

but not sp-open set in X. Thus, f is a sb – continuous function, but not soft precontinuous function.

Theorem 2.13.11 Every soft continuous function is sb – continuous function.

Proof Let $f: X \to Y$ be a soft continuous function. Let (F, K) be a soft open set in Y. Since f is soft continuous, $f^{-1}((F, K))$ is soft open in X. And so $f^{-1}((F, K))$ is s b – open