Suppose that there exists ¢ € R, ¢ > 0, such that
for all feasible directions d at «* (d # 0), the following hold:

1. d"Vf(z*) > 0.
2. d' F(x*)d > c||d|]2.

Then, «* is a strict local minimizer of f.

6.33 Consider the quadratic function f : R™ — R given by
flx) = ’2'$TQ1L' —z'b,

where Q@ = QT > 0. Show that &* minimizes f if and only if &* satisfies the
FONC.

6.34 Consider the linear system zxy1 = axg + bug+1, k > 0, where z; € R,
u; € R, and the initial condition is g = 0. Find the values of the control
inputs %y, ..., u, to minimize

n
—qTp + T E uf,
=1

where ¢,7 > 0 are given constants. This can be interpreted as desiring to
make z,, as large as possible but at the same time desiring to make the total
input energy Z?zl u? as small as possible. The constants q and r reflect the
relative weights of these two objectives.

CHAPTER 7

ONE-DIMENSIONAL SEARCH METHODS

7.1 Introduction

In this chapter, we are interested in the problem of minimizing an objec-
tive function f : R — R (i.e., a one-dimensional problem). The approach is
to use an iterative search algorithm, also called a line-search method. One-
dimensional search methods are of interest for the following reasons. First,
they are special cases of search methods used in multivariable problems. Sec-
ond, they are used as part of general multivariable algorithms (as described
later in Section 7.8).

In an iterative algorithm, we start with an initial candidate solution z(®
and generate a sequence of iterates =V, 2(?) ... For each iteration k =
0,1,2,..., the next point z(**1) depends on z(*) and the objective function
f. The algorithm may use only the value of f at specific points, or perhaps
its first derivative f’, or even its second derivative f”. In this chapter, we
study several algorithms:

* Golden section method (uses only f)

= Fibonacci method (uses only f)

An Introduction to Optimization, Fourth Edition. 103
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc.

104 ONE-DIMENSIONAL SEARCH METHODS

M(X)

Y

Figure 7.1 Unimodal function.

= Bisection method (uses only f')
= Secant method (uses only f')
= Newton’s method (uses f’ and f”')

The exposition here is based on [27)].

7.2 Golden Section Search

The search methods we discuss in this and the next two sections allow us to
determine the minimizer of an objective function f : R — R over a closed
interval, say [ag,bp]. The only property that we assume of the objective
function f is that it is unimodal, which means that f has only one local
minimizer. An example of such a function is depicted in Figure 7.1.

The methods we discuss are based on evaluating the objective function
at different points in the interval [ag, bg]. We choose these points in such a
way that an approximation to the minimizer of f may be achieved in as few
evaluations as possible. Our goal is to narrow the range progressively until
the minimizer is “boxed in” with sufficient accuracy.

Consider a unimodal function f of one variable and the interval [ag, bo).
If we evaluate f at only one intermediate point of the interval, we cannot
narrow the range within which we know the minimizer is located. We have
to evaluate f at two intermediate points, as illustrated in Figure 7.2. We
choose the intermediate points in such a way that the reduction in the range
is symmetric, in the sense that

a; —ag = bo — bl = p(bo —ao),
where

<1
p<3

We then evaluate f at the intermediate points. If f(a;) < f(b1), then the
minimizer must lie in the range [ag, b1]. If, on the other hand, f(a;) > f(b1),
then the minimizer is located in the range [a1,by] (see Figure 7.3).

GOLDEN SECTION SEARCH 105

aq-agp bo'b1

l I i l
¥ 1 T T

ap aq b1 bo

Figure 7.2 Evaluating the objective function at two intermediate points.

A0

Y

Figure 7.3 The case where f(a1) < f(b1); the minimizer z* € [ao, b1].

Starting with the reduced range of uncertainty, we can repeat the process
and similarly find two new points, say as and bs, using the same value of
p < % as before. However, we would like to minimize the number of objec-
tive function evaluations while reducing the width of the uncertainty interval.
Suppose, for example, that f(a;) < f(b1), as in Figure 7.3. Then, we know
that z* € [ag, b1]. Because @, is already in the uncertainty interval and f(a;)
is already known, we can make a; coincide with b3. Thus, only one new evalu-
ation of f at a; would be necessary. To find the value of p that results in only
one new evaluation of f, see Figure 7.4. Without loss of generality, imagine
that the original range [ag, bo] is of unit length. Then, to have only one new
evaluation of f it is enough to choose p so that

p(bl - CLQ) == b1 - b2.
Because by —ag =1—p and b; — by = 1 — 2p, we have
p(l—p)=1-2p.

We write the quadratic equation above as

PP =3p+1=0.
The solutions are
3+v5 3—-V5
p1= 5 P2 = 5

106 ONE-DIMENSIONAL SEARCH METHODS

1-p
P il
| P 1-2p P
B S e S i S
] 1 1 | |
T T ¥ T T
bo'ao=1 -

Figure 7.4 Finding value of p resulting in only one new evaluation of f.

Because we require that p < %, we take

=3 _2‘/5 ~ 0.382.

P

Observe that

Vv5—-1

l—-p= 2
and
p__3-V5_ V-1 _ 1-p
l1-p V5-1 2 17
that is,
p _1-r
1-p 1

Thus, dividing a range in the ratio of p to 1 — p has the effect that the ratio of
the shorter segment to the longer equals the ratio of the longer to the sum of
the two. This rule was referred to by ancient Greek geometers as the golden
section.

Using the golden section rule means that at every stage of the uncertainty
range reduction (except the first), the objective function f need only be
evaluated at one new point. The uncertainty range is reduced by the ra-
tio 1 — p = 0.61803 at every stage. Hence, IV steps of reduction using the
golden section method reduces the range by the factor

(1-p)N ~ (0.61803)".
Example 7.1 Suppose that we wish to use the golden section search method
to find the value of x that minimizes
f(z) = z* — 142% 4+ 6022 — 70z

in the interval [0, 2] (this function comes from an example in [21]). We wish
to locate this value of z to within a range of 0.3.

GOLDEN SECTION SEARCH 107

After N stages the range [0, 2] is reduced by (0.61803)N. So, we choose N
so that
(0.61803)N < 0.3/2.

Four stages of reduction will do; that is, N = 4.
Iteration 1. We evaluate f at two intermediate points a; and b;. We have

ai = ag + p(bo - ao) = 0.7639,
by =ag+ (1 - p)(bo - ao) = 1.236,

where p = (3 — v/5)/2. We compute

f(al) = —24.36,
f(by) = —18.96.

Thus, f(a1) < f(b1), so the uncertainty interval is reduced to
(a0, b1] = [0, 1.236].

Iteration 2. We choose bs to coincide with a3, and so f need only be
evaluated at one new point,

ag = ag + p{by — ag) = 0.4721.
We have

f(ap) = —21.10,
f(b2) = flay) = —24.36.

Now, f(b2) < f(az), so the uncertainty interval is reduced to
[az, b1] = [0.4721,1.236].
Tteration 3. We set az = by and compute b3:
b3 = az + (1 — p){b1 — a2) = 0.9443.
We have

flaz) = f(b2) = —24.36,
f(bs) = —23.59.

So f(b3) > f(a3). Hence, the uncertainty interval is further reduced to
(a2, bs] = [0.4721,0.9443).
Iteration 4. We set by = az and

aq4 =ag + p(b3 - a2) = (.6525.

108 ONE-DIMENSIONAL SEARCH METHODS

We have
flaq) = —23.84,
f(by) = f(az) = —24.36.

Hence, f(a4) > f(bs). Thus, the value of z that minimizes f is located in the
interval
[as, b3] = [0.6525,0.9443].

Note that b3 — aq4 = 0.292 < 0.3.]

7.3 Fibonacci Method

Recall that the golden section method uses the same value of p throughout.
Suppose now that we are allowed to vary the value p from stage to stage, so
that at the kth stage in the reduction process we use a value pg, at the next
stage we use a value pg41, and so on.

As in the golden section search, our goal is to select successive values of
Pk, 0 < pr < 1/2, such that only one new function evaluation is required at
each stage. To derive the strategy for selecting evaluation points, consider
Figure 7.5. From this figure we see that it is sufficient to choose the pg such
that

pr+1(1 = pr) =1 — 2p.

After some manipulations, we obtain

Pk
L—pr
There are many sequences pi1, pg, . .. that satisfy the law of formation above
and the condition that 0 < pr < 1/2. For example, the sequence p; = pg =
ps = --+ = (3 — v/5)/2 satisfies the conditions above and gives rise to the
golden section method.

Suppose that we are given a sequence p1, ps, ... satisfying the conditions
above and we use this sequence in our search algorithm. Then, after N iter-
ations of the algorithm, the uncertainty range is reduced by a factor of

(1-p)(1—p2)---(1-pn).

Depending on the sequence pi, p2,..., we get a different reduction factor.
The natural question is as follows: What sequence py, ps, ... minimizes the
reduction factor above? This problem is a constrained optimization problem
that can be stated formally as

Prtr=1—

minimize (1 — p1)(1 —p2)---(1— pn)
Pk k=1,...,N-1

subject to pr+1 =1— 7

k
1
0<pe<y k=1,...,N.

FIBONACCI METHOD 109

A

o
<
-t
|
)
o
<
o
=

lteration k

|
il i

A4 bk+1

lteration k+1

A
Y

1—pk

Figure 7.5 Selecting evaluation points.

Before we give the solution to the optimization problem above, we need to
introduce the Fibonacci sequence Fi, Fy, F3,.... This sequence is defined as
follows. First, let F_; = 0 and Fy = 1 by convention. Then, for £ > 0,

Fiy1 = F + Fi-1.
Some values of elements in the Fibonacci sequence are:

F, F», F3 F, Fs Fg¢ F; Fg
1 2 3 5 8 13 21 34

It turns out that the solution to the optimization problem above is

=1— Fy
P1 FN+1’
_ 1 Fva
P2 FN 3
e =1 iN—k-H
N—k+2
F
=1-2
PN sz

where the F} are the elements of the Fibonacci sequence. The resulting al-
gorithm is called the Fibonacci search method. We present a proof for the
optimality of the Fibonacci search method later in this section.

In the Fibonacci search method, the uncertainty range is reduced by the
factor

Fy Fno1 R R 1

]_"— 1— ~--1— = = = .
(p1)(p2) - (PN) Fyi1 Fn 2 Fri1 Fni1

110 ONE-DIMENSIONAL SEARCH METHODS

Because the Fibonacci method uses the optimal values of ps, p2, ..., the re-
duction factor above is less than that of the golden section method. In other
words, the Fibonacci method is better than the golden section method in that
it gives a smaller final uncertainty range.

We point out that there is an anomaly in the final iteration of the Fibonacci
search method, because

Recall that we need two intermediate points at each stage, one that comes
from a previous iteration and another that is a new evaluation point. However,
with py = 1/2, the two intermediate points coincide in the middle of the
uncertainty interval, and therefore we cannot further reduce the uncertainty
range. To get around this problem, we perform the new evaluation for the
last iteration using py = 1/2 — ¢, where ¢ is a small number. In other words,
the new evaluation point is just to the left or right of the midpoint of the
uncertainty interval. This modification to the Fibonacci method is, of course,
of no significant practical consequence.

As a result of the modification above, the reduction in the uncertainty
range at the last iteration may be either

1
1"PN=§

or

1 1+ 2
1_(pN_€)=§+€: 9)

depending on which of the two points has the smaller objective function value.
Therefore, in the worst case, the reduction factor in the uncertainty range for
the Fibonacci method is

1+ 2¢
Fni’

Example 7.2 Consider the function
f(z) = z* — 1423 + 602 — 70z.

Suppose that we wish to use the Fibonacci search method to find the value of
z that minimizes f over the range [0, 2], and locate this value of to within
the range 0.3.
After N steps the range is reduced by (1+2¢)/Fn41 in the worst case. We
need to choose N such that
142 < final range 0.3

= — =0.15.
Fy41 ~ initial range 2

Thus, we need
1+ 2¢

Fryoi > .
N+l =915

FIBONACCI METHOD

If we choose € < 0.1, then NV =4 will do.
Iteration 1. We start with

Fy 5
1—p1=75=§.

We then compute

3
a; = ag + p1(bo — ag) = Yk
5
by =ao+ (1~ p1)(bo —ao) = T

flay) = —24.34,

f(by) = —18.65,

fla1) < f(b1).
The range is reduced to
5
[a'07bl] = {Oa Z:l .

Iteration 2. We have

1
az = ap + p2(by — ag) = 3

by = a; =
flag) = —21.69,
f(b2) = fay) = —24.34,
fla2) > f(ba),

so the range is reduced to
15
laz, b1] = [§> ZJ .

Iteration 3. We compute

b3 = az + (1 — p3)(by —az) =1,
flaz) = f(bz) = —24.34,
f(b3) = —23,
flas) < f(bs).

111

112 ONE-DIMENSIONAL SEARCH METHODS

The range is reduced to

1
[a27b3] - |:—2'711| .
Iteration 4. We choose € = 0.05. We have
L= _1
S
a4 = az + (pg —€){bs — az) = 0.725,
by=a3 =7,
f(a4) = ——24.27,
f(bs) = flas) = —24.34,
flas) > f(ba).

The range is reduced to
[a4,b3] = {0725, 1] B

Note that b3 — aq = 0.275 < 0.3. | |

We now turn to a proof of the optimality of the Fibonacci search method.
Skipping the rest of this section does not affect the continuity of the presen-
tation.

To begin, recall that we wish to prove that the values of pi,p2,...,poN
used in the Fibonacci method, where pr, = 1 — FN_k+1/FN—k+2, solve the
optimization problem

minimize (1 — p1)(1 —p2)---(1 = pn)

Pk p=1,...,N-1
~ Pk

k=1,...,N.

subject to pgy1=1- 1

1
'2'a
It is easy to check that the values of py, po, ... above for the Fibonacci search
method satisfy the feasibility conditions in the optimization problem above
(see Exercise 7.4). Recall that the Fibonacci method has an overall reduction
factor of (1 — p1)---(1 — pn) = 1/Fn+1. To prove that the Fibonacci search
method is optimal, we show that for any feasible values of py, ..., pn, we have
(I1-=p1)--(1=pn) 2 1/Fn41.

It is more convenient to work with rx = 1 — p, rather than px. The
optimization problem stated in terms of ry is

0<pe <

minimize 7ry---rN

1
subject to Tpy1=— -1, k=1,...,N -1
Tk

1
§ST[CS1, k=1,...,N.

FIBONACCI METHOD 113

Note that if ry,ry,... satisfy re41 = % — 1, then r, > 1/2 if and only if
re+1 < 1. Also, rp, > 1/2 if and only if 7,1 < 2/3 < 1. Therefore, in the
constraints above, we may remove the constraint r; < 1, because it is implied
implicitly by r, > 1/2 and the other constraints. Therefore, the constraints

above reduce to

1
rekp1=——1, k=1,...,N -1,
Tk
1
re > =, k=1,...,N.
2
To proceed, we need the following technical lemmas. In the statements of
the lemmas, we assume that r1,rs,... is a sequence that satisfies
1 1
=—-1 > = k=1,2,....
Tk+1 ™ 3 Tk Z 9’ y &y

Lemma 7.1 Fork > 2,

, Fp o—Fr_im
k= .
Fy_3— Fy_om;

Proof. We proceed by induction. For k = 2 we have

1 1 —nmM F()—F1T1
1 1 F_i— Fym

and hence the lemma holds for k£ = 2. Suppose now that the lemma holds for
k > 2. We show that it also holds for £ + 1. We have

1
o1 = — — 1
k1=
—Frg+ Fror1 Fr_o — Fp171
Fyg — Fr1m1 Fyg — Frm

_ Fro+ Foog — (Fr-1+ Fr—2)m1

Fy2 = Fr_1m
_ B - By
Fy_g — Fr_1r1’
where we used the formation law for the Fibonacci sequence. [|

Lemma 7.2 For k > 2,

(—1)k(Fk_2 — Fk-—lrl) > 0.

114 ONE-DIMENSIONAL SEARCH METHODS

Proof. We proceed by induction. For k£ = 2, we have
(“1)2(F0 — F17'1) = 1 —T1.

But r; = 1/(1 4+ re) <2/3, and hence 1 — r; > 0. Therefore, the result holds
for k = 2. Suppose now that the lemma holds for £ > 2. We show that it also
holds for £ + 1. We have

1
(~D*H(Femy — Fory) = (1) ey (Fr—1 — Fyr1).
Tk+1
By Lemma 7.1,
e = k=1 — By
ot Fy_o— Fpri’

Substituting for 1/rx+1, we obtain
(=1 (Fyo1 — Fer1) = ris1 (1) (Fy—g — Froar1) >0,
which completes the proof. |

Lemma 7.3 Fork > 2,
(—1)k+17‘1 > (_1)k+1 Fy .
Fri1
O

Proof. Because rg+1 = i —1and rg > %, we have rp1 < 1. Substituting

for 541 from Lemma 7.1, we get

Fy 1 —Fpry

L
Fr o — Fp_im
Multiplying the numerator and denominator by (—1)* yields

(=D)*+(Fp_y — Fyry)
(=1)*(Fr_g — Fr_171)

<1

By Lemma 7.2, (—=1)*(Fy—2 — Fx—171) > 0, and therefore we can multiply
both sides of the inequality above by (—1)¥(Fy_o — Fx_171) to obtain

(=) (Fee1 = Fir) < (=1)*(Fi—2 = Feoam).
Rearranging yields

(=D¥ (Foo1 + Fo)ry 2 (= 1)M (Fia + Fia)-
Using the law of formation of the Fibonacci sequence, we get

(-1 Fpar > (-1 F,

FIBONACCI METHOD 115

which upon dividing by Fj; on both sides gives the desired result. |

We are now ready to prove the optimality of the Fibonacci search method
and the uniqueness of this optimal solution.

Theorem 7.1 Letry,...,rn, N > 2, satisfy the constraints

1
rep1=——1,k=1,...,N—1,
Tk
1
Tk 2> 57 k= 1) [ERE) N
Then,
Lo TN 2
N+1
Furthermore,
1
Troee rrN —
! Frni1
if and only if re = FN_ky1/FN—kt2, k= 1,...,N. In other words, the values
of r1,...,rn used in the Fibonacci search method form a unique solution to
the optimization problem. a
Proof. By substituting expressions for r1,...,ry from Lemma 7.1 and per-

forming the appropriate cancellations, we obtain
riory = (-DN(En_z — Fyar1) = (-)VFn_g + Fyo (-1)V 'y

Using Lemma 7.3 yields

F
rioory 2 ()N Fyog + Fyoa(-)VH 2R
N+1
1
= (-1)N(Fn_2Fn41 — FN—IFN)F .
N+1

By Exercise 7.5, it is readily checked that the following identity holds:
(-1)YN(Fn_2FN+1 — Fn_1Fn) = 1. Hence,

PLeeeTN > Forr
From the above we see that

1

TN B
if and only if
r = F .

