Example 1.4. Let $\mathbb{F} = \mathbb{R}^2$, $V = \{(x,y) : x^2 + y^2 > 1\}$, f = (0,0), $\|\cdot\| = \|\cdot\|_2$. Discuss existence of best approximation.

Solution. The problem of determining the point in V which is nearest to (0,0) has no solution. i.e., there is no best approximation to f from V.

If $V_1 = \{(x,y) : x^2 + y^2 \ge 1\}$ then all points that satisfy $x^2 + y^2 = 1$ is a best approximation to f = (0,0). i.e., the best approximation to f from V_1 is exists and not unique.

Definition 1.7. A sequence $\{x_n\}$ in a normed linear space is said to converge to a point x^* and we write $x_n \to x^*$ if $||x_n - x^*|| \to 0$ as $n \to \infty$.

Definition 1.8. We say that $\delta = \inf X$ if there exists a sequence $\{x_n\}_{n=1}^{\infty} \in X$ such that $x_n \to \delta$ as $n \to \infty$.

Definition 1.9. An element $h^* \in V$ satisfying $||f - h^*|| = \inf_{h \in V} ||f - h||$ is called a best approximation of f with respect to V.

Definition 1.10. A subset V of \mathbb{F} is said to be compact if every sequence of points in V has a subsequence which is converge to a point of V.

Theorem 1.5. Let V be a compact subset of \mathbb{F} , then there exists $h^* \in V$ such that

$$||f - h^*|| \leqslant ||f - h|| \quad \forall \ h \in V.$$

Proof. Let $\delta = \inf_{h \in V} \|f - h\|$. We want to show that there exists $h^* \in V$ such that $\|f - h^*\| = \delta$. From the definition of infimum there exists a sequence of points $\{h_n\}_{n=1}^{\infty} \in V$ such that $\|f - h_n\| \to \delta$ as $n \to \infty$. Since V is compact, it follows that there exists a subsequence of $\{h_n\}_{n=1}^{\infty}$ converging to $h^* \in V$.

$$f - h^* = (f - h_n) + (h_n - h^*).$$
$$\|f - h^*\| \le \|f - h_n\| + \|h_n - h^*\|.$$

when $n \to \infty$ we get

$$||f - h^*|| \leqslant \delta. \tag{1.5}$$

Note that

$$\delta = \inf_{h \in V} \|f - h\| \leqslant \|f - h\| \quad \forall \ h \in V.$$

Since $h^* \in V$ we get

$$\delta \leqslant \|f - h^*\|. \tag{1.6}$$

From (1.5) and (1.6) we get

$$||f - h^*|| = \delta.$$

i.e.,

$$||f - h^*|| \leqslant ||f - h|| \quad \forall \ h \in V.$$

 \therefore h^* is a best approximation of f.

Remark 1.6. Compactness of V is a sufficient condition for a best approximation to exist and not necessary.

Example 1.5. Let $\mathbb{F} = \mathbb{R}$, $V = (-\infty, 1]$, $\|\cdot\|_1 = |\cdot|$. Discuss existence of best approximation.

Solution. Note that V is not compact set, but there exists a best approximation to any point $f \in \mathbb{R}$.

Theorem 1.6. Let V be a finite dimensional subspace of a normed linear space \mathbb{F} , then there exists a best approximation in V to any point of \mathbb{F} .

Proof. Let V be such a subspace and let $f \in \mathbb{F}$ be the prescribed point. Then if h_0 is an arbitrary point of V, the point sought lies in the set

$${h \in V : ||f - h|| \leq ||f - h_0||}.$$

This set is closed and bounded and thus compact, then by Theorem 1.5 there exists a best approximation in V to $f \in \mathbb{F}$.

Remark 1.7. It is not possible to drop the finite dimensional requirement of the above theorem.

Example 1.6. Let $\mathbb{F} = C[0, \frac{1}{2}]$ with the ∞ -norm, V = the space of polynomials of any degree.

Solution. Let
$$f = \frac{1}{1-x}$$
, $h(x) = 1 + x + x^2 + \dots + x^n \in V$.

$$||f - h|| = \max_{a \le x \le b} |f(x) - h(x)|$$

$$= \max_{0 \le x \le \frac{1}{2}} \left| \frac{1}{1 - x} - (1 + x + x^2 + \dots + x^n) \right|.$$

Thus any best approximation say h^* would satisfy $||f - h^*|| = 0$ which implies $h^* = \frac{1}{1-x}$. This impossible and so no best approximation exists.

1.4 Uniqueness

We can investigate an example with regard to question (2).

Example 1.7. $\mathbb{F} = \mathbb{R}^2$, $V = \{(1,y) : y \in \mathbb{R}\}$, f = (0,0), $\|\cdot\| = \|\cdot\|_{\infty}$. Discuss existence and uniqueness of best approximation.

Solution.
$$||f - h||_{\infty} = ||(0,0) - (1,y)|| = ||(-1,-y)||_{\infty} = \max\{1,|y|\}$$

$$= \begin{cases} 1, & |y| \leqslant 1; \\ > 1, & |y| > 1. \end{cases}$$

$$|y| \leqslant 1 \implies -1 \leqslant y \leqslant 1.$$

Hence

$$||f - h||_{\infty} = \begin{cases} 1, & -1 \leq y \leq 1; \\ >1, & y < -1 \text{ or } y > 1. \end{cases}$$

any point (1, y) such that $-1 \leq y \leq 1$ is a best approximation to f = (0, 0).

i.e., the best approximation to f = (0,0) exists and not unique.

To discuss the uniqueness of best approximation we need to define a convex set.

Definition 1.11. A set V of a linear space \mathbb{F} is convex if $\forall x,y \in V$ implies that $\lambda x + (1 - \lambda)y \in V \text{ for all } 0 \leqslant \lambda \leqslant 1.$

Geometrically: A set is convex if all line segments joining pairs of points in the set also belongs to the set.

Theorem 1.7. If $f \in \mathbb{F}$ and V is a subspace of \mathbb{F} , then the set of best approximation to f from V, call it V^* , is convex.

Proof. Let $h_1^*, h_2^* \in V^*$, we want to proof that $\lambda h_1^* + (1 - \lambda)h_2^* \in V^*$.

$$\begin{split} h_1^* \in V^* & \Rightarrow & \|f - h_1^*\| \leqslant \|f - h\| & \forall \ h \in V. \\ h_2^* \in V^* & \Rightarrow & \|f - h_2^*\| \leqslant \|f - h\| & \forall \ h \in V. \\ \|f - (\lambda h_1^* + (1 - \lambda)h_2^*)\| &= \|(\lambda f + (1 - \lambda)f) - (\lambda h_1^* + (1 - \lambda)h_2^*)\| \\ &= \|\lambda (f - h_1^*) + (1 - \lambda)(f - h_2^*)\| \\ &\leqslant \lambda \|f - h_1^*\| + (1 - \lambda)\|f - h_2^*\| \\ &\leqslant \lambda \|f - h\| + (1 - \lambda)\|f - h\| & \forall \ h \in V. \end{split}$$

 $\therefore \lambda h_1^* + (1 - \lambda)h_2^*$ is a best approximation to f.

Hence $\lambda h_1^* + (1 - \lambda)h_2^* \in V^*$.

Created with