Lectures on Approximation Theory (Math 443)

Lecturer Husam L. Saad

Department of Mathematics
College of Science
Basrah University
Basrah, Iraq

Chapter 1

General Approximation Problem

1.1 Normed Linear Spaces

There are several reasons for studying approximation theory and method ranging from a need to represent functions in computer calculations to an interest in the mathematics of the subject (replace a complicated function by one which is simpler and more manageable). Although approximation algorithms are used throughout the science and in many industrial and commercial fields, and to find a simple function which gives a best fit to the experimental data. The problem of approximating a given function or a table of values by a class of simpler functions has been of great interest theoretically and practically. For instance we may approximate the solution of a differential equations by a function of a certain form that depends on adjustable parameters. Here the measure of goodness of the approximation is a scaler quantity that is derived from the residual occurs when the approximating function is substituted into the differential equation (this scaler quantity is called a norm, which is a convenient measure of the "error" in the approximation).

Definition 1.1. A non empty set \mathbb{F} is called a linear space over a field of real numbers \mathbb{R} if and only if for all $A, B, C \in \mathbb{F}$ and for all real numbers r, s

- (1) A + B = B + A.
- (2) A + (B + C) = (A + B) + C.
- (3) There is a unique element 0 in $\mathbb F$ such that $A+0=A\quad \forall\ A\in \mathbb F.$
- (4) For each $A \in \mathbb{F}$ there is a unique element $-A \in \mathbb{F}$ such that A + (-A) = 0.
- (5) $r \cdot (A+B) = r \cdot A + r \cdot B$.
- (6) $(r+s) \cdot A = r \cdot A + s \cdot A$.
- (7) $(r \cdot s) \cdot A = r \cdot (s \cdot A)$.
- (8) $1 \cdot A = A$.

Definition 1.2. Let \mathbb{F} be a linear space and let $\|\cdot\|: \mathbb{F} \to \mathbb{R}$ such that

- (1) ||A|| > 0 unless A = 0.
- (2) ||rA|| = |r|||A|| where r is scaler.
- (3) $||A + B|| \le ||A|| + ||B||$.

Then $\|\cdot\|$ defines a norm on \mathbb{F} .

Definition 1.3. A linear space \mathbb{F} equipped with a norm is called a normed linear space.

Definition 1.4. A metric space is a nonempty set M of points together with a function $d: M \times M \to \mathbb{R}$ satisfying the following properties for all x, y and $z \in M$

- (1) d(x,y) = 0 if x = y.
- (2) $d(x,y) > 0 \text{ if } x \neq y.$
- (3) d(x,y) = d(y,x).

(4)
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

Remark 1.1. In a normed linear space the formula d(x,y) = ||x-y|| defines a metric. i.e., a normed linear space becomes a metric space.

Proof. H.W.
$$\Box$$

Definition 1.5.

$$C[a,b]=\{f:f:[a,b] o\mathbb{R},f\ is\ continuous\}.$$

$$\mathbb{R}^N=\{(x_1,x_2,\ldots,x_N):x_i\in\mathbb{R},for\ i=1,2,\ldots,N\}.$$

The three norms that are used most frequently are the p-norms, for p=1,2 and ∞ . For finite p the p-norm in C[a,b] is defined as

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{\frac{1}{p}} \quad 1 \leqslant p < \infty$$

and the *p*-norm in \mathbb{R}^N as

$$||f||_p = \left[\sum_{i=1}^N |f(x_i)|^p\right]^{\frac{1}{p}} \quad 1 \leqslant p < \infty$$

where $f = (f(x_1), f(x_2), \dots, f(x_N))$. For $p = \infty$, the norms become,

$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|$$

and

$$||f||_{\infty} = \max_{1 \le i \le N} |f(x_i)|$$

respectively.

The ∞ -norm is called the Chebyshev norm (sometimes called the uniform or minimax norm).

Theorem 1.1. (Holder inequality) If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\int_a^b |A(x)B(x)|dx \leqslant \left[\int_a^b |A(x)|^p dx\right]^{\frac{1}{p}} \cdot \left[\int_a^b |B(x)|^q dx\right]^{\frac{1}{q}},$$

3

where $A, B \in C[a, b]$.