Fni1
This is simply the value of r; for the Fibonacci search method. Note that
fixing 7, determines 7o, ...,ry uniquely. [|

For further discussion on the Fibonacci search method and its variants, see
[133].

116 ONE-DIMENSIONAL SEARCH METHODS

7.4 Bisection Method

Again we consider finding the minimizer of an objective function f : R — R
over an interval [ag, bo]. As before, we assume that the objective function f
is unimodal. Further, suppose that f is continuously differentiable and that
we can use values of the derivative f’ as a basis for reducing the uncertainty
interval.

The bisection method is a simple algorithm for successively reducing the
uncertainty interval based on evaluations of the derivative. To begin, let
2@ = (ag + bg)/2 be the midpoint of the initial uncertainty interval. Next,
evaluate f'(z(®). If f/(2(9) > 0, then we deduce that the minimizer lies to
the left of (9. In other words, we reduce the uncertainty interval to [ag, z(?)).
On the other hand, if f/(z(®)) < 0, then we deduce that the minimizer lies to
the right of (%), In this case, we reduce the uncertainty interval to [2(%), bo).
Finally, if f/(z(®) = 0, then we declare (%) to be the minimizer and terminate
our search.

With the new uncertainty interval computed, we repeat the process iter-
atively. At each iteration k, we compute the midpoint of the uncertainty
interval. Call this point z(*). Depending on the sign of f’(z(¥)) (assuming
that it is nonzero), we reduce the uncertainty interval to the left or right of
z®)_ If at any iteration k we find that f'(z(*)) = 0, then we declare z(*) to
be the minimizer and terminate our search.

Two salient features distinguish the bisection method from the golden sec-
tion and Fibonacci methods. First, instead of using values of f, the bisection
methods uses values of f’. Second, at each iteration, the length of the uncer-
tainty interval is reduced by a factor of 1/2. Hence, after N steps, the range
is reduced by a factor of (1/2)V. This factor is smaller than in the golden
section and Fibonacci methods.

Example 7.3 Recall Example 7.1 where we wish to find the minimizer of
f(z) = z* — 1423 + 6022 — 70z

in the interval [0,2] to within a range of 0.3. The golden section method
requires at least four stages of reduction. If, instead, we use the bisection
method, we would choose N so that

(0.5 <0.3/2.

In this case, only three stages of reduction are needed. [|

7.5 Newton’s Method

Suppose again that we are confronted with the problem of minimizing a func-
tion f of a single real variable z. We assume now that at each measurement

NEWTON'S METHOD 117

point z(*¥) we can determine f(z®)), f/(z®*)), and f"(z*)). We can fit a
quadratic function through (%) that matches its first and second derivatives
with that of the function f. This quadratic has the form

g(2) = F@®) + f'(@W) (@ — 2®) + % f'(@®) (@ — a2,

Note that q(z®) = f(z), ¢'(z*)) = f/(z®), and ¢’ (z®) = f'(z®),
Then, instead of minimizing f, we minimize its approximation q. The first-
order necessary condition for a minimizer of ¢ yields

0=¢(z) = f'(®) + () (z - zP).

Setting = z(**t1) we obtain

2040 = gy _ L@
F@®)’

Example 7.4 Using Newton’s method, we will find the minimizer of

1
flz)= —2—w2 —sinz.
Suppose that the initial value is (9 = 0.5, and that the required accuracy is
€ = 1075, in the sense that we stop when |z(**1D) — 2(*)| < .
We compute

f'(z) =z - cosz, f'(z) =1+sinz.
Hence,
0.5 —cos0.5
1) — e e ee
=0 n0s

—0.3775

=05- 7%

= 0.7552.

Proceeding in a similar manner, we obtain

¢y 0.02710
@ _w_FE@) qy _
o=z Fiemy =" 1685 079
2 9.461 x 1073
®_ @ _ L&) g 9461x107°
T T @y T 1.673 07550,
®) -9
2@ =@ L@V g AT oo

Fra®) ~ " 1.673

118 ONE-DIMENSIONAL SEARCH METHODS

f.q A
a(x)

f(x)

i
1
1
I
i
I
}

“x

xik) X(k'+1)

Figure 7.6 Newton’s algorithm with f"'(z) > 0.

Note that |2(4) — 2®3)| < € = 1075, Furthermore, f'(z(4)) = —8.6 x 1075 =~ 0.
Observe that f(z(¥) = 1.673 > 0, so we can assume that z* ~ z(* is a strict
minimizer. |

Newton’s method works well if f”(x) > 0 everywhere (see Figure 7.6).
However, if f”(z) < 0 for some z, Newton’s method may fail to converge to
the minimizer (see Figure 7.7).

Newton’s method can also be viewed as a way to drive the first derivative
of f to zero. Indeed, if we set g(z) = f'(z), then we obtain a formula for
iterative solution of the equation g(z) = 0:

.’L'(k+1) _ I(k) _ g(x(k))
g'(z®))

In other words, we can use Newton’s method for zero finding.

fay

f(x)

]
I
I
|
|
|
|
1
|
1
1
I
!
1
I
1
1

X

*

1
1
i
x(k+1) x(K) X

Figure 7.7 Newton’s algorithm with f”(z) < 0.

NEWTON'S METHOD 119

Q(X)A

\ . -
_/,((k+2) (k1) x(K) x

Figure 7.8 Newton’s method of tangents.

Example 7.5 We apply Newton’s method to improve a first approximation,
z(© = 12, to the root of the equation

g(z) = 3 — 12.22% 4+ 7.45z + 42 = 0.

We have ¢'(z) = 322 — 24.4z + 7.45.
Performing two iterations yields

102.6
®=12- =11.
‘” 1665~ 3%
14.73
) =11.33 - =11.21.
. 83— ooy = 1121

Newton’s method for solving equations of the form g(z) = 0 is also referred
to as Newton’s method of tangents. This name is easily justified if we look at
a geometric interpretation of the method when applied to the solution of the
equation g(z) = 0 (see Figure 7.8).

If we draw a tangent to g(z) at the given point z(¥), then the tangent line
intersects the z-axis at the point z(**1), which we expect to be closer to the
root z* of g(z) = 0. Note that the slope of g(z) at z(®) is

g (a®) = _9e®))
plk) — p(k+1)
Hence,
SE+1) _ (k) _ g(z®))
g'(z®)’
Newton’s method of tangents may fail if the first approximation to the root
is such that the ratio g(z(®)/¢'(z(®)) is not small enough (see Figure 7.9).
Thus, an initial approximation to the root is very important.

120 ONE-DIMENSIONAL SEARCH METHODS

g(x)‘\

9(x)

Figure 7.9 Example where Newton’s method of tangents fails to converge to the
root z* of g(z) = 0.

7.6 Secant Method

Newton’s method for minimizing f uses second derivatives of f:

k+1) — (k) _ f'(z®)

fr(@®)
If the second derivative is not available, we may attempt to approximate it
using first derivative information. In particular, we may approximate f”(z(¥)
above with
f'@®) — f'@®-1)
(k) — p(k—1) '

Using the foregoing approximation of the second derivative, we obtain the
algorithm

2

m(k) — x(k—l)
f(@®) — f(xk=1)
called the secant method. Note that the algorithm requires two initial points

to start it, which we denote z(~ and z(®). The secant algorithm can be
represented in the following equivalent form:

2O+ (k) _

f(z®),

1K) Y n(k=1) _ £1{ (k—=1)\ (k)
T) e R o)
7 @) — 712l

Observe that, like Newton’s method, the secant method does not directly
involve values of f(z(®)). Instead, it tries to drive the derivative f’ to zero.
In fact, as we did for Newton’s method, we can interpret the secant method
as an algorithm for solving equations of the form g{z) = 0. Specifically, the

SECANT METHOD 121

N

i
|
I
I
I
----------- I
1
(

" x* x(k+2) xtk+1) x() x(k-1) X

Figure 7.10 Secant method for root finding.

secant algorithm for finding a root of the equation g(z) = 0 takes the form
:L‘(k) — w(k_l)
9(@®) = g(a®D)*

2D = g(k) _ @®),

or, equivalently,

SO+ g(x(k))x(k—l) - g(m(k—l))x(k)
g(z®)) — g(z(k-1)

The secant method for root finding is illustrated in Figure 7.10 (compare
this with Figure 7.8). Unlike Newton’s method, which uses the slope of g to
determine the next point, the secant method uses the “secant” between the
(k — 1)th and kth points to determine the (k + 1)th point.

Example 7.6 We apply the secant method to find the root of the equation
g(z) = 2® — 12.22% + 7.45z + 42 = 0.

We perform two iterations, with starting points (-1 = 13 and z(© = 12.
We obtain

1 = 11.40,
z® =11.25.
| |
Example 7.7 Suppose that the voltage across a resistor in a circuit decays

according to the model V(¢) = e, where V/(¢) is the voltage at time ¢ and
R is the resistance value.

122 ONE-DIMENSIONAL SEARCH METHODS

Given measurements Vi,...,V, of the voltage at times ¢,,...,t,, respec-
tively, we wish to find the best estimate of R. By the best estimate we mean
the value of R that minimizes the total squared error between the measured
voltages and the voltages predicted by the model.

We derive an algorithm to find the best estimate of R using the secant
method. The objective function is

n
= Z(‘/; — e_Rti)2.
i=1
Hence, we have
f (R = 22 Rt’ Rtiti.

The secant algorithm for the problem is
Ei — Ri
E:l 1(V. — e—Rkti)e—Rktiti - (Vz — e"‘Rk—lti)e“Rk—ltiti

x Z —ka Rktiti.

Rgy1 = Ry —

For further reading on the secant method, see [32]. Newton’s method
and the secant method are instances of quadratic fit methods. In Newton’s
method, z(**+1) is the stationary point of a quadratic function that fits f’ and
f" at %), In the secant method, 2(*+1) is the stationary point of a quadratic
function that fits f* at z(*) and z(*~1). The secant method uses only f’ (and
not f”) but needs values from two previous points. We leave it to the reader
to verify that if we set z(¥*1) to be the stationary point of a quadratic func-
tion that fits f at ¥, z*~1 and z(*~2) we obtain a quadratic fit method
that uses only values of f:

S0 02f@®) + 030 f(a*7Y) + 001 f(2*)
" 2(012f(@®) + 530 f(z*D) + 501 f(a D))

where 0;; = (2F=9)2 — (2(k=9))2 and §;; = 2(*~) — z(k=7) (see Exercise 7.9)
This method does not use f’ or f”, but needs values of f from three previous
points. Three points are needed to initialize the iterations. The method is
also sometimes called inverse parabolic interpolation.

An approach similar to fitting (or interpolation) based on higher-order
polynomials is possible. For example, we could set z(*t1) to be a stationary
point of a cubic function that fits f/ at %), *=1 and k-2,

It is often practically advantageous to combine multiple methods, to over-
come the limitations in any one method. For example, the golden section
method is more robust but slower than inverse parabolic interpolation. Brent’s
method combines the two [17], resulting in a method that is faster than the
golden section method but still retains its robustness properties.

BRACKETING 123

f(x) A

It
€ <€ L »

- : ' P X
Xo X1 X2 X3

Figure 7.11 An illustration of the process of bracketing a minimizer.

7.7 Bracketing

Many of the methods we have described rely on an initial interval in which the
minimizer is known to lie. This interval is also called a bracket, and procedures
for finding such a bracket are called bracketing methods.

To find a bracket [a, b] containing the minimizer, assuming unimodality, it
suffices to find three points a < ¢ < bsuch that f(c) < f(a) and f(c) < f(b). A
simple bracketing procedure is as follows. First, we pick three arbitrary points
To < x1 < z2. If fz1) < f(zo) and f(z1) < f(z2), then we are done—the
desired bracket is [zg,z2]. If not, say f(xzo) > f(z1) > f(z2), then we pick a
point z3 > x4 and check if f{z2) < f(z3). If it holds, then again we are done—
the desired bracket is [z, z3]. Otherwise, we continue with this process until
the function increases. Typically, each new point chosen involves an expansion
in distance between successive test points. For example, we could double the
distance between successive points, as illustrated in Figure 7.11. An analogous
process applies if the initial three points are such that f(zg) < f(z1) < f(z2).

In the procedure described above, when the bracketing process terminates,
we have three points zx_2, Tx—1, and zx such that f(zk—1) < f(zr—2) and
flzk—1) < f(zk). The desired bracket is then [zk_2,zk], which we can then
use to initialize any of a number of search methods, including the golden
section, Fibonacci, and bisection methods. Note that at this point, we have
already evaluated f(zx—2), f(zk-1), and f(zx). If function evaluations are
expensive to obtain, it would help if the point zx_; inside the bracket also

124 ONE-DIMENSIONAL SEARCH METHODS

coincides with one of the points used in the search method. For example,
if we intend to use the golden section method, then it would help if 251 —
Th_2 = p(xr — Tp—2), where p = (3 — /5)/2. In this case, xx_, would be
one of the two points within the initial interval used in the golden section
method. This is achieved if each successive point zx is chosen such that
Tk = Tp—1 + {2 — p)(Tk—1 — Tk—2). In this case, the expansion in the distance
between successive points is a factor 2 — p &~ 1.618, which is less than double.

7.8 Line Search in Multidimensional Optimization

One-dimensional search methods play an important role in multidimensional
optimization problems. In particular, iterative algorithms for solving such
optimization problems (to be discussed in the following chapters) typically
involve a line search at every iteration. To be specific, let f : R* — R
be a function that we wish to minimize. Iterative algorithms for finding a
minimizer of f are of the form

2+ = g®) 4 o, d®)
where 2 is a given initial point and oy > 0 is chosen to minimize
#i(0) = £(2® + ad®).

The vector d¥) is called the search direction and ay is called the step size.
Figure 7.12 illustrates a line search within a multidimensional setting. Note
that choice of oy, involves a one-dimensional minimization. This choice ensures
that under appropriate conditions,

F@®) < f(2®).

Any of the one-dimensional methods discussed in this chapter (including
bracketing) can be used to minimize ¢;. We may, for example, use the secant
method to find ai. In this case we need the derivative of ¢, which is

#i(@) =dPTVf(@® + ad®).

This is obtained using the chain rule. Therefore, applying the secant method
for the line search requires the gradient Vf, the initial line-search point
x®) | and the search direction d'*) (see Exercise 7.11). Of course, other one-
dimensional search methods may be used for line search (see, e.g., [43] and
(88]).

Line-search algorithms used in practice involve considerations that we have
not yet discussed thus far. First, determining the value of oy that exactly
minimizes ¢y may be computationally demanding; even worse, the minimizer
of ¢r may not even exist. Second, practical experience suggests that it is
better to allocate more computational time on iterating the multidimensional

LINE SEARCH IN MULTIDIMENSIONAL OPTIMIZATION 125

! f(x¥) + o d®)

Figure 7.12 Line search in multidimensional optimization.

optimization algorithm rather than performing exact line searches. These
considerations led to the development of conditions for terminating line-search
algorithms that would result in low-accuracy line searches while still securing
a sufficient decrease in the value of the f from one iteration to the next. The
basic idea is that we have to ensure that the step size aj is not too small or
too large.

Some commonly used termination conditions are as follows. First, let ¢ €
(0,1), v > 1, and 5 € (g,1) be given constants. The Armijo condition ensures
that a4 is not too large by requiring that

dr(ar) < ¢ (0) + eard (0).
Further, it ensures that oy is not too small by requiring that
or(vow) 2 ¢k(0) + eyokdy(0).
The Goldstein condition differs from Armijo in the second inequality:
ox(ax) > ¢k(0) + nakei(0).

The first Armijo inequality together with the Goldstein condition are often
jointly called the Armijo-Goldstein condition. The Wolfe condition differs
from Goldstein in that it involves only ¢} :

$r(or) > 19y (0).

126 ONE-DIMENSIONAL SEARCH METHODS

A stronger variation of this is the strong Wolfe condition:

|9k ()| < nl7(0)]-

A simple practical (inexact) line-search method is the Armijo backtracking
algorithm, described as follows. We start with some candidate value for the
step size ay. If this candidate value satisfies a prespecified termination condi-
tion (usually the first Armijo inequality), then we stop and use it as the step
size. Otherwise, we iteratively decrease the value by multiplying it by some
constant factor 7 € (0,1) (typically 7 = 0.5) and re-check the termination
condition. If a(® is the initial candidate value, then after m iterations the
value obtained is ax = 7™a(®. The algorithm backtracks from the initial
value until the termination condition holds. In other words, the algorithm
produces a value for the step size of the form ax = 7™a(® with m being the
smallest value in {0,1,2,...} for which oy satisfies the termination condition.

For more information on practical line-search methods, we refer the reader
to [43, pp. 26-40], [96, Sec. 10.5], [11, App. C], [49], and [50].}

EXERCISES

7.1 Suppose that we have a unimodal function over the interval [5,8]. Give
an example of a desired final uncertainty range where the golden section
method requires at least four iterations, whereas the Fibonacci method re-
quires only three. You may choose an arbitrarily small value of ¢ for the
Fibonacci method.

7.2 Let f(z) = 22 + 4cosz, z € R. We wish to find the minimizer z* of f
over the interval [1,2]. (Calculator users: Note that in cosz, the argument z
is in radians.)

a. Plot f(z) versus z over the interval [1,2].

b. Use the golden section method to locate z* to within an uncertainty of
0.2. Display all intermediate steps using a table:

Iteration k. ax bx f(ar) f(bx) New uncertainty interval
1 7?77 ? ? 2,7
2 ?7 7 ? ? (7,7]

c. Repeat part b using the Fibonacci method, with € = 0.05. Display all
intermediate steps using a table:

1We thank Dennis M. Goodman for furnishing us with references [49] and [50].

EXERCISES 127

Iteration K pr ax bx flax) f(bx) New uncertainty interval
1 ?7 7 7 ? ? 2,7
2 ? 007 7 ? ? (7,7]

d. Apply Newton’s method, using the same number of iterations as in part
b, with (@ = 1.

7.3 Let f(z) = 8¢ ~®+T7log(x), where “log” represents the natural logarithm
function.

a. Use MATLAB to plot f(z) versus z over the interval [1,2], and verify
that f is unimodal over [1,2].

b. Write a simple MATLAB program to implement the golden section
method that locates the minimizer of f over [1, 2] to within an uncertainty
of 0.23. Display all intermediate steps using a table as in Exercise 7.2.

c. Repeat part b using the Fibonacci method, with ¢ = 0.05. Display all
intermediate steps using a table as in Exercise 7.2.

7.4 Suppose that p;,...,pn are the values used in the Fibonacci search
method. Show that for each ¥ = 1,...,N, 0 < pr < 1/2, and for each
k=1,...,N—-1,

Pk
1-px

Pry1=1—

7.5 Show that if Fy, Fi,... is the Fibonacci sequence, then for each k =
2,3,...,
Fy—2Fyi1 — Foo1Fr = (1)K

7.6 Show that the Fibonacci sequence can be calculated using the formula
+1 +1
N EV AN STV
RV 2 2

7.7 Suppose that we have an efficient way of calculating exponentials. Based
on this, use Newton’s method to devise a method to approximate log(2) [where
“log” is the natural logarithm function]. Use an initial point of z©® =1, and
perform two iterations.

7.8 Consider the problem of finding the zero of g(z) = (e* — 1)/(e* + 1),
z € R, where €7 is the exponential of z. (Note that 0 is the unique zero of g.)

128 ONE-DIMENSIONAL SEARCH METHODS

a. Write down the algorithm for Newton’s method of tangents applied to
this problem. Simplify using the identity sinhz = (e* — e~7)/2.

b. Find an initial condition z(®) such that the algorithm cycles [i.e., z(®) =
z® =z = .. -]. You need not explicitly calculate the initial condition;
it suffices to provide an equation that the initial condition must satisfy.
Hint: Draw a graph of g.

c. For what values of the initial condition does the algorithm converge?

7.9 Derive a one-dimensional search (minimization) algorithm based on
quadratic fit with only objective function values. Specifically, derive an algo-
rithm that computes z(**1) based on z(®), z(k=1) z(k=2) " f(z(k)) " f(g(k=1)),
and f(z(k=2),

Hint: To simplify, use the notation o;; = (z*=9)? — (2(8=9)2 and §;; =
(k=1 _ 2(k=7) You might also find it useful to experiment with your algo-
rithm by writing a MATLAB program. Note that three points are needed to
initialize the algorithm.

7.10 The objective of this exercise is to implement the secant method using
MATLAB.

a. Write a simple MATLAB program to implement the secant method to
locate the root of the equation g(z) = 0. For the stopping criterion, use
the condition |z(*+1) — z(*)| < |z(F)|¢, where ¢ > 0 is a given constant.

b. Let g(z) = (22 — 1)? +4(4 — 1024x)*. Find the root of g(x) = 0 using the
secant method with z(-V =0, 2(® =1, and ¢ = 1075, Also determine
the value of g at the solution obtained.

7.11 Write a MATLAB function that implements a line search algorithm
using the secant method. The arguments to this function are the name of
the M-file for the gradient, the current point, and the search direction. For
example, the function may be called 1inesearch _secant and be used by the
function call alpha=linesearch_secant(’grad’,x,d), where grad.m is the
M-file containing the gradient, x is the starting line search point, d is the
search direction, and alpha is the value returned by the function [which we
use in the following chapters as the step size for iterative algorithms (see, e.g.,
Exercises 8.25 and 10.11)].

Note: In the solutions manual, we used the stopping criterion IdTV flxz+
ad)| < e|ld" Vf(z)|, where € > 0 is a prespecified number, Vf is the gradient,
x is the starting line search point, and d is the search direction. The rationale
for the stopping criterion above is that we want to reduce the directional
derivative of f in the direction d by the specified fraction €. We used a value
of ¢ = 10~% and initial conditions of 0 and 0.001.

EXERCISES 129

7.12 Consider using a gradient algorithm to minimize the function

ot -

with the initial guess #(®) = [0.8,-0.25]7.

a. To initialize the line search, apply the bracketing procedure in Figure 7.11
along the line starting at (% in the direction of the negative gradient.
Use € = 0.075.

b. Apply the golden section method to reduce the width of the uncertainty
region to 0.01. Organize the results of your computation in a table format
similar to that of Exercise 7.2.

c. Repeat the above using the Fibonacci method.

CHAPTER 8

GRADIENT METHODS

8.1 Introduction

In this chapter we consider a class of search methods for real-valued functions
on R™. These methods use the gradient of the given function. In our discussion
we use such terms as level sets, normal vectors, and tangent vectors. These
notions were discussed in some detail in Part L

Recall that a level set of a function f : R® — R is the set of points =
satisfying f(x) = c for some constant c¢. Thus, a point 2y € R™ is on the level
set corresponding to level ¢ if f(@g) = c. In the case of functions of two real
variables, f : R? — R, the notion of the level set is illustrated in Figure 8.1.

The gradient of f at xo, denoted Vf(xo), if it is not a zero vector, is
orthogonal to the tangent vector to an arbitrary smooth curve passing through
o on the level set f(x) = c¢. Thus, the direction of maximum rate of increase
of a real-valued differentiable function at a point is orthogonal to the level
set of the function through that point. In other words, the gradient acts in
such a direction that for a given small displacement, the function f increases
more in the direction of the gradient than in any other direction. To prove
this statement, recall that (V f(x),d), ||d|| = 1, is the rate of increase of f in

An Introduction to Optimization, Fourth Edition. 131
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc.

132 GRADIENT METHODS

\

t [
| I
[v :
[l
[l

I
N i 1
Level set (curve)

Horizontal Plane =

X1 v f(Xo)

Figure 8.1 Constructing a level set corresponding to level ¢ for f.

the direction d at the point ®. By the Cauchy-Schwarz inequality,

(Vi(z),d) < |[VF()ll
because ||dj| = 1. But if d = Vf(2)/||Vf(x)|, then

Vf(x) > _
(Vi@ S = 19 5(@)l.

Thus, the direction in which V f(z) points is the direction of maximum rate
of increase of f at &. The direction in which —V f(x) points is the direction of
maximum rate of decrease of f at . Hence, the direction of negative gradient
is a good direction to search if we want to find a function minimizer.

We proceed as follows. Let (9 be a starting point, and consider the point
z©® — oV f(x®). Then, by Taylor’s theorem, we obtain

F(@® - avi@®) = f(@?) - a|Vf(@D))? + o(a).
Thus, if Vf(2(®) # 0, then for sufficiently small a > 0, we have
f@? - avi@?)) < f(=).

This means that the point 2(®) —aV f(2(?) is an improvement over the point
(9 if we are searching for a minimizer.

To formulate an algorithm that implements this idea, suppose that we are
given a point «*). To find the next point £*+1) we start at «(*) and move
by an amount —a V f((¥)), where oy, is a positive scalar called the step size.
This procedure leads to the following iterative algorithm:

2*) = g®) — 0, V().

THE METHOD OF STEEPEST DESCENT 133

We refer to this as a gradient descent algorithm (or simply a gradient algo-
rithm). The gradient varies as the search proceeds, tending to zero as we
approach the minimizer. We have the option of either taking very small steps
and reevaluating the gradient at every step, or we can take large steps each
time. The first approach results in a laborious method of reaching the mini-
mizer, whereas the second approach may result in a more zigzag path to the
minimizer. The advantage of the second approach is possibly fewer gradi-
ent evaluations. Among many different methods that use this philosophy the
most popular is the method of steepest descent, which we discuss next.

Gradient methods are simple to implement and often perform well. For
this reason, they are used widely in practical applications. For a discussion
of applications of the steepest descent method to the computation of opti-
mal controllers, we recommend [85, pp. 481-515]. In Chapter 13 we apply a
gradient method to the training of a class of neural networks.

8.2 The Method of Steepest Descent

The method of steepest descent is a gradient algorithm where the step size
ay is chosen to achieve the maximum amount of decrease of the objec-
tive function at each individual step. Specifically, oy is chosen to minimize
or(a) £ f@® — aVf(@®))). In other words,

o = argmin f(2®) — oV f(x®))).
a>0

To summarize, the steepest descent algorithm proceeds as follows: At each
step, starting from the point %), we conduct a line search in the direction
-Vf (w(k)) until a minimizer, £**1) is found. A typical sequence resulting
from the method of steepest descent is depicted in Figure 8.2.

Observe that the method of steepest descent moves in orthogonal steps, as
stated in the following proposition.

Proposition 8.1 If {w(k)}z‘;o is a steepest descent sequence for a given func-
tion f : R™ — R, then for each k the vector £+ — 2(*¥) is orthogonal to the

vector gk+2) — pk+1) O

Proof. From the iterative formula of the method of steepest descent it follows
that

(@D — 2®), 2042 — gHD) = apar 1 (VI (@), VD).
To complete the proof it is enough to show that

(Vf(w(k)), vf(w(k+1))> = 0.

134 GRADIENT METHODS

x(0) T=T Co>C1>Co>C3
Figure 8.2 Typical sequence resulting from the method of steepest descent.

To this end, observe that ay is a nonnegative scalar that minimizes ¢ () =
f(x®) — aV f(x*))). Hence, using the FONC and the chain rule gives us

0= (o)
_ dgg
= Emk)
= Vf@® — ax V(@) T (- (")
= ~(Vf(@*), vf(=®)),
which completes the proof. |

The proposition above implies that V f(2*)) is parallel to the tangent plane
to the level set {f(x) = f(x*+1)} at 2%+, Note that as each new point is
generated by the steepest descent algorithm, the corresponding value of the
function f decreases in value, as stated below.

Proposition 8.2 If {z*)}2 , is the steepest descent sequence for f : R® — R
and i V1 (@®) # 0, then f@®+D) < f(@®). 5

Proof. First recall that

xk+1) = pk) _ aka(:c(k)),
where ay > 0 is the minimizer of

$r(@) = f(@® - aVf(z®))
over all & > 0. Thus, for a > 0, we have

dr(ak) < dr(a).

THE METHOD OF STEEPEST DESCENT 135

By the chain rule,

dor

o (0) = =(Vi(@® - 0V f(@®)) TV f(a®) = - [Vf(=®)* <0

¢k (0) =
because V f(z*¥)) # 0 by assumption. Thus, ¢ (0) < 0 and this implies that
there is an @ > 0 such that ¢x(0) > ¢r(a) for all a € (0, @]. Hence,

F@®*D) = gp(an) < (@) < ¢ (0) = f(=®),
which completes the proof. | |

In Proposition 8.2, we proved that the algorithm possesses the descent
property: f(x®tD) < f(@®) if Vf(x®) # 0. If for some k, we have
Vf(x®) = 0, then the point 2*) satisfies the FONC. In this case, z(*+1) =
x*). We can use the above as the basis for a stopping (termination) criterion
for the algorithm.

The condition V f(z(**+1)) = 0, however, is not directly suitable as a practi-
cal stopping criterion, because the numerical computation of the gradient will
rarely be identically equal to zero. A practical stopping criterion is to check
if the norm ||V f(z®)|| of the gradient is less than a prespecified threshold,
in which case we stop. Alternatively, we may compute the absolute difference
|f (k1)) — f(x(*))| between objective function values for every two succes-
sive iterations, and if the difference is less than some prespecified threshold,
then we stop; that is, we stop when

(@) = fa®)] <e,

where € > 0 is a prespecified threshold. Yet another alternative is to compute
the norm |kt — z(*)|| of the difference between two successive iterates,
and we stop if the norm is less than a prespecified threshold:

fla®+) —2®| <e.

Alternatively, we may check “relative” values of the quantities above; for

example, (er) ©
F(@*+D) — f(®)]
™)~ F
or
2+ — g®)]
G

The two (relative) stopping criteria above are preferable to the previous (abso-
lute) criteria because the relative criteria are “scale-independent.” For exam-
ple, scaling the objective function does not change the satisfaction of the crite-
rion | f(z*+1))— f(2®)|/|f(z*))| < e. Similarly, scaling the decision variable
does not change the satisfaction of the criterion [[z(*+1) —)| /| 2®)|| < e.

136 GRADIENT METHODS

To avoid dividing by very small numbers, we can modify these stopping cri-
teria as follows:
|[f (@) — f(@®)]
max{1, | f(z*))|}

<g

or
4D — 2

max{1, [lz*[}

Note that the stopping criteria above are relevant to all the iterative algo-
rithms we discuss in this part.

<eEe.

Example 8.1 We use the method of steepest descent to find the minimizer
of
fzy, 2, 23) = (z1 — 4)* + (22 — 3)2 + 4(z3 + 5)%.

The initial point is £(® = [4,2, —1]T. We perform three iterations.
We find that

Vi(x) = [4(z1 —4)3,2(z2 — 3),16(z3 + 5)%]T.

Hence,
Vix®) =[0,-2,1024].

To compute (1), we need
o = argmin f(z® — aV f(z®))
a>0

= argmin(0 + (2 + 2a — 3)? + 4(—1 — 1024 + 5)%)
a>0

= arg min ¢g(a).
a>0

Using the secant method from Section 7.6, we obtain
ag = 3.967 x 1073,

For illustrative purpose, we show a plot of ¢o(a) versus a in Figure 8.3,
obtained using MATLAB. Thus,

2 = 20 — oV f(2®) = [4.000,2.008, —5.062] .
To find £, we first determine
Vi (x®) = [0.000, —1.984, —0.003875] .
Next, we find «;, where

o = argmin(0 + (2.008 + 1.984a — 3)% + 4(—5.062 + 0.003875¢ + 5)%)
a>0

= arg min ¢; ().

a>0

THE METHOD OF STEEPEST DESCENT 137

o)
7000 . - - . T . " : :

6000 |
5000
4000
3000 +

2000 +

1000 \\\
0 : N

0 0.002 0.004 0.006 0.008 0.01
o

Figure 8.3 Plot of ¢o(a) versus a.

Figure 8.4 Plot of ¢1(a) versus c.

138 GRADIENT METHODS

0,()
1.6 T

x 10

16 18 20

Figure 8.5 Plot of ¢2(a) versus a.

Using the secant method again, we obtain a; = 0.5000. Figure 8.4 depicts a
plot of ¢1(a) versus a. Thus,

z®? =z — 0, Vf(xV) = [4.000,3.000, —5.060] " .
To find (3, we first determine
Vf(z?) = [0.000,0.000, —0.003525] "
and
ag = arg min(0.000 + 0.000 + 4(—5.060 + 0.003525c + 5)*)

a>0
= arg min ¢2(a).
a>0
We proceed as in the previous iterations to obtain as = 16.29. A plot of ¢o(cx)
versus « is shown in Figure 8.5.
The value of £® is

z® = [4.000, 3.000, —5.002] .

Note that the minimizer of f is [4,3,—5]7, and hence it appears that we
have arrived at the minimizer in only three iterations. The reader should be
cautioned not to draw any conclusions from this example about the number
of iterations required to arrive at a solution in general.

It goes without saying that numerical computations, such as those in this
example, are performed in practice using a computer (rather than by hand).

THE METHOD OF STEEPEST DESCENT 139

The calculations above were written out explicitly, step by step, for the pur-
pose of illustrating the operations involved in the steepest descent algorithm.
The computations themselves were, in fact, carried out using a MATLAB
program (see Exercise 8.25). [|

Let us now see what the method of steepest descent does with a quadratic
function of the form

1
flx) = EzTQw -b'a,
where Q € R™*"™ is a symmetric positive definite matrix, b € R", and = € R".
The unique minimizer of f can be found by setting the gradient of f to zero,
where

Vi(@)=Qx—b,
because D (z'Qx) =z' (Q+ Q") =227Q, and D(b"x) = b'. There is
no loss of generality in assuming @ to be a symmetric matrix. For if we are

given a quadratic form # " Az and A # A", then because the transposition
of a scalar equals itself, we obtain

(x"Az)" =x"ATz =2 Az.

Hence,
T 1 I +,7
x Am:§:c Aw+§a: Az
1
= 5:1:T(A + ANz
1
= 5:1: Qx
Note that

(A+AT)T=Q"=4+4"=Q.

The Hessian of f is F(x) = Q = Q' > 0. To simplify the notation we
write g\¥) = V f(2(*)). Then, the steepest descent algorithm for the quadratic
function can be represented as

pE+1) — L) _ akg(k),
where

o = argmin f(x® — ag®)
a>0

1
= arg min <§(m(k) —ag®TQx™® — ag®) — (x® — ag(k))Tb> .
a>0

In the quadratic case, we can find an explicit formula for ax. We proceed
as follows. Assume that gi¥) # 0, for if g®) = 0, then =(*) = 2* and the

140 GRADIENT METHODS

g©®

Figure 8.6 Steepest descent method applied to f(z1,x2) = z3 + 5.

algorithm stops. Because oy, > 0 is a minimizer of ¢x(a) = f(z® — ag®),
we apply the FONC to ¢x(a) to obtain

$r(a) = (@ — ag®)TQ(—g*®) — b (—g™).
Therefore, ¢ (a) = 0 if ag®TQg® = () TQ —b")g®. But
BT Q _pT = g®)T,

Hence,
gFT gk)

- g(k)TQg(k))
In summary, the method of steepest descent for the quadratic takes the
form

(675

(B)T gk)
D) —) _ 9" 9 k)

where
g\® = Vf(w(k)) = Qz® —b.

Example 8.2 Let
f(@1,22) = 2% + 23.

Then, starting from an arbitrary initial point (®) € R?, we arrive at the
solution «* = 0 € R? in only one step. See Figure 8.6.
However, if
_at
f (ml’ x2) = g
then the method of steepest descent shuffles ineffectively back and forth when
searching for the minimizer in a narrow valley (see Figure 8.7). This ex-

ample illustrates a major drawback in the steepest descent method. More

2
+ T,

ANALYSIS OF GRADIENT METHODS 141

Figure 8.7 Steepest descent method in search for minimizer in a narrow valley.

sophisticated methods that alleviate this problem are discussed in subsequent
chapters. 1

To understand better the method of steepest descent, we examine its con-
vergence properties in the next section.

8.3 Analysis of Gradient Methods

Convergence

The method of steepest descent is an example of an iterative algorithm. This
means that the algorithm generates a sequence of points, each calculated on
the basis of the points preceding it. The method is a descent method because
as each new point is generated by the algorithm, the corresponding value of
the objective function decreases in value (i.e., the algorithm possesses the
descent property).

We say that an iterative algorithm is globally convergent if for any arbitrary
starting point the algorithm is guaranteed to generate a sequence of points
converging to a point that satisfies the FONC for a minimizer. When the
algorithm is not globally convergent, it may still generate a sequence that
converges to a point satisfying the FONC, provided that the initial point is
sufficiently close to the point. In this case we say that the algorithm is locally
convergent. How close to a solution point we need to start for the algorithm
to converge depends on the local convergence properties of the algorithm. A
related issue of interest pertaining to a given locally or globally convergent
algorithm is the rate of convergence; that is, how fast the algorithm converges
to a solution point.

In this section we analyze the convergence properties of descent gradient
methods, including the method of steepest descent and gradient methods
with fixed step size. We can investigate important convergence characteristics
of a gradient method by applying the method to quadratic problems. The
convergence analysis is more convenient if instead of working with f we deal

142 GRADIENT METHODS
with 1 1
V(@) = f(2) + 52" TQa" = 5@~ 2*)TQ(z — a*),

where Q = QT > 0. The solution point z* is obtained by solving Qx =
b; that is, * = Q 'b. The function V differs from f only by a constant
12*TQz*. We begin our analysis with the following useful lemma that applies
to a general gradient algorithm.

Lemma 8.1 The iterative algorithm
D = g(F) _ o, gk)
with g®) = Qx™® — b satisfies
V(@*)) = (1 —) V(e®),
where if g*) = 0, then v = 1, and if g'®) # 0, then

o 997Qg® (2 g g®) _ak>
g(k)TQ_lg(k) g(k)TQg(k)

Tk
O

Proof. The proof is by direct computation. Note that if g®¥) = 0, then the
desired result holds trivially. In the remainder of the proof, assume that
g®) £ 0. We first evaluate the expression

V(z®) — v(zk+l))
V(e®) '

To facilitate computations, let y*) = z*) — g*. Then, V(z®)) =
1y®TQy™. Hence,

V(@®+D) = %(w(k+1) —2")TQa®+) — 2%
1 * *
= @Y 2"~ 0g®) Q™ — z* — arg®)
1 1
= 29T QY — ag®TQy® + ZatgMT Qe

Therefore,

V(e®) - V(@®D) 20,g®TQyh) — aZg®T Qg
V(m(k)) - y(k)TQy(k)

Because
g(k) — Qm(k) —b= Q:z:(k) —Qz* = Qy(k),

ANALYSIS OF GRADIENT METHODS 143

we have

yOTQy® = g®WTQ1g(k)
BT Qyk) = T k),

Therefore, substituting the above, we get

V@®) - ViehD) g®TQe® (g®T g®) _ak>_%

V(z®) T T g 2g(k)TQg(k)

Note that v; < 1 for all k, because vz = 1 — V(2®*+1)/V(2®*)) and V is
a nonnegative function. If 45 = 1 for some k, then V(z**+1)) = 0, which is
equivalent to 2*+1) = 2* 1In this case we also have that for all >k+1,
z® = x* and v; = 1. It turns out that v, = 1 if and only if either g*) = 0
or g'®) is an eigenvector of Q (see Lemma 8.3).

We are now ready to state and prove our key convergence theorem for
gradient methods. The theorem gives a necessary and sufficient condition for
the sequence {w(k)} generated by a gradient method to converge to x*; that
is, %) — z* or limg_,0o x® = z*.

Theorem 8.1 Let {x(F)} be the sequence resulting from a gradient algorithm
x*+t) = 5*) — o, g*) . Let v be as defined in Lemma 8.1, and suppose that
Y% > 0 for all k. Then, {®)} converges to x* for any initial condition (%)
if and only if

a

Proof. From Lemma 8.1 we have V(z*+1)) = (1 — ;) V(z™®), from which

we obtain
k-1

V(@) = (H(l - %)) V(z®).
i=0
Assume that v < 1 for all k, for otherwise the result holds trivially. Note
that «(®) — z* if and only if V(2(*)) — 0. By the equation above we see that
this occurs if and only if [];-,(1 —v;) = 0, which, in turn, holds if and only
if 3772, —log(1 — ;) = oo (we get this simply by taking logs). Note that by
Lemma 8.1, 1 —; > 0 and log(1 — ;) is well-defined [log(0) is taken to be
—oc]. Therefore, it remains to show that Y~ —log(1 — ;) = oo if and only

if
)
S
1=0

We first show that Y ;o = oo implies that > .0, —log(l — ;) = oo.
For this, first observe that for any z € R, z > 0, we have log(z) < z — 1

144 GRADIENT METHODS

[this is easy to see simply by plotting log(z) and = — 1 versus z]. Therefore,
log(l—v) £ 1—9 —1= —, and hence —log(l — ~;) > ~;. Thus, if
YooY = 00, then clearly Y oo —log(l — ;) = o0

Finally, we show that Y ;o —log(1 —v;) = oo implies that > ;o v = co.
We proceed by contraposition. Suppose that Z;’io v; < 0o. Then, it must
be that v; — 0. Now observe that for x € R, ¢ < 1 and z sufficiently
close to 1, we have log(z) > 2(x — 1) [as before, this is easy to see simply
by plotting log(z) and 2(z — 1) versus z]|. Therefore, for sufficiently large ¢,
log(1 — ;) 2 2(1 — v; — 1) = —2~;, which implies that —log(1 — ;) < 2v,.
Hence, Y ;0,7 < oo implies that 3 .o —log(1 — ;) < oco.

This completes the proof. |

The assumption in Theorem 8.1 that -, > 0 for all k is significant in that it
corresponds to the algorithm having the descent property (see Exercise 8.23).
Furthermore, the result of the theorem does not hold in general if we do not
assume that v, > 0 for all &, as shown in the following example.

Example 8.3 We show, using a counterexample, that the assumption that
4 > 0 in Theorem 8.1 is necessary for the result of the theorem to hold.
Indeed, for each k = 0,1,2,..., choose o) in such a way that vy, = —1/2
and v2x+1 = 1/2 (we can always do this if, for example, Q@ = I,). From
Lemma 8.1 we have

V(@PED)) = (1 - 1/2)(1 + 1/2)V (2?F)) = (3/4)V ().

Therefore, V (x(2%)) — 0. Because V(x(?*+1)) = (3/2)V (x(2*)), we also have
that V(x(2*+1)) — 0. Hence, V(x*)) — 0, which implies that *) — 0 (for
all 2(®)). On the other hand, it is clear that

k 1
Z’)’iﬁg

i=0

for all k. Hence, the result of the theorem does not hold if v, < 0 for some k.

Using the general theorem above, we can now establish the convergence of
specific cases of the gradient algorithm, including the steepest descent algo-
rithm and algorithms with fixed step size. In the analysis to follow, we use
Rayleigh’s inequality, which states that for any Q = Q' > 0, we have

Amin(@)l]2]? < 27 Q2 < Amax(Q)1]?,

where Amin(Q) denotes the minimal eigenvalue of Q and A< (Q) denotes the
maximal eigenvalue of Q. For Q = Q' > 0, we also have

Amin(Q71) = m,
)‘max(Q—l) = =

/\min(Q) ’

ANALYSIS OF GRADIENT METHODS 145

and
Anin(@ Dlz? < 2T Q7' < Amax(Q@ 7Y [

Lemma 8.2 Let Q = Q" > 0 be an n x n real symmetric positive definite
matriz. Then, for any x € R™, we have

)\min(Q) < (mTa:)2 <)\max(Q)
Max(Q) T (2T Qa)(@TQ'x) T Min(Q)

O

Proof. Applying Rayleigh’s inequality and using the properties of symmetric
positive definite matrices listed previously, we get

(=T B Anex(Q)

(@TQ2)(2TQ ') T Aun(@)|2[PAnin (@22 Amin(Q)

and

(mTw)2 > H$”4 — Amin(Q) .
(@TQ2)(@TQ7'2) ~ Amax(Q)l|2[PAmax(Q) [@] Amax(Q)

We are now ready to establish the convergence of the steepest descent
method.

Theorem 8.2 In the steepest descent algorithm, we have %) — x* for any
(0) O
%,

Proof. 1f g*) = 0 for some k, then ®¥) = z* and the result holds. So assume
that g(*) % 0 for all k. Recall that for the steepest descent algorithm,

g T gk
~ g®TQg®”

Substituting this expression for oy in the formula for v yields

Qg

(g7 g®)?
(kI TQg®) (gTQ gk))’

Note that in this case vy, > 0 for all k. Furthermore, by Lemma 8.2, we have
Yk 2 (Amin(Q)/Amax(Q)) > 0. Therefore, we have Y22, v& = oo, and hence
by Theorem 8.1 we conclude that z*) — z*. [|

Ye =

Consider now a gradient method with fixed step size; that is, ax = a € R
for all k. The resulting algorithm is of the form

2 +D = g®) _ qg(k),

146 GRADIENT METHODS

We refer to the algorithm above as a fized-step-size gradient algorithm. The
algorithm is of practical interest because of its simplicity. In particular, the
algorithm does not require a line search at each step to determine oy, because
the same step size « is used at each step. Clearly, the convergence of the
algorithm depends on the choice of ¢, and we would not expect the algorithm
to work for arbitrary a. The following theorem gives a necessary and sufficient
condition on « for convergence of the algorithm.

Theorem 8.3 For the fized-step-size gradient algorithm, €*) — z* for any
2O if and only if
2

Amax(Q)

O<a<

Proof. <: By Rayleigh’s inequality we have

Amin(@)gP T g™ < g®T QW < Anax(Q)g® Tg®

and 1
g(k)TQ-lg(k) < 4g(k)Tg(k)_

min

Therefore, substituting the above into the formula for v, we get

Y& = o (Amin(Q))? (%@ - a> > 0.

max

Therefore, v > 0 for all &k, and ZZ’;O ~x = 00. Hence, by Theorem 8.1 we
conclude that) — *.

=: We use contraposition. Suppose that either @ < 0 or @ > 2/Ana.x(Q)-
Let (® be chosen such that x(® — 2* is an eigenvector of Q corresponding
to the eigenvalue Apax(Q). Because

) = 2®) _ o(Qx™® — b) = 2 — a(Qx™® — Qz*),
we obtain
2*+D) —g* = 2® _g* — o(Qz™ — Qz*)
= (I, — aQ)(@® —z*)
(In = aQ)** (2 ~ o)
= (1 = Amax (@) (2@ —2*),

where in the last line we used the property that £(®) —z* is an eigenvector of
Q. Taking norms on both sides, we get

e —2*]| = 11 - QAmax (@) 2@ — z*]).

ANALYSIS OF GRADIENT METHODS 147

Because a < 0 or a > 2/ Anax(Q),

Il - Of)\max(Q)l Z 1

Hence, ||z(*+1) —z*|| cannot converge to 0, and thus the sequence {x(*)} does
not converge to x*. [|

Example 8.4 Let the function f be given by

flz)y==" [3 2;/5} x4+’ [g] + 24.

We wish to find the minimizer of f using a fixed-step-size gradient algorithm
D) = 28 _ oV f(2®),

where a € R is a fixed step size.
To apply Theorem 8.3, we first symmetrize the matrix in the quadratic
term of f to get

flz) = %azT [2\8/5 2\@} z+x [g +24.

10

The eigenvalues of the matrix in the quadratic term are 6 and 12. Hence,
using Theorem 8.3, the algorithm converges to the minimizer for all «(® if
and only if « lies in the range 0 < a < 2/12. [|

Convergence Rate

We now turn our attention to the issue of convergence rates of gradient algo-
rithms. In particular, we focus on the steepest descent algorithm. We first
present the following theorem.

Theorem 8.4 In the method of steepest descent applied to the quadratic func-
tion, at every step k we have

/\max(Q) - /\min (Q)
Amax(Q)

V(@®t) < V(z®).

O

Proof. In the proof of Theorem 8.2, we showed that vk > Amin(Q)/Amax(Q)-
Therefore,

V@®) V) An(@)

V(ﬂ’}(k)) -)\max(Q) ’

148 GRADIENT METHODS

and the result follows. [|

Theorem 8.4 is relevant to our consideration of the convergence rate of the
steepest descent algorithm as follows. Let

_ /\max(Q) _ -1
=) = el

called the condition number of Q. Then, it follows from Theorem 8.4 that
V(@) < (1 - 1) V(@®).
r

The term (1 — 1/r) plays an important role in the convergence of {V(z(*))}
to 0 (and hence of {(®} to z*). We refer to (1 — 1/r) as the convergence
ratio. Specifically, we see that the smaller the value of (1 — 1/r), the smaller
V (z*+1)) will be relative to V (x(¥)), and hence the “faster” V' (x(¥)) converges
to 0, as indicated by the inequality above. The convergence ratio (1 — 1/r)
decreases as 7 decreases. If 7 = 1, then Apax(Q) = Amin(Q), corresponding to
circular contours of f (see Figure 8.6). In this case the algorithm converges
in a single step to the minimizer. As r increases, the speed of convergence of
{V(x®))} (and hence of {(¥)}) decreases. The increase in r reflects that fact
that the contours of f are more eccentric (see, e.g., Figure 8.7). We refer the
reader to [88, pp. 238, 239] for an alternative approach to the analysis above.

To investigate the convergence properties of {x(*)} further, we need the
following definition.

Definition 8.1 Given a sequence {x*)} that converges to z*, that is,
limj o |2*) — 2*|| = 0, we say that the order of convergence is p, where
p eR,if
(k+1) _ %
0< lim 12 cl

e P

If for all p > 0,
po et e
emoe @@ — 2 P

then we say that the order of convergence is co. | |

Note that in the definition above, 0/0 should be understood to be 0.

The order of convergence of a sequence is a measure of its rate of conver-
gence; the higher the order, the faster the rate of convergence. The order of
convergence is sometimes also called the rate of convergence (see, e.g., [96]).
If p = 1 (first-order convergence) and limg_,oo ||[2*+D —*|| /[l —2*| = 1,
we say that the convergence is sublinear. If p = 1 and limy_,o [|2*+1) —
z*||/|® — x*|| < 1, we say that the convergence is linear. If p > 1, we say
that the convergence is superlinear. If p = 2 (second-order convergence), we
say that the convergence is quadratic.

ANALYSIS OF GRADIENT METHODS 149

Example 8.5 1. Suppose that z(¥) = 1/k and thus zk) — 0. Then,

lz® D] 1/(k+1) kP
z®p ~ T 1/kp k+1

If p < 1, the sequence above converges to 0, whereas if p > 1, it grows to
oo. If p = 1, the sequence converges to 1. Hence, the order of convergence
is 1 (i.e., we have linear convergence).

2. Suppose that z®) = ~*, where 0 < v < 1, and thus £(*) — 0. Then,

g+ et

_ _ ktl—kp _ k(1-p)+1
e®p — (Fp 7 '

If p < 1, the sequence above converges to 0, whereas if p > 1, it grows
to co. If p = 1, the sequence converges to « (in fact, remains constant at
7). Hence, the order of convergence is 1.

3. Suppose that z(*¥) = ’y(qk), where ¢ > 1and 0 < v < 1, and thus z¥) — 0.
Then,
|zk+1] 7(«1"“) ki1

— — (@ —pd*) _ . (a—p)d*
2@~ (@ 7 ‘

If p < ¢, the sequence above converges to 0, whereas if p > ¢, it grows to
0o. If p = q, the sequence converges to 1 (in fact, remains constant at 1).
Hence, the order of convergence is g.

4. Suppose that z(¥) =1 for all k, and thus z(® — 1 trivially. Then,

Ix(k+1)_1| B 0 —o
lz®) —1]p ~ o2

for all p. Hence, the order of convergence is oc.

The order of convergence can be interpreted using the notion of the order
symbol O, as follows. Recall that a = O(h) (“big-oh of A”) if there exists
a constant ¢ such that |a| < ¢|h| for sufficiently small h. Then, the order of
convergence is at least p if

[2®*1) —z*|| = O(|a® — =*||P)
(see Theorem 8.5 below). For example, the order of convergence is at least 2
if

J&*) —z*|[= O(|=™® - z*?)

(this fact is used in the analysis of Newton’s algorithm in Chapter 9).

150 GRADIENT METHODS

Theorem 8.5 Let {x(F)} be a sequence that converges to x*. If

2+ — 2| = O(le® — 2° P),
then the order of convergence (if it exists) is at least p. O
Proof. Let s be the order of convergence of {z(*)}. Suppose that

2+ - &%) = O(le® — 2*[").

Then, there exists ¢ such that for sufficiently large k,

2D — 2|
Hence,
”a:(k+1) — (13*“ _ I[m(k+1) — (B*“ *(|p—s
FoEr i FoEr

< clla® —a* P,
Taking limits yields

i ”w(k+1) _ m*“
koo @) — @ "

<c lim) — z*||P~,

Because by definition s is the order of convergence,

=) - o]

lim > 0.

h T
Combining the two inequalities above, we get
cklln;o lz® —z*[P~* > 0.

Therefore, because limy_.o, [|*) — 2*|| = 0, we conclude that s > p; that is,
the order of convergence is at least p. |

By an argument similar to the above, we can show that if
le®+D —a*|| = o([l® — 2*|7),
then the order of convergence (if it exists) strictly exceeds p.

Example 8.6 Suppose that we are given a scalar sequence {z(¥)} that con-
verges with order of convergence p and satisfies

(k+1) _
lim @ 2

S0 g

ANALYSIS OF GRADIENT METHODS 151

The limit of {z(*)} must be 2, because it is clear from the equation that
z*+1) — 2] — 0. Also, we see that |z¥*1) — 2] = o(jz(¥) — 2/%). Hence, we
conclude that p > 3. | |

It turns out that the order of convergence of any convergent sequence can-
not be less than 1 (see Exercise 8.3). In the following, we provide an example
where the order of convergence of a fixed-step-size gradient algorithm exceeds
1.

Example 8.7 Consider the problem of finding a minimizer of the function
f:R — R given by

3

flz) =2 — 3

Suppose that we use the algorithm z(*1) = z(*) — o f'(2(%)) with step size
a = 1/2 and initial condition z(® = 1. (The notation f’ represents the
derivative of f.)

We first show that the algorithm converges to a local minimizer of f. In-
deed, we have f'(z) = 2z — 2%. The fixed-step-size gradient algorithm with
step size & = 1/2 is therefore given by

2D = 3®) _ o (@®) = L g2,

2
With 2(® = 1, we can derive the expression z(®) = (1/2)2"~!. Hence, the
algorithm converges to 0, a strict local minimizer of f.
Next, we find the order of convergence. Note that

Ix(k+1)] 1
ECIEE)
Therefore, the order of convergence is 2.]

Finally, we show that the steepest descent algorithm has an order of con-
vergence of 1 in the worst case; that is, there are cases for which the order of
convergence of the steepest descent algorithm is equal to 1. To proceed, we
will need the following simple lemma.

Lemma 8.3 In the steepest descent algorithm, if g*) # 0 for all k, then
Y = 1 if and only if g% is an eigenvector of Q. a

Proof. Suppose that g*) # 0 for all k. Recall that for the steepest descent
algorithm,
(g™ Tg®)?

(gPTQg™)(gWTQ ' g®)’
Sufficiency is easy to show by verification. To show necessity, suppose that
Yk = 1. Then, V(x**+1) = 0, which implies that 2(**1) = z* Therefore,

Tk =

z* =™ — 0",

152 GRADIENT METHODS

Premultiplying by @ and subtracting b from both sides yields
0=g® - 0rQg®,

which can be rewritten as
1
Qg(k) - _g(k).
o7

Hence, g'®) is an eigenvector of Q. | |

By the lemma, if g(*) is not an eigenvector of Q, then 74 < 1 (recall that
v cannot exceed 1). We use this fact in the proof of the following result on
the worst-case order of convergence of the steepest descent algorithm.

Theorem 8.6 Let {w(’“)} be a convergent sequence of iterates of the steepest
descent algorithm applied to a function f. Then, the order of convergence of
{z®} ds 1 in the worst case; that is, there exist a function f and an initial
condition €©) such that the order of convergence of {x®)} is equal to 1. O

Proof. Let f:R™ — R be a quadratic function with Hessian Q. Assume that
the maximum and minimum eigenvalues of @ satisfy Amax(Q) > Amin(Q). To
show that the order of convergence of {z(¥)} is 1, it suffices to show that there
exists (®) such that

24D — || > cl|la® ~ 2|

for some ¢ > 0 (see Exercise 8.2). Indeed, by Rayleigh’s inequality,

V(ak+D) = %(w(kﬂ) —)T Qa*D) — 27

< /\ma;(Q) “m(k—*—l) _ m*nz.

Similarly,
V(w(k)) > /\m1ré(Q) Hw(k) _ w*l]2~

Combining the inequalities above with Lemma 8.1, we obtain

[+ — % || > \/ (1- w%uww —z*|.

Therefore, it suffices to choose x(® such that v < d for some d < 1.
Recall that for the steepest descent algorithm, assuming that g(¥) # 0 for
all k, v depends on g(*) according to

(g Tg®)?
(g TQgR)(gMTQ 1 gk))’

Y& =

EXERCISES 153

First consider the case where n = 2. Suppose that £(®) # z* is chosen such
that £(© — z* is not an eigenvector of Q. Then, g/® = Q(x® — x*) £ 0 is
also not an eigenvector of Q. By Proposition 8.1, gi*) = (x(*+1) —x(®))/qy, is
not an eigenvector of Q for any k [because any two eigenvectors corresponding
t0 Amax(Q) and Amin(Q) are mutually orthogonal]. Also, g(*) lies in one of
two mutually orthogonal directions. Therefore, by Lemma 8.3, for each k, the
value of v, is one of two numbers, both of which are strictly less than 1. This
proves the n = 2 case.

For the general n case, let v1 and vs be mutually orthogonal eigenvectors
corresponding to Apax(Q) and Apin(Q). Choose £(® such that (0 —x* £ 0
lies in the span of v; and v, but is not equal to either. Note that g(® =
Q(z® — z*) also lies in the span of v; and ws, but is not equal to either.
By manipulating %t = z(*) — q, g% as before, we can write gtv+1) =
(I — ax@Q)g™. Any eigenvector of Q is also an eigenvector of I — Q.
Therefore, g{*) lies in the span of v, and v, for all k; that is, the sequence
{g®} is confined within the two-dimensional subspace spanned by v; and
v2. We can now proceed as in the n = 2 case. | |

In the next chapter we discuss Newton’s method, which has order of con-
vergence at least 2 if the initial guess is near the solution.

EXERCISES

8.1 Perform two iterations leading to the minimization of

1 1
flz1,22) = 21 + 502+ §xf+:c§ +3
using the steepest descent method with the starting point z(®) = 0. Also
determine an optimal solution analytically.

8.2 Let {z*)} be a sequence that converges to *. Show that if there exists
¢ > 0 such that
20D — 2] 2 cfe® — 2]

for sufficiently large k, then the order of convergence (if it exists) is at most
.

8.3 Let {a:<’°>} be a sequence that converges to *. Show that there does not
exist p < 1 such that
) ”:lt(k+1) _ .’B*H

T .
0 e® e 0

2
8.4 Consider the sequence {z(F)} given by z(¥) = 2-2"

154 GRADIENT METHODS

a. Write down the value of the limit of {z(*)}.

b. Find the order of convergence of {z(®)}.

8.5 Consider the two sequences {z(*)} and {y*)} defined iteratively as fol-
lows:

2h+D) = ggh),

g+ = (@),

wherea € R, be€R,0<a<1,b>1, 2@ £0,y© £0, and [y < 1.

a. Derive a formula for z(*) in terms of (¥ and a. Use this to deduce that
z®*) - 0.

b. Derive a formula for y® in terms of y(*) and b. Use this to deduce that
(k) 50
y = U

c. Find the order of convergence of {2(*)} and the order of convergence of
{y®}.

d. Calculate the smallest number of iterations k such that |z(¥)| < ¢[z(9)|,
where 0 < ¢ < 1.
Hint: The answer is in terms of a and ¢. You may use the notation [z]
to represent the smallest integer not smaller than 2.

e. Calculate the smallest number of iterations k such that |y®*)| < c|y©@|,
where 0 < ¢ < 1.

f. Compare the answer of part e with that of part d, focusing on the case
where ¢ is very small.

8.6 Suppose that we use the golden section algorithm to find the minimizer
of a function. Let uy be the uncertainty range at the kth iteration. Find the
order of convergence of {uy}.

8.7 Suppose that we wish to minimize a function f : R — R that has a
derivative f’. A simple line search method, called derivative descent search
(DDS), is described as follows: given that we are at a point z®) | we move
in the direction of the negative derivative with step size «; that is, z(*+1) =
x®) — o f"(x*)), where a > 0 is a constant.

In the following parts, assume that f is quadratic: f(z) = %ax2 —br+c
(where a, b, and ¢ are constants, and a > 0).

a. Write down the value of z* (in terms of a, b, and ¢) that minimizes f.

EXERCISES 155
b. Write down the recursive equation for the DDS algorithm explicitly for
this quadratic f.

c. Assuming that the DDS algorithm converges, show that it converges to
the optimal value z* (found in part a).

d. Find the order of convergence of the algorithm, assuming that it does
converge.

e. Find the range of values of o for which the algorithm converges (for this
particular f) for all starting points ().

8.8 Consider the function
flz) = 3(1‘% + a:g) +4dx120 + 5z + 622 + 7,

where ¢ = [z1,22] " € R% Suppose that we use a fixed-step-size gradient
algorithm to find the minimizer of f:

g*) = g*) _ oV f(x®).

Find the largest range of values of « for which the algorithm is globally con-
vergent.

8.9 This exercise explores a zero-finding algorithm.
Suppose that we wish to solve the equation h(x) = 0, where

4+ 3z + 2z4
h(z) = .
1+ 2z, + 3z9

Consider using an algorithm of the form D =) — oh(z*)), where
is scalar constant that does not depend on k.
a. Find the solution of h(z) = 0.

b. Find the largest range of values of o such that the algorithm is globally
convergent to the solution of h(x) = 0.

c. Assuming that « is outside the range of values in part b, give an example
of an initial condition (© of the form [zl,O]T such that the algorithm is
guaranteed not to satisfy the descent property.

8.10 Consider the function f : R? — R given by

flz) = g(x? + 23) + (1 + a)z122 — (T1 + T2) + b,

156 GRADIENT METHODS

where @ and b are some unknown real-valued parameters.
a. Write the function f in the usual multivariable quadratic form.

b. Find the largest set of values of a and b such that the unique global
minimizer of f exists, and write down the minimizer (in terms of the
parameters a and b).

c. Consider the following algorithm:
2D — (k) _ gv Fa®).

Find the largest set of values of a and b for which this algorithm converges
to the global minimizer of f for any initial point #(®.

8.11 Consider the function f : R — R given by f(z) = 3(z —¢)?, c€ R. We
are interested in computing the minimizer of f using the iterative algorithm

B0 = 2B) _ o f/ (),
where f’ is the derivative of f and ¢y is a step size satisfying 0 < o < 1.
a. Derive a formula relating f(z*t1) with f(z(®)), involving ay.

b. Show that the algorithm is globally convergent if and only if

o)
E Q. = OQ.
k=0

Hint: Use part a and the fact that for any sequence {ax} C (0,1), we

have
o0 oo
H(l——ak) =O©Zak = 00.
k=0 k=0

8.12 Consider the function f : R — R given by f(z) = 23 — z. Suppose that
we use a fixed-step-size algorithm z(*t1) = z(*) — o f'(z(*)) to find a local
minimizer of f. Find the largest range of values of & such that the algorithm
is locally convergent (i.e., for all zg sufficiently close to a local minimizer z*,
we have z(¥) — z*).

8.13 Consider the function f given by f(z) = (z — 1)%, z € R. We are
interested in computing the minimizer of f using the iterative algorithm
kD) = ¢ (*) _ 027k f/(z(¥)) where f is the derivative of f and 0 < a < 1.
Does the algorithm have the descent property? Is the algorithm globally
convergent?

EXERCISES 157
8.14 Let f: R — R, f € C3, with first derivative f’, second derivative f”,
and unique minimizer z*. Consider a fixed-step-size gradient algorithm
2R+ — (k) af’(m(k)).

Suppose that f”(z*) # 0 and @ = 1/f"(z*). Assuming that the algorithm
converges to x*, show that the order of convergence is at least 2.

8.15 Consider the problem of minimizing f(z) = |laz — b||?, where a and b
are vectors in R", and a # O.

a. Derive an expression (in terms of a and b) for the solution to this problem.

b. To solve the problem, suppose that we use an iterative algorithm of the
form

2D = &) _ o (),

where f’ is the derivative of f. Find the largest range of values of a (in
terms of a and b) for which the algorithm converges to the solution for
all starting points (%),

8.16 Consider the optimization problem
minimize || Az — b|)?,

where A € R™*" m >n, and b € R™.

a. Show that the objective function for this problem is a quadratic function,
and write down the gradient and Hessian of this quadratic.

b. Write down the fixed-step-size gradient algorithm for solving this opti-

mization problem.
A= 1o .
0 2

Find the largest range of values for a such that the algorithm in part b
converges to the solution of the problem.

c. Suppose that

8.17 Consider a function f : R® — R"™ given by f(x) = Az + b, where
A € R™*" and b € R"™. Suppose that A is invertible and x* is the zero of f
[i.e., f(z*) = 0]. We wish to compute =* using the iterative algorithm

2®D) = 20 _ o f(g®),

where o € R, a > 0. We say that the algorithm is globally monotone if for
any (@, [|x*+D) — z*|| < |2® — 2*| for all k.

158 GRADIENT METHODS

a. Assume that all the eigenvalues of A are real. Show that a necessary
condition for the algorithm above to be globally monotone is that all the
eigenvalues of A are nonnegative.

Hint: Use contraposition.

NI

Find the largest range of values of « for which the algorithm is globally
convergent (i.e., z(*) — x* for all 2(9)).

b. Suppose that

8.18 Let f:R™ — R be given by f(z) = 12" Qx — «"b, where b € R" and
Q is a real symmetric positive definite n X n matrix. Suppose that we apply
the steepest descent method to this function, with (® % Q~'b. Show that
the method converges in one step, that is, () = Q!b, if and only if (@ is
chosen such that g(® = Qz(®) — b is an eigenvector of Q.

8.19 Suppose that we apply the steepest descent algorithm x(*+1) = g(*) —
akg(k) to a quadratic function f with Hessian Q > 0. Let Apax and A, be
the largest and smallest eigenvalue of Q, respectively. Which of the following
two inequalities are possibly true? (When we say here that an inequality is
“possibly” true, we mean that there exists a choice of f and (® such that
the inequality holds.)

a. g Z 2//\max-

b. ag > 1//\min-

8.20 Suppose that we apply a fixed-step-size gradient algorithm to minimize

ot (32 2 3
fl@)=2" [: 3/2} zt+x' [_1j| - 22.

a. Find the range of values of the step size for which the algorithm converges
to the minimizer.

b. Suppose that we use a step size of 1000 (which is too large). Find an
initial condition that will cause the algorithm to diverge (not converge).

8.21 Consider a fixed-step-size gradient algorithm applied to each of the
functions f : R? — R in parts a and b below. In each case, find the largest
range of values of the step size « for which the algorithm is globally convergent.

a. f(z) =1+ 2z; + 3(z? + 23) + 4z172.

EXERCISES 159

b. flz)=x" l: Z} z + [16, 23]z + 7.

1

8.22 Let f:R™ — R be given by f(z) = 1z" Qx — = "b, where b € R" and
Q is a real symmetric positive definite n x n matrix. Consider the algorithm

2+ = 20 _ o, g(k)

where gt*) = Qx®) — b, ap, = g*)TgF) /g TQg(k) and B € R is a given
constant. (Note that the above reduces to the steepest descent algorithm if
B =1.) Show that {&(*)} converges to * = Q'b for any initial condition
(9 if and only if 0 < 8 < 2.

8.23 Let f : R® — R be given by f(z) = 22" Qz — ="b, where b € R
and Q is a real symmetric positive definite n x n matrix. Consider a gradient

algorithm
kD) = &) — g g®)

where g® = Qx(*) — b is the gradient of f at £*) and oy is some step size.

Show that the algorithm has the descent property [i.e., f(zkt1D) < f(x®))
whenever g(¥) # 0] if and only if v > 0 for all k.

8.24 Given f:R™ — R, consider the general iterative algorithm

where dm,d(z),... are given vectors in R™ and «j is chosen to minimize
f(@® + ad®); that is,

o = argmin f(z® + ad®).

Show that for each k, the vector *+1) — (%) is orthogonal to V f(z(*t1)
(assuming that the gradient exists).

8.25 Write a simple MATLAB program for implementing the steepest de-
scent algorithm using the secant method for the line search (e.g., the MAT-
LAB function of Exercise 7.11). For the stopping criterion, use the condition
lg®]| < e, where ¢ = 10~6. Test your program by comparing the output
with the numbers in Example 8.1. Also test your program using an initial
condition of [—4,5,1]", and determine the number of iterations required to
satisfy the stopping criterion. Evaluate the objective function at the final
point to see how close it is to 0.

8.26 Apply the MATLAB program from Exercise 8.25 to Rosenbrock’s func-
tion:

f(@) = 100(z2 — 22)? + (1 — 21)%.
Use an initial condition of () = [~2,2]T. Terminate the algorithm when the
norm of the gradient of f is less than 107%.

CHAPTER 9

NEWTON'S METHOD

9.1 Introduction

Recall that the method of steepest descent uses only first derivatives (gra-
dients) in selecting a suitable search direction. This strategy is not always
the most effective. If higher derivatives are used, the resulting iterative al-
gorithm may perform better than the steepest descent method. Newton’s
method (sometimes called the Newton-Raphson method) uses first and second
derivatives and indeed does perform better than the steepest descent method
if the initial point is close to the minimizer. The idea behind this method is
as follows. Given a starting point, we construct a quadratic approximation to
the objective function that matches the first and second derivative values at
that point. We then minimize the approximate (quadratic) function instead
of the original objective function. We use the minimizer of the approximate
function as the starting point in the next step and repeat the procedure itera-
tively. If the objective function is quadratic, then the approximation is exact,
and the method yields the true minimizer in one step. If, on the other hand,
the objective function is not quadratic, then the approximation will provide

An Introduction to Optimization, Fourth Edition. 161
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc.

162 NEWTON'S METHOD

fay

Predicted Minimizeré
X4 x(k+1)

Figure 9.1 Quadratic approximation to the objective function using first and
second derivatives.

only an estimate of the position of the true minimizer. Figure 9.1 illustrates
this idea.

We can obtain a quadratic approximation to the twice continuously differ-
entiable objection function f : R™ — R using the Taylor series expansion of f
about the current point (*), neglecting terms of order three and higher. We
obtain

f(@) % f@®) + (@ - 2®)Tg® + L (@ — o0 T FE®)(@ - o) 2 g(a),
where, for simplicity, we use the notation g(¥) = Vf(x(*)). Applying the
FONC to q yields

0 = Vg(z) = ¢ + F(a®)(z —).
If F(z*)) > 0, then q achieves a minimum at
2+ =) _ F(g®))=1gH),
This recursive formula represents Newton’s method.

Example 9.1 Use Newton’s method to minimize the Powell function:

fz1, z2,23,24) = (21 + 1022)% + 5(z3 — £4)? 4 (z9 — 2x3)* + 10(z; — z4)*.

Use as the starting point (®) = [3,~1,0,1]T. Perform three iterations.
‘Note that f(z(®) = 215. We have

2(z1 + 10z2) + 40(z1 — z4)°

20(z; + 10$2) +4(ze — 21‘3)3
10(z3 — x4) — 8(z2 — 223)3

—10(z3 — x4) — 40(z1 — 74)3

Viz) =

INTRODUCTION 163

and F(z) is given by

2+ 120(zy — z4)? 20 0 ~120(z1 — z4)?
20 200 + 12(z2 — 223)% —24(z2 — 223)? 0
0 —24(z2 — 223)% 10 + 48(z2 — 2x3)° ~10
—120(z1 — z4)? 0 -10 10 + 120(z; — z4)?

Iteration 1

@ = [306, 144, -2, -310],

482 20 0 —480
20 212 -24 0
F(2®) = ,
@) 0 -—24 58 —10
|—480 0 —10 490
[0.1126 —0.0089 0.0154 0.1106
Pa®)-1 = | 00089 0.0057 00008 —0.0087
0.0154 0.0008 0.0203 0.0155 |’
| 01106 —0.0087 00155 0.1107

F(z(9)"1g® = [1.4127, -0.8413, —0.2540,0.7460] .
Hence,

z® = 2@ — F(2©)~1g© = [1.5873, —0.1587, 0.2540, 0.2540]
f®P) =318.

Iteration 2

gV = [94.81,-1.179,2.371,-94.81] T,

2153 20 0 —2133
20 2053 -1067 0
F(xY) =
() 0 —1067 3134 —10 |’
2133 0 ~10 2233

F(z™M) g =[0.5291, —0.0529,0.0846,0.0846] .
Hence,

z® =z - F(z®)~1gM) = [1.0582, -0.1058,0.1694,0.1694] ",
f(@®) =6.28.

164 NEWTON'S METHOD

Iteration 3

g@ =[28.09, -0.3475,0.7031, —28.08]

96.80 20 0 —94.80
20 2024 -4744 0

F(x®) =

(@) 0 —4744 1949 —10 |’
—9480 0 ~10 104.80

z®) =[0.7037,-0.0704,0.1121,0.1111] T,
fx®) =1.24.

Observe that the kth iteration of Newton’s method can be written in two
steps as

1. Solve F(z®)d® = —g®) for d*),
2. Set gkt+D) = k) 4 gk)

Step 1 requires the solution of an n x n system of linear equations. Thus, an
efficient method for solving systems of linear equations is essential when using
Newton’s method.

As in the one-variable case, Newton’s method can also be viewed as a
technique for iteratively solving the equation

g(x) =0,

where £ € R™ and g : R® — R”. In this case F'(x) is the Jacobian matrix of
g at x; that is, F(x) is the n x n matrix whose (4, j) entry is (0¢;/0z;)(x),
ji=12...,n

9.2 Analysis of Newton’s Method

As in the one-variable case there is no guarantee that Newton’s algorithm
heads in the direction of decreasing values of the objective function if F(z(*))
is not positive definite (recall Figure 7.7 illustrating Newton’s method for
functions of one variable when f” < 0). Moreover, even if F(z®*)) > 0,
Newton’s method may not be a descent method; that is, it is possible that
f(@®+D) > f(2®)). For example, this may occur if our starting point =(® is
far away from the solution. See the end of this section for a possible remedy
to this problem. Despite these drawbacks, Newton’s method has superior
convergence properties when the starting point is near the solution, as we
shall see in the remainder of this section.

The convergence analysis of Newton’s method when f is a quadratic func-
tion is straightforward. In fact, Newton’s method reaches the point €* such

ANALYSIS OF NEWTON'S METHOD 165

that Vf(z*) = 0 in just one step starting from any initial point (®). To see
this, suppose that Q = Q-r is invertible and

flx) = —2-a:TQa: —a'b.

Then,
g(x)=Vf(x)=Qx-b
and
F(z) = Q.
Hence, given any initial point (9, by Newton’s algorithm
z® =z — p(z@)"1g©®
=20 _ Q—l[Qw(O) — b
=Q'b
=",
Therefore, for the quadratic case the order of convergence of Newton’s algo-
rithm is oo for any initial point 2(®) (compare this with Exercise 8.18, which
deals with the steepest descent algorithm).
To analyze the convergence of Newton’s method in the general case, we
use results from Section 5.1. Let {x(®} be the Newton’s method sequence

for minimizing a function f : R® — R. We show that {x(®¥)} converges to the
minimizer * with order of convergence at least 2.

Theorem 9.1 Suppose that f € C° and z* € R™ is a point such that
Vf(x*) = 0 and F(z*) is invertible. Then, for all ' sufficiently close
to x*, Newton’s method is well-defined for all k and converges to x* with an
order of convergence at least 2. O

Proof. The Taylor series expansion of Vf about (9 yields
Vi) - Vi(@?) - F(@)(z - 2) = O(|x — 2O|?).

Because by assumption f € C3 and F(z*) is invertible, there exist constants
€>0,c¢; >0, and c; > 0 such that if 2 & € {z: |& — =*|| < e}, we have

IV#(z) = Vi®) = F(z@)(z — 2@)| < ¢1]|z — @2
and by Lemma 5.3, F(z)~! exists and satisfies
[F()~"] < ca.

The first inequality above holds because the remainder term in the Taylor
series expansion contains third derivatives of f that are continuous and hence
bounded on {z : ||z — z*|| < €}.

166 NEWTON'S METHOD

Suppose that (® € {z : | — x*|| < €}. Then, substituting = * in the
inequality above and using the assumption that V f(z*) = 0, we get

IF @) (@@ - 2*) - V(@) < erl|®@ — 2|2,

Now, subtracting * from both sides of Newton’s algorithm and taking norms
yields
o ") = 2 - " = F(@®) V(@)
= |F (@) (PE®)@® - &) - V()|
< [|F @) | F(@)(@® -) - Vi)

Applying the inequalities above involving the constants c¢; and ¢y gives
[— %] < ereal|2 @ — 272,

Suppose that () is such that

2@ — 2| < L’
Ci1Co

where o € (0,1). Then,
[V —z*| < afj® - z*|.
By induction, we obtain

l®+) —a*|| < creaf|a® — 2|,

25+ — 7| < afl2® —2*].

Hence,
klim l2® —2*|| =0,

and therefore the sequence {&(*)} converges to *. The order of convergence
is at least 2 because ||J2*+D) —g*|| < cicoll2®) —2*||?; that is, ||JoF+D) —z*|| =
O(llz® — z*[}?).

Warning: In the Theorem 9.1, we did not state that * is a local minimizer.
For example, if z* is a local mazimizer, then provided that f € C3 and F(z*)
is invertible, Newton’s method would converge to x* if we start close enough
to it.

As stated in Theorem 9.1, Newton’s method has superior convergence prop-
erties if the starting point is near the solution. However, the method is not
guaranteed to converge to the solution if we start far away from it (in fact, it
may not even be well-defined because the Hessian may be singular). In par-
ticular, the method may not be a descent method; that is, it is possible that

ANALYSIS OF NEWTON'S METHOD 167

Fx®+D) > f(x*)). Fortunately, it is possible to modify the algorithm such
that the descent property holds. To see this, we need the following result.

Theorem 9.2 Let {a:(k)} be the sequence generated by Newton’s method for
minimizing a given objective function f(ax). If the Hessian F(x®) > 0 and
g®) = Vf(x®)) #£ 0, then the search direction

A% = —F(@®)~1g(k) — gk+1) _ 5()

from) to x5t is a descent direction for f in the sense that there exists
an & > 0 such that for all o € (0,a),

f@® + ad®) < f(x®).

Proof. Let
#(a) = f(z® + ad®).

Then, using the chain rule, we obtain
¢ (a) = Vi@® + ad®)Td®.
Hence,
#'(0) = VF(@F)TdE = _g®T pz®)-1gk) <0,

because F(xz*))~! > 0 and g‘*) # 0. Thus, there exists an & > 0 so that for
all a € (0,a), ¢(a) < ¢(0). This implies that for all a € (0,a),

F@® +ad®) < f@®),
which completes the proof. [|
Theorem 9.2 motivates the following modification of Newton’s method:
c*) = g*) _ o F(2®))~1g(k),

where
o = argmin f(x®) — aF(x®)"1g®);
a>0
that is, at each iteration, we perform a line search in the direction
—F(x(*))~1g(®), By Theorem 9.2 we conclude that the modified Newton’s
method has the descent property; that is,

F@®) < f(2)

whenever g(¥) £ 0.

A drawback of Newton’s method is that evaluation of F(z®)) for large n
can be computationally expensive. Furthermore, we have to solve the set of
n linear equations F(z®)d® = —g(*) In Chapters 10 and 11 we discuss
methods that alleviate this difficulty.

Another source of potential problems in Newton’s method arises from the
Hessian matrix not being positive definite. In the next section we describe a
simple modification of Newton’s method to overcome this problem.

168 NEWTON'S METHOD

9.3 Levenberg-Marquardt Modification

If the Hessian matrix F(z(*)) is not positive definite, then the search direction
d® = —F(z®*))~1g*) may not point in a descent direction. A simple tech-
nique to ensure that the search direction is a descent direction is to introduce
the Levenberg-Marquardt modification of Newton’s algorithm:

2D = ¥ — (F(z®) +)~ g®),

where ux > 0.

The idea underlying the Levenberg-Marquardt modification is as follows.
Consider a symmetric matrix F', which may not be positive definite. Let
A1, - - -, A be the eigenvalues of F' with corresponding eigenvectors vy, . .., Uy.
The eigenvalues Ay, ..., A, are real, but may not all be positive. Next, consider
the matrix G = F + ulI, where p > 0. Note that the eigenvalues of G are
AL+ iy ooy An + g Indeed,

Gu; = (F + ulv;
= Fv; + plv;
= Av; + pv;
= (M + p)vi,

which shows that for all i« = 1,...,n, v; is also an eigenvector of G with
eigenvalue \; + p. Therefore, if p is sufficiently large, then all the eigenvalues
of G are positive and G is positive definite. Accordingly, if the parameter py
in the Levenberg-Marquardt modification of Newton’s algorithm is sufficiently
large, then the search direction d® = —(F(a®)) + 4, I)~1g™*) always points
in a descent direction (in the sense of Theorem 9.2). In this case if we further
introduce a step size ai as described in Section 9.2,

gt — 2 — oy (F(@®)) + 1) 'g™®,

then we are guaranteed that the descent property holds.

The Levenberg-Marquardt modification of Newton’s algorithm can be made
to approach the behavior of the pure Newton’s method by letting pr — 0.
On the other hand, by letting px — oo, the algorithm approaches a pure
gradient method with small step size. In practice, we may start with a small
value of pi and increase it slowly until we find that the iteration is descent:

fl@®+D) < f(=®).

9.4 Newton’s Method for Nonlinear Least Squares

We now examine a particular class of optimization problems and the use of
Newton’s method for solving them. Consider the following problem:
m
minimize Z(ri(m))2,

=1

NEWTON'S METHOD FOR NONLINEAR LEAST SQUARES 169

where r; : R® —» R, ¢ = 1,...,m, are given functions. This particular problem
is called a nonlinear least-squares problem. The special case where the r; are
linear is discussed in Section 12.1.

Example 9.2 Suppose that we are given m measurements of a process at
m points in time, as depicted in Figure 9.2 (here, m = 21). Let t1,...,t,
denote the measurement times and y1, ..., ¥, the measurement values. Note
that ¢t; = 0 while t5; = 10. We wish to fit a sinusoid to the measurement
data. The equation of the sinusoid is

y = Asin(wt + ¢)
with appropriate choices of the parameters A, w, and ¢. To formulate the

data-fitting problem, we construct the objective function

m

z:(y2 — Asin(wt; + ¢))?,

i=1

representing the sum of the squared errors between the measurement values
and the function values at the corresponding points in time. Let ¢ = [4,w, $]"
represent the vector of decision variables. We therefore obtain a nonlinear
least-squares problem with

ri(x) = y; — Asin(wt; + ¢).
| |

Defining » = [r1,...,7n]", we write the objective function as f(x) =
r(x)Tr(z). To apply Newton’s method, we need to compute the gradient
and the Hessian of f. The jth component of V f(x) is

i or

(VH(@); = (@) =2 ri) 3]

L ().

J

Denote the Jacobian matrix of r by

Gt(x) - g (x)
J@)=| :
@) - FE(x)

Then, the gradient of f can be represented as

Vi(x) =2J(x) r(z).

170 NEWTON'S METHOD

2.5 T T T T

ot o) i
150 ‘ :

1t , |
0.5+ : : 1

0

Measurement

-05r o B
-1r o A

-1.5} ° 3

Time

Figure 9.2 Measurement data for Example 9.2.

Next, we compute the Hessian matrix of f. The (k,j)th component of the
Hessian is given by

o%f 0 [of
OOz, (@)= Bz, (6:103 :c))
o b (97",
= o (2 ; ri(z oz, (m))
or; or; 8%r;
= 2; (3$k (a:)axj (z) + ri(m)————8$k8xj (m)) .
Letting S(x) be the matrix whose (k, j)th component is

i 827', (@),
axk(?x

=1

we write the Hessian matrix as
F(z) = 2(J(z) I (z) + S(z)).

Therefore, Newton’s method applied to the nonlinear least-squares problem
is given by

a®tD = 2® — (J(2)TJ(z) + S(z)) " I (z) r().

EXERCISES 171

In some applications, the matrix S(x) involving the second derivatives of
the function r can be ignored because its components are negligibly small. In
this case Newton’s algorithm reduces to what is commonly called the Gauss-
Newton method:

2R+ — (k) _ (J(m)TJ(w))—IJ(:z:)T'r(fB)

Note that the Gauss-Newton method does not require calculation of the second
derivatives of 7.

Example 9.3 Recall the data-fitting problem in Example 9.2, with
ri(x) = y; — Asin(wt; + ¢), i=1,...,21.

The Jacobian matrix J(z) in this problem is a 21 x 3 matrix with elements
given by

(J(x)) 1) = —sin(wt; + ¢),

J(-’I:))(i,z) =—tA cos(wti + ¢)’
(J(x))(i,3) = —Acos(wt; + ¢), i=1,...,2L

~~

Using the expressions above, we apply the Gauss-Newton algorithm to find the
sinusoid of best fit, given the data pairs (¢1,91),-- ., (tm, ym). Figure 9.3 shows
a plot of the sinusoid of best fit obtained from the Gauss-Newton algorithm.
The parameters of this sinusoid are: A = 2.01, w =0.992, and ¢ = 0.541. N

A potential problem with the Gauss-Newton method is that the matrix
J(x)TJ(x) may not be positive definite. As described before, this problem
can be overcome using a Levenberg-Marquardt modification:

) = 2® _ (J(2)T I (@) + mD) " I (@) Tr ().

This is referred to in the literature as the Levenberg-Marquardt algorithm,
because the original Levenberg-Marquardt modification was developed specif-
ically for the nonlinear least-squares problem. An alternative interpretation
of the Levenberg-Marquardt algorithm is to view the term pxI as an approx-
imation to S(x) in Newton’s algorithm.

EXERCISES

9.1 Let f: R — R be given by f(z) = (z —)%, where 2o € R is a constant.
Suppose that we apply Newton’s method to the problem of minimizing f.

a. Write down the update equation for Newton’s method applied to the
problem.

172 NEWTON'S METHOD

2.5 T T T T

2

1.5

1

0.5

Measurement
(=]

|
N
o

Time

Figure 9.3 Sinusoid of best fit in Example 9.3.

b. Let y*) = [¢(*) — 24|, where z*¥) is the kth iterate in Newton’s method.
Show that the sequence {y(®} satisfies y(*+1) = 2y*),

c. Show that () — x4 for any initial guess z(%).
d. Show that the order of convergence of the sequence {z(*)} in part b is 1.

e. Theorem 9.1 states that under certain conditions, the order of conver-
gence of Newton’s method is at least 2. Why does that theorem not hold
in this particular problem?

9.2 This question relates to the order of convergence of the secant method,
using an argument similar to that of the proof of Theorem 9.1.

a. Consider a function f: R — R, f € C?, such that z* is a local minimizer
and f(z*) # 0. Suppose that we apply the algorithm z(*+1) = z(*) —
akf'(z®)) such that {ay} is a positive step-size sequence that converges
to 1/f”(z*). Show that if z(¥) — z*, then the order of convergence of
the algorithm is superlinear (i.e., strictly greater than 1).

b. Given part a, what can you say about the order of convergence of the
secant algorithm?

EXERCISES 173

9.3 Consider the problem of minimizing f(z) = 23 = (¥/z)%, = € R. Note
that 0 is the global minimizer of f.

a. Write down the algorithm for Newton’s method applied to this problem.

b. Show that as long as the starting point is not 0, the algorithm in part a
does not converge to 0 (no matter how close to 0 we start).

9.4 Consider Rosenbrock’s Function: f(z) = 100(xzz—z%)?+(1—z1)?, where
x = [z1,72]" (known to be a “nasty” function—often used as a benchmark
for testing algorithms). This function is also known as the banana function
because of the shape of its level sets.

a. Prove that [1, 1]T is the unique global minimizer of f over R?.

b. With a starting point of [0,0] ", apply two iterations of Newton’s method.

-1
. a b 1 d -
Hint [d} ‘m{_c a}

c. Repeat part b using a gradient algorithm with a fixed step size of ax =
0.05 at each iteration.

9.5 Consider the modified Newton’s algorithm
g*+D) =) _ o F(z®))~1g*)

where o = argmin_sq f(2® — oF(x®)~1g(*)). Suppose that we apply
the algorithm to a quadratic function f (x) = %mTQw — b, where Q =
Q7 > 0. Recall that the standard Newton’s method reaches point x* such
that Vf(x*) = 0 in just one step starting from any initial point 2(®). Does
the modified Newton’s algorithm above possess the same property?

CHAPTER 10

CONJUGATE DIRECTION METHODS

10.1 Introduction

The class of conjugate direction methods can be viewed as being intermediate
between the method of steepest descent and Newton’s method. The conjugate
direction methods have the following properties:

1. Solve quadratics of n variables in n steps.

2. The usual implementation, the conjugate gradient algorithm, requires no
Hessian matrix evaluations.

3. No matrix inversion and no storage of an n X n matrix are required.

The conjugate direction methods typically perform better than the method
of steepest descent, but not as well as Newton’s method. As we saw from
the method of steepest descent and Newton’s method, the crucial factor in
the efficiency of an iterative search method is the direction of search at each
iteration. For a quadratic function of n variables f(x) = %a:TQw —a7b,
z e R, Q =Q" > 0, the best direction of search, as we shall see, is in
the Q-conjugate direction. Basically, two directions d® and d? in R™ are

An Introduction to Optimization, Fourth Edition. 175
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc.

176 CONJUGATE DIRECTION METHODS

said to be Q-conjugate if d(l)TQd(z) = 0. In general, we have the following
definition.

Definition 10.1 Let Q be a real symmetric n X n matrix. The directions
d® 4 d(2), .., d™ are Q-conjugate if for all ¢ # j, we have d(’>TQd(3) =
0. [|
Lemma 10.1 Let Q be a symmetric positive definite n X n matriz. If the
directions d(O),d(l), e ,d(k) € R™, k <n—1, are nonzero and Q-conjugate,
then they are linearly independent. a
Proof. Let ay, ..., o be scalars such that
00d® + a1 d® + -+ + apd® = 0.
Premultiplying this equality by d’TQ, 0 < j < k, yields
ajd(j)TQd(j) =0,

because all other terms d(j)TQd(i) = 0, ¢ # j, by Q-conjugacy. But
Q = Q" > 0and d9 # 0; hence a; =0, 5 = 0,1,...,k. Therefore,
d® dV . d® k<n-1,are linearly independent. [|

Example 10.1 Let

Q=

- o W
Ql\)»&ko
W BN s

Note that @ = QT > 0. The matrix
leading principal minors are positive:

is positive definite because all its

Ay =3>0, A2=det[§ 2}:12>0, Az =detQ =20 > 0.

Our goal is to construct a set of Q-conjugate vectors d(o), d(l), d?.
Let d© = [1,0,0]7, d® = @, d",d"]T, d® = [dP,d?,dP)T. We
require that d(O)TQd(l) = (0. We have

3 0 1] [a
dOTQdM =[1,0,0] |0 4 2| || =3d" +d5".
1 2 3] |4
Let d" = 1, d” = 0, d{” = —3. Then, d¥ = [1,0,-3]7, and thus

dOTQdV =o.

THE CONJUGATE DIRECTION ALGORITHM 177

To find the third vector d®, which would be Q-conjugate with d® and
d(l), we require that d(O)TQd(z) =0 and d(l)TQd(Z) = 0. We have
dO7TQd® =3d® +dP =0,
dVTQd® = —6dP — 84 = o0.

If we take d® = [1,4,-3]7, then the resulting set of vectors is mutually
conjugate. [|

This method of finding Q-conjugate vectors is inefficient. A systematic
procedure for finding Q-conjugate vectors can be devised using the idea un-
derlying the Gram-Schmidt process of transforming a given basis of R™ into
an orthonormal basis of R” (see Exercise 10.1).

10.2 The Conjugate Direction Algorithm

We now present the conjugate direction algorithm for minimizing the
quadratic function of n variables

f(@) =527 Qz~zTh,

where Q = Q" > 0,z € R”. Note that because Q > 0, the function f has a
global minimizer that can be found by solving Qz = b.

Basic Conjugate Direction Algorithm. Given a starting point x(®
and Q-conjugate directions d©, d(l), ... ,d(”_l) ; for k > 0,
g* = Vf(z®) = Qz™ —»,
gMT gk
deT Qd(k) ’
2kt = g akd(k).

ap =

Theorem 10.1 For any starting point (0, the basic conjugate direction al-
gorithm converges to the unique &* (that solves Qx = b) in n steps; that is,
(™) = z*. O

Proof. Consider * — (® € R™. Because the d® are linearly independent,
there exist constants 3;, 1 =0,...,n — 1, such that

" — 2 = Bd® + .- + B,_,d 7Y,
Now premultiply both sides of this equation by d(k)TQ, 0 < k < n, to obtain

d(k)TQ(:z:* — :1:(0)) — ﬁkd(k)TQd(k),

178 CONJUGATE DIRECTION METHODS

where the terms d(k)TQd(i) =0, k # i, by the Q-conjugate property. Hence,

B = dPTQ(z* — 2(©)
T T Qg®

Now, we can write
e® = 2@ ¢ 0pd® + ... 4 ap_1d*Y,

Therefore,

2® — 20 Z 00d® 4. 4 g d*D,

So writing
z* — 2 = (" —) + (® - 2(®)

and premultiplying the above by d(k)TQ, we obtain
d(k)TQ(m* _ w(O)) — d(k)TQ(w* _ a:(k)) — _d(k)Tg(k>’

because g*) = Qz*) — b and Qz* = b. Thus,

deT g
B == T gqm =
and x* = (™, which completes the proof. |

Example 10.2 Find the minimizer of

1 4 2 -1
f($1,$2)=§$T |:2 2j|:B—:BT|:1:|,£B€R2,

using the conjugate direction method with the initial point (®) = [0,0]T, and
Q-conjugate directions d® = [1,0]T and d) = -3 3]T.

814
We have
g(O) =-b= [17 _I]Ty
and hence
1
OO L, =1] H 1
Qg = — = - = ——,
d(O)TQd(O) 4 ol [1 4
(1,0]
2 2] |0
Thus,

2 = 20 4 4od® = M _

THE CONJUGATE DIRECTION ALGORITHM 179

To find ®, we compute

4 2| [-1 —1] 0
S T |LAGAD

and -
o[-
0. -3
B T
M= DT g :‘[. [4 2] [_1 =2
_3 3 8
824012 21| ¢
Therefore,
-1 _3 -1
2@ =@ £ od® = | 4] 42 =151
0 1 2
Because f is a quadratic function in two variables, (?) = z*. |

For a quadratic function of n variables, the conjugate direction method
reaches the solution after n steps. As we shall see below, the method also
possesses a certain desirable property in the intermediate steps. To see this,
suppose that we start at (9 and search in the direction d® to obtain

T 4(0
20— g _ [997d? \ o
d(O)TQd(O)

We claim that
g(l)Td(O) —0.

To see this,

gVTdO — (Qz — b)Td®
g(O)Td(O)

— 2OT o0 _ -
=z Qd (d(O)TQd(O)

= gOT4® _ gOT4© _

) d(O)TQd(O) — b1 d®

The equation g(l)Td(O) = 0 implies that oy has the property that oy =
arg min ¢o(a), where ¢g(a) = f(z(® + ad®). To see this, apply the chain
rule to get

d
%(a) =V +ad?)TdO.
Evaluating the above at a = ag, we get
ddo

do (a0) = gV Td @ =0.

180 CONJUGATE DIRECTION METHODS

Because ¢ is a quadratic function of a, and the coefficient of the o? term in
g is d(O)TQd(O) > 0, the above implies that ag = arg min,cg ¢o(c).
Using a similar argument, we can show that for all k,

and hence
ay = argmin f(z® + ad(k)).

In fact, an even stronger condition holds, as given by the following lemma.
Lemma 10.2 In the conjugate direction algorithm,
gk T4l — g
forallk, 0<k<n—-1,and0<i<k. O
Proof. Note that
Q-+ — 2®y = Qe +1) — p — (Qz® — b) = glk+1) — g*),

because g*) = Qz(®) — b. Thus,

gt = g(k) 1 arQd™).

We prove the lemma by induction. The result is true for £ = 0 because
gM7d 9 = 0, as shown before. We now show that if the result is true for
k—1 (ie., g®Td® = 0,i < k—1), then it is true for k (i.e., g**DTd® =0,
i <k). Fix k> 0 and 0 < ¢ < k. By the induction hypothesis, g)Td® = 0.
Because

gkt = gtk 4 arQd®,

and d(k)TQd(i) = 0 by Q-conjugacy, we have
g(k+1)Td(i) — g(k)Td(i) + akd(k)TQd(i) —0.
It remains to be shown that

gk T g®

Indeed,
g(k+1)Td(k) — (Qw(lﬂ—l) _ b)Td(k)

-
k)T go)
_ k g (k) (k T g(k
= (Qa® - b>T d®) — T g®)

0,

THE CONJUGATE DIRECTION ALGORITHM 181

x(0)+Span[d(©),...,d*)]

g{k+1)

Figure 10.1 Illustration of Lemma 10.2.

because Qx*) — b = g(F),
Therefore, by induction, for al 0 < k <n —1and 0 <i <k,

gFDTg® .

By Lemma 10.2 we see that g(¥t1) is orthogonal to any vector from the
subspace spanned by d®, dW N d®. Figure 10.1 illustrates this statement.

The lemma can be used to show an interesting optimal property of the
conjugate direction algorithm. Specifically, we now show that not only does
Fx®+DY satisfy f(z®*+D) = ming f(@® + ad™®), as indicated before, but
also

k
f(@*)) = min f (az(o) + Zaid(i)>)

ag,...,ak)
=0

In other words, if we write
Ve =z2© + span[d(o), av,. .., d(k)],

then we can express f(z(**1)) = mingcy, f(x). As k increases, the subspace
span[d(o),d(l), ... ,d(k)] “expands,” and will eventually fill the whole of R"

(provided that the vectors d® dM . are linearly independent). Therefore,

for some sufficiently large k, * will lie in Vi. For this reason, the above result

is sometimes called the exzpanding subspace theorem (see, e.g., [88, p. 266]).
To prove the expanding subspace theorem, define the matrix D®) by

D® = [d® . d¥);

182 CONJUGATE DIRECTION METHODS

that is, d¥ is the ith column of D*). Note that (® + R(D™®) = V. Also,

k
2+ = 20 4 Z a;d®
i=0
=2 + DWaq,

where a = [ag,...,ox] . Hence,
z*+D) ¢ £ 4 R(DW) = V.

Now, consider any vector & € V. There exists a vector a such that © = z(® 4
D®aq. Let ¢x(a) = f(@©@ + D®a). Note that ¢ is a quadratic function
and has a unique minimizer that satisfies the FONC (see Exercises 6.33 and
10.7). By the chain rule,

D¢r(a) = V(@@ + D®a)T DK,
Therefore,

Dé¢p(a) = Vf(@® + D®a)T D®
= Vf(z*+t))Tp®
— g(k—i—l)TD(k)‘

By Lemma 10.2, g**DT D®) — 0T Therefore, a satisfies the FONC for the
quadratic function ¢, and hence a is the minimizer of ¢g; that is,

f(@*+1) = min f (@ + D¥a) = min f(2),
a x k

which completes the proof of our result.

The conjugate direction algorithm is very effective. However, to use the
algorithm, we need to specify the Q-conjugate directions. Fortunately, there
is a way to generate Q-conjugate directions as we perform iterations. In
the next section we discuss an algorithm that incorporates the generation of
Q-conjugate directions.

10.3 The Conjugate Gradient Algorithm

The conjugate gradient algorithm does not use prespecified conjugate direc-
tions, but instead computes the directions as the algorithm progresses. At
each stage of the algorithm, the direction is calculated as a linear combina-
tion of the previous direction and the current gradient, in such a way that all
the directions are mutually Q-conjugate—hence the name conjugate gradient
algorithm. This calculation exploits the fact that for a quadratic function of

THE CONJUGATE GRADIENT ALGORITHM 183

n variables, we can locate the function minimizer by performing n searches
along mutually conjugate directions.
As before, we consider the quadratic function

1
fl@) = §mTQw —z'b, ©eR,
where Q = QT > 0. Our first search direction from an initial point (@ is in
the direction of steepest descent; that is,

4 = _g©
Thus,
2D = 20 ¢ 4,d©®,
where OT 4O
_ i £ oy__9 d
oy = argg.nn f(&" +ad™) = FOU¥OR

In the next stage, we search in a direction dV) that is Q-conjugate to do.
We choose d¥) as a linear combination of gV and d®. In general, at the
(k+1)th step, we choose d**Y 6 be a linear combination of g+t and d®.
Specifically, we choose

d*+D — _gk+D) 4 Bed®, k=0,1,2,....

The coefficients Bk, k = 1,2,..., are chosen in such a way that d*+1) g
Q-conjugate to d®, d® ... d®. Thisis accomplished by choosing Gx to be

B g*+DTQd®
B = d®TQd®

The conjugate gradient algorithm is summarized below.
1. Set k := 0; select the initial point (%),

2. g0 = Vf(x®). If g = 0, stop; else, set d@ = —g(©,

)T (k)
3. aE = _d(")TQd(’”) .
4. z*D) = g*) 4 o d®),

5. gkt = v f(x*+D), If glk+1) = 0, stop.

(41T oq(k)
6. ﬁk = AT QdE *

7. d*t) = _gk+1) 4 g (B,

8. Set k := k + 1; go to step 3.

184 CONJUGATE DIRECTION METHODS

Proposnzlon 10.1 In the conjugate gradient algorithm, the directions
d® dV, ... d™ Y are Q-conjugate. O

Proof. We use induction. We first show that d(O)TQdm = 0. To this end we
write
d(O)TQd(l) — d(O)TQ(_g(l) + ﬁod(o)).

Substituting for

g(l)TQd(O)
0= dOTQd®
in the equation above, we see that d(O)TQd(l) =0.
We now assume that d(@, d(1 d® k< n—1, are Q-conjugate di-
rections. From Lemma 10.2 we have g(k“)Td(’) =0,7=0,1,...,k Thus,
g*+1) is orthogonal to each of the directions d(o) d(l) d(k). We now show

that
gFtITgl) — 0, j=0,1,...,k.

Fix 7 € {0,...,k}. We have
dD = —g 1 g;_1dv=Y.
Substituting this equation into the previous one yields
g*tDTGE) = g = —g*k+1DT g(3) 4 ﬂj_lg(k“)Td(j_l),

Because g**17dU~1 = ¢, it follows that g+ iTgl) =g
We are now ready to show that d(k’H)TQd(J) =0,7=0,...,k. We have

d(k+1)TQd(j) — (_g(k+1) + ,Bkd(k))TQd(j).

If j < k, then d®TQdV) =g, by virtue of the induction hypothesis. Hence,
we have 4 .
dFITQdY) = —gk+DT Q).
But gU*tD) = g 4 0;Qd". Because g+ Tg() =0, i =0,...,k,
dFOT QW) = _gk+))T gty — g _
Q;

Thus,
d(k+l)TQd(j) =0, 7=0,...,k—1.

It remains to be shown that d(k+1)TQd(k) = 0. We have
d(k+1)TQd(k) - (_g(k+1) +ﬂkd(k))TQd(k).

Using the expression for 8y, we get d(k+1)TQd(k) = 0, which completes the
proof. [|

THE CONJUGATE GRADIENT ALGORITHM 185
Example 10.3 Consider the quadratic function

3 3
f(x1, 22, 23) = Exf + 2x§ + 5:1:% + 2123 + 2T023 — 321 — X3.

We find the minimizer using the conjugate gradient algorithm, using the start-
ing point 2(® = [0,0,0]T.
We can represent f as

flx)= §mTQm — b,

where

N O
W N
o
Il
O W

We have

g(z) =V f{x) =Qx —b=[3z; + 3 — 3,422 + 223,71 + 222 + 323 — I]T.

Hence,
g<0) - {_3103 _1]Tv
d® — _g(O)’
0)T 4(0)
po=—I 4 _10_ o
d(O)TQd(O) 36
and

D = 20 4 0,d® = [0.8333,0,0.2778] .
The next stage yields

gV = Vf(z) = [-0.2222,0.5556,0.6667] T,

B g(l)TQd(O)

We can now compute
dV = —g® + ,d® = [0.4630, —0.5556, —0.5864] " .

Hence,
g(l)T dW

Q1 =

and
2@ = 20 4 0;dV = [0.9346, —0.1215,0.1495] " .

186 CONJUGATE DIRECTION METHODS

To perform the third iteration, we compute

g = V(@) = [-0.04673, -0.1869,0.1402] T,

5 — g(z)TQd(l) _
P 0T a®

d? = —g® 4 8,d™ = [0.07948,0.1476, -0.1817] .

0.07075,

Hence,
@T g2
—_ g e _
= =T @ = 0.8231
and
z® = 2@ 4 0,d® = [1.000,0.000,0.000] .
Note that

g¥ =vi@?¥)=o,

as expected, because f is a quadratic function of three variables. Hence,
* — (3]
x* =\,

10.4 The Conjugate Gradient Algorithm for Nonquadratic Prob-
lems

In Section 10.3, we showed that the conjugate gradient algorithm is a conju-
gate direction method, and therefore minimizes a positive definite quadratic
function of n variables in n steps. The algorithm can be extended to general
nonlinear functions by interpreting f(x) = %wTQw — x b as a second-order
Taylor series approximation of the objective function. Near the solution such
functions behave approximately as quadratics, as suggested by the Taylor se-
ries expansion. For a quadratic, the matrix @, the Hessian of the quadratic,
is constant. However, for a general nonlinear function the Hessian is a ma-
trix that has to be reevaluated at each iteration of the algorithm. This can
be computationally very expensive. Thus, an efficient implementation of the
conjugate gradient algorithm that eliminates the Hessian evaluation at each
step is desirable.

Observe that Q appears only in the computation of the scalars ay and (.
Because

oy = argmin f(z® + ad(k)),
a>0

the closed-form formula for ay in the algorithm can be replaced by a numeri-
cal line search procedure. Therefore, we need only concern ourselves with the
formula for 8;. Fortunately, elimination of @ from the formula is possible and
results in algorithms that depend only on the function and gradient values at

THE CONJUGATE GRADIENT ALGORITHM FOR NONQUADRATIC PROBLEMS 187

each iteration. We now discuss modifications of the conjugate gradient algo-

rithm for a quadratic function for the case in which the Hessian is unknown

but in which objective function values and gradients are available. The mod-

ifications are all based on algebraically manipulating the formula B in such

a way that @ is eliminated. We discuss three well-known modifications.
Hestenes-Stiefel Formula. Recall that

B gF+IT QA"
B = dPTQd®

The Hestenes-Stiefel formula is based on replacing the term Qd™® by the
term (g**+Y — g(¥))/a,. The two terms are equal in the quadratic case, as
we now show. Now, z D = z(®) 4 ¢, d®). Premultiplying both sides by Q,
subtracting b from both sides, and recognizing that gi*) = Qz*) — b, we get
g%+ = g®) 4 4, Qd™®) | which we can rewrite as Qd'®) = (g(k+1) — g(®)) /oy,
Substituting this into the original equation for 8y gives the Hestenes-Stiefel
formula

B gk DT [glk41) _ g(o)]

P = d(k)T[g(k+1) — g®)] ’

Polak-Ribiére Formula. Starting from the Hestenes-Stiefel formula, we
multiply out the denominator to get
5, = g(k+1)T[g(k+1) _g(k)]
BT ABT gl — gmT gty

By Lemma, 10.2, d(k)Tg(k‘H) = 0. Also, since d® = —gt® +,3k_1d(k_1>, and
premultiplying this by g®®T, we get

gOTdWR = _g®BT gk 4 3 gRITgle=1) — _g(0)T g(k).

where once again we used Lemma 10.2. Hence, we get the Polak-Ribiere

formula T (k
_ g(k+1) [g(+1) _g(k)]

P gBTgk)

Fletcher-Reeves Formula. Starting with the Polak-Ribiere formula, we
multiply out the numerator to get

_ g(k+1)Tg(k+l) . g(k+1)Tg(k)
= 9P T gk '

We now use the fact that g**1 7T g(k) = 0, which we get by using the equation
gFHDT gy — _g(R+1)T g(k) | Be_1g* DT glk=D)

and applying Lemma 10.2. This leads to the Fletcher-Reeves formula
By = g(k+1)Tg(k+1)
P T gmT gk

188 CONJUGATE DIRECTION METHODS

The formulas above give us conjugate gradient algorithms that do not re-
quire explicit knowledge of the Hessian matrix Q. All we need are the objec-
tive function and gradient values at each iteration. For the quadratic case the
three expressions for By are exactly equal. However, this is not the case for a
general nonlinear objective function.

We need a few more slight modifications to apply the algorithm to gen-
eral nonlinear functions in practice. First, as mentioned in our discus-
sion of the steepest descent algorithm (Section 8.2), the stopping criterion
V f(x®*+1)) = 0 is not practical. A suitable practical stopping criterion, such
as those discussed in Section 8.2, needs to be used.

For nonquadratic problems, the algorithm will not usually converge in n
steps, and as the algorithm progresses, the “Q-conjugacy” of the direction
vectors will tend to deteriorate. Thus, a common practice is to reinitialize the
direction vector to the negative gradient after every few iterations (e.g., n or
n + 1) and continue until the algorithm satisfies the stopping criterion.

A very important issue in minimization problems of nonquadratic functions
is the line search. The purpose of the line search is to minimize ¢r(a) =
f@® + ad*)) with respect to a > 0. A typical approach is to bracket or
box in the minimizer and then estimate it. The accuracy of the line search
is a critical factor in the performance of the conjugate gradient algorithm. If
the line search is known to be inaccurate, the Hestenes-Stiefel formula for Gx
is recommended [69].

In general, the choice of which formula for 8x to use depends on the ob-
jective function. For example, the Polak-Ribiére formula is known to perform
far better than the Fletcher-Reeves formula in some cases but not in others.
In fact, there are cases in which the gi¥), k = 1,2, ..., are bounded away from
zero when the Polak-Ribiére formula is used (see [107]). In the study by Pow-
ell in [107], a global convergence analysis suggests that the Fletcher-Reeves
formula for B is superior. Powell further suggests another formula for G:

g(k+1)T [g(k+1) _ g(k>}
gBT gk '

Bx = max {0,

For general results on the convergence of conjugate gradient methods, we
refer the reader to [135]. For an application of conjugate gradient algorithms
to Wiener filtering, see [116], [117], and [118].

Conjugate gradient algorithms are related to Krylov subspace methods
(see Exercise 10.6). Krylov-subspace-iteration methods, initiated by Magnus
Hestenes, Eduard Stiefel, and Cornelius Lanczos, have been declared one of
the 10 algorithms with the greatest influence on the development and practice
of science and engineering in the twentieth century [40].

For control perspective on the conjugate gradient algorithm, derived from
a proportional-plus-derivative (PD) controller architecture, see [4]. In addi-
tion, these authors offer a control perspective on Krylov-subspace-iteration
methods as discrete feedback control systems.

EXERCISES 189

EXERCISES

10.1 (Adopted from [88, Exercise 9.8(1)]) Let Q be a real symmetric pos-
itive definite n x n matrix. Given an arbitrary set of linearly independent
vectors {p®,...,p(*"V} in R”, the Gram-Schmidt procedure generates a set
of vectors {d©,...,d" D} as follows:

d® = p©

k k+1)T g8
4D = p+D) _ 3 pHTQAY iy

pare d(i)TQd(i)

Show that the vectors d¥,...,d™) are Q-conjugate.

10.2 Let f:R™ — R be the quadratic function

flz)= §mTQw —x'b,

where Q = Q7 > 0. Given a set of directions {d(o), ab, .. .} C R™, consider
the algorithm
e+ = 20 4 o d®),

where oy is the step size. Suppose that g(k“)Td(") =0forallk=0,...,n—1
and i =0,...,k, where g-+1) = Vf(x*+1). Show that if g®)Td® +£ 0 for
allk=0,...,n—1, then d?,...,d™ V) are Q-conjugate.

10.3 Let f : R®™ — R be given by f(z) = %xTQw — b, where b € R”
and Q is a real symmetric positive definite n x n matrix. Show that in the
conjugate gradient method for this f, d®TQd® = —d®TQg®.

10.4 Let Q be a real n X n symmetric matrix.

a. Show that there exists a Q-conjugate set {d(l), Ve ,d(")} such that each

d® (i =1,...,n) is an eigenvector of Q.

Hint: Use the fact that for any real symmetric n X n matrix, there exists
a set {vi,...,v,} of its eigenvectors such that v/ v; = 0 for all 4,5 =
1,...,n,1# 3.

b. Suppose that Q is positive definite. Show that if {d(l), e ,d(")} is a
Q-conjugate set that is also orthogonal (i.e., dYTdY) =0 for all 4,5 =
1,...,n,4%# j), and d® #0,i=1,...,n, then each d(i), i1=1,...,n,is
an eigenvector of Q.

10.5 Consider the following algorithm for minimizing a function f:

2+ = 20 4 o g®)

190 CONJUGATE DIRECTION METHODS

where oy, = argmin, f(z® + ad®). Let g*) = Vf(z®) (as usual).

Suppose that f is quadratic with Hessian Q. We choose d*+h) =
Yeg®tD +d(k), and we wish the directions d*) and d**%) to be Q-conjugate.
Find a formula for -y in terms of d*, g(*+1) and Q.

10.6 Consider the algorithm

2D = o) 4 o, g
with o € Rscalar and (®) = 0, applied to the quadratic function f : R® — R
given by ‘

f@) =327 Qz~b"z,

where Q@ > 0. As usual, write g¥) = Vf(z(*)). Suppose that the search
directions are generated according to

d*+D) — akg(k+1) + bkd(k),
where a, and by are real constants, and by convention we take d=Y =o.

a. Define the subspace Vi = spanlb, @b, ..., Q* _lb] (called the Krylov sub-
space of order k). Show that d*) € Vi;; and 2® € V.
Hint: Use induction. Note that Vy = {0} and V; = span[b].

b. In light of part a, what can you say about the “optimality” of the conju-
gate gradient algorithm with respect to the Krylov subspace?

10.7 Consider the quadratic function f: R™ — R given by
1
f((l?) = EwTQz - me)

where @ = QT > 0. Let D € R™ " be of rank r and &g € R®. Define the
function ¢ : R” — R by
#(a) = f(zo + Da).

Show that ¢ is a quadratic function with a positive definite quadratic term.

10.8 Consider a conjugate gradient algorithm applied to a quadratic function.

a. Show that the gradients associated with the algorithm are mutually or-
thogonal. Specifically, show that gtV Tg(® =0 forall 0 < k< n -1
and 0 <7< k.

Hint: Write g@ in terms of d¥ and d~Y.

b. Show that the gradients associated with the algorithm are Q-conjugate
if separated by at least two iterations. Specifically, show that
g*tUTQg) =0 forall0<k<n-1land0<i<k-1.

EXERCISES 191

10.9 Represent the function

5
f(z1,22) = 517% + 25— 3T1xg — 22— T
in the form f(z) = 327Qz — ©"b + c. Then use the conjugate gradient

algorithm to construct a vector d® that is Q-conjugate with d® =v f(x®),
where ¢(®) = 0.

10.10 Let f(x), = = [z1,z2] " € R?, be given by

5 1
f(m) = 5:1:% + 5:1,‘% + 2x129 — 371 — T2,

a. Express f(x) in the form of f(z) = ' Qx — = b.

b. Find the minimizer of f using the conjugate gradient algorithm. Use a
starting point of (® = [0,0]7.

c. Calculate the minimizer of f analytically from Q and b, and check it with
your answer in part b.

10.11 Write a MATLAB program to implement the conjugate gradient al-
gorithm for general functions. Use the secant method for the line search
(e.g., the MATLAB function of Exercise 7.11). Test the different formulas
for B on Rosenbrock’s function (see Exercise 9.4) with an initial condition
2@ = [-2,2]T. For this exercise, reinitialize the update direction to the
negative gradient every six iterations.

CHAPTER 11

QUASI-NEWTON METHODS

11.1 Introduction

Newton’s method is one of the more successful algorithms for optimization. If
it converges, it has a quadratic order of convergence. However, as pointed out
before, for a general nonlinear objective function, convergence to a solution
cannot be guaranteed from an arbitrary initial point £(®). In general, if the
initial point is not sufficiently close to the solution, then the algorithm may
not possess the descent property [i.e., f(z®*+1D) £ f(2®) for some k].

Recall that the idea behind Newton’s method is to locally approximate the
function f being minimized, at every iteration, by a quadratic function. The
minimizer for the quadratic approximation is used as the starting point for
the next iteration. This leads to Newton’s recursive algorithm

2D = 2®) _ p(zk) 1900,

We may try to guarantee that the algorithm has the descent property by
modifying the original algorithm as follows:

2D — 20 _ o F(z®))1g®),

An Introduction to Optimization, Fourth Edition. 193
By E. K. P. Chong and S. H. Zak. Copyright (© 2013 John Wiley & Sons, Inc.

194 QUASI-NEWTON METHODS

where a4 is chosen to ensure that
f@™) < f(=®).

For example, we may choose ay = argming,sq f(z® — aF(z®)~1gk)
(see Theorem 9.2). We can then determine an appropriate value of oy by
performing a line search in the direction —F(x®))~1g(). Note that al-
though the line search is simply the minimization of the real variable function
or(a) = f(x®) — aF(x®))~1g*)) it is not a trivial problem to solve.

A computational drawback of Newton’s method is the need to evaluate
F(z®) and solve the equation F(z®)d® = —g®*) Jie., compute d® =
—F(2®)~1g(®)]. To avoid the computation of F(z*¥))~1, the quasi-Newton
methods use an approximation to F(z(*))~! in place of the true inverse.
This approximation is updated at every stage so that it exhibits at least
some properties of F(m(k))_l. To get some idea about the properties that an
approximation to F(x(®))~! should satisfy, consider the formula

2+ = o®) _ o H,g®)

where Hj is an n X n real matrix and « is a positive search parameter.
Expanding f about z(*) yields

F@4D) = f(@®) +g®T @+ - 5) + oo+ — M)
= f(z®) - ag® T Hyg® + o(| Hig™® o).

As a tends to zero, the second term on the right-hand side of this equation
dominates the third. Thus, to guarantee a decrease in f for small «, we have
to have

g®TH,.g® > 0.

A simple way to ensure this is to require that Hj, be positive definite. We
have proved the following result.

Proposition 11.1 Let f € C', z® ¢ R?, g® = Vf(x*)) #£ 0, and
H) an n x n real symmetric positive definite matriz. If we set x*t1 =
x®) — o, Hrg™® | where ay = argmin, s, f(® — aHig®), then oy, > 0
and f(xz®*+t)) < f(®). O

In constructing an approximation to the inverse of the Hessian matrix,
we should use only the objective function and gradient values. Thus, if we
can find a suitable method of choosing H, the iteration may be carried out
without any evaluation of the Hessian and without the solution of any set of
linear equations.

11.2 Approximating the Inverse Hessian

Let Ho, H1,Hs,... be successive approximations of the inverse F(z(*))~!
of the Hessian. We now derive a condition that the approximations should

APPROXIMATING THE INVERSE HESSIAN 195

satisfy, which forms the starting point for our subsequent discussion of quasi-
Newton algorithms. To begin, suppose first that the Hessian matrix F(x) of
the objective function f is constant and independent of . In other words,
the objective function is quadratic, with Hessian F(z) = Q for all =, where
Q =Q". Then,

g+t — g*) = Q(z*+D) — (),

Let
yay
Ag<k) 2 g(k+1> g(k)

and
AzF) & pk+1) _ (k)

Then, we may write

Ag®) = Qax®.

We start with a real symmetric positive definite matrix Hy. Note that given
k, the matrix Q! satisfies

Q_lAg(i) = Am(i), 0<:<k.

Therefore, we also impose the requirement that the approximation Hy4; of
the Hessian satisfy

Hk+1Ag(i) = Aw("), 0<i<k.

If n steps are involved, then moving in n directions Am(o), Aaz(l), cee, Az Y
yields

H,Ag"® = Az'?,
HnAg(l) - Am(l),

H,Ag" ™V = Az D,
This set of equations can be represented as
H,[Ag® AgY, ... Agn V] = [Az® Az®D, ... Ag"~D),
Note that Q satisfies
Q[Am(o),Aw(l),...,A:c<"_1)] = [Ag(o),Ag(l), . .,Ag("_l)]
and
QY Ag?,AgW, ..., Ag" V] = [Az®, Az ... AxY).

Therefore, if [Ag<0),Ag(1),..‘,Ag("_l)] is nonsingular, then Q™! is deter-
mined uniquely after n steps, via

Q'=H, = Az, AzY ... Az V][Ag?D AgW, ..., Ag" V71,

196 QUASI-NEWTON METHODS

As a consequence, we conclude that if H,, satisfies the equations H nAg(i) =
A:z:(i), 0 < i < n—1, then the algorithm z*+1) = z®*) _ o, H;g®,
ay = argmin,s, f(@® — aHig®), is guaranteed to solve problems with
quadratic objective functions in n 4 1 steps, because the update z("+1) =
™ — a, H,g™ is equivalent to Newton’s algorithm. In fact, as we shall see
below (Theorem 11.1), such algorithms solve quadratic problems of n variables
in at most n steps.

The considerations above illustrate the basic idea behind the quasi-Newton
methods. Specifically, quasi-Newton algorithms have the form

d® = _Hg®,

o, = argmin f(z® + ad®),
a>0

2+ = 20 4 o, d®)

where the matrices Hg, Hy,... are symmetric. In the quadratic case these
matrices are required to satisfy

Hk+1Ag(i) = Aw(i>, 0 S) S ka

where Az = (1) — 20) = 0;d® and Agl) = gli+D) —) = QAz®. It
turns out that quasi-Newton methods are also conjugate direction methods,
as stated in the following.

Theorem 11.1 Consider a quasi-Newton algorithm applied to a quadratic
function with Hessian Q = Q' such that for0<k<n-1,

Hy10g9% = Az, 0<i<k,

where Hyw1 = Hy, 1. Ifa; #0, 0 < i <k, then d9,...,d**V are Q-
conjugate. O

Proof. We proceed by induction. We begin with the k¥ = 0 case: that d©
and dV) are Q-conjugate. Because ag # 0, we can write d® = Az©® /.
Hence,
d(l)TQd(O) = _g(l)THle(O)
QAz™
Qo

- _g(nTM
Qg

=-gWTH,

_ _goTAz?
(2%}
- —gT GO,

THE RANK ONE CORRECTION FORMULA 197

But g(l)Td(O) = 0 as a consequence of ap > 0 being the minimizer of ¢(a) =
f(@® + ad®) (see Exercise 11.1). Hence, dVTQd¥ = 0.

Assume that the result is true for k£ — 1 (where £ < n — 1). We now prove
the result for k, that is, that d<0), .. .,d(k"'l) are Q-conjugate. It suffices to
show that d(k“)TQd(i) =0,0<1i<k. Given 1, 0 < i < k, using the same
algebraic steps as in the k = 0 case, and using the assumption that a; # 0,
we obtain

d*DTQI® = _gt:+DT | 0dl)

= _g+DT g,

Because d(o),...,d(k) are Q-conjugate by assumption, we conclude from
Lemma 10.2 that g*+DTd® = 0. Hence, d**Y7Qd® = 0, which com-
pletes the proof. [|

By Theorem 11.1 we conclude that a quasi-Newton algorithm solves a
quadratic of n variables in at most n steps.

Note that the equations that the matrices H}, are required to satisfy do
not determine those matrices uniquely. Thus, we have some freedom in the
way we compute the Hy. In the methods we describe, we compute Hy; by
adding a correction to H. In the following sections we consider three specific
updating formulas.

11.3 The Rank One Correction Formula

In the rank one correction formula, the correction term is symmetric and has
the form arz®z(*)7T where a; € R and 2(¥) € R™. Therefore, the update
equation is

Hy,1=H;+ akz(k)z(k)T.

Note that
A0

rank 28 2®7T = rank : [zik) z,(lk)} =1
A9

and hence the name rank one correction |it is also called the single-rank sym-
metric (SRS) algorithm). The product z¥) 2" T is sometimes referred to as
the dyadic product or outer product. Observe that if Hy is symmetric, then
so is Hy4.

Our goal now is to determine ax and z(*), given Hy, Ag(k), Aa:(k),)
that the required relationship discussed in Section 11.2 is satisfied; namely,

198 QUASI-NEWTON METHODS

Hyq Ag(i) = Aa:(i), i=1,...,k. To begin, let us first consider the condition
Hk+1Ag(k) = Az®). In other words, given Hy, Ag(k), and Aw(k), we wish
to find ax and z(*) to ensure that

Hk+1Ag(k) =(Hg+ akz(k)z(k)T)Ag(k) = Az®,
First note that z(k)TAg(k) is a scalar. Thus,

Az® — H Ag® = (0pz®7T Ag®)2®),

and hence

z(k) _ Am(k) - HkAg(k)
ar(zMTAgR)

We can now determine

(Az™® — H Ag®)(Az® — H Ag®)T

(B) ()T _
GkZTIZE = ar(z®T AgF)2

Hence,

(A:c(k) - HkAg(k))(Am(k) _ HkAg(k))T

Hy,=H
k+1 Kt an(2PT Ag)2

The next step is to express the denominator of the second term on the right-
hand side of the equation above as a function of the given quantities Hy,
Ag("), and Az®. To accomplish this, premultiply Az® — H kAg(k) =
(akz(k)TAg(k))z(") by Ag®T to obtain
AgFTAz®) — Ag®TH, AgH) = AgHF)T g, 2(F) 2T AgR)
Observe that ax is a scalar and so is Ag(k)Tz(k) = z(k)TAg(k). Thus,
AgPTAZL®) — AgFTH Ag®) = a;(2(FT Agt)2,

Taking this relation into account yields

(Az® — HyAg®)(Az® — HiAg®)T
Ag®T(Az® — H Ag®)

Hypy =Hp +

We summarize the above development in the following algorithm.

Rank One Algorithm
1. Set k := 0; select ©(® and a real symmetric positive definite H.

2. If g*) = 0, stop; else, d® = —Hg®.

	PART II UNCONSTRAINED OPTIMIZATION
	6 Basics of Set-Constrained and Unconstrained Optimization
	6.1 Introduction
	6.2 Conditions for Local Minimizers
	Exercises

	7 One-Dimensional Search Methods
	7.1 Introduction
	7.2 Golden Section Search
	7.3 Fibonacci Method
	7.4 Bisection Method
	7.5 Newton's Method
	7.6 Secant Method
	7.7 Bracketing
	7.8 Line Search in Multidimensional Optimization
	Exercises

	8 Gradient Methods
	8.1 Introduction
	8.2 The Method of Steepest Descent
	8.3 Analysis of Gradient Methods
	Exercises

	9 Newton's Method
	9.1 Introduction
	9.2 Analysis of Newton's Method
	9.3 Levenberg-Marquardt Modification
	9.4 Newton's Method for Nonlinear Least Squares
	Exercises

	10 Conjugate Direction Methods
	10.1 Introduction
	10.2 The Conjugate Direction Algorithm
	10.3 The Conjugate Gradient Algorithm
	10.4 The Conjugate Gradient Algorithm for Nonquadratic Problems
	Exercises

	11 Quasi-Newton Methods
	11.1 Introduction
	11.2 Approximating the Inverse Hessian
	11.3 The Rank One Correction Formula

WiiRgpuCTIoN

OPTIMIZATION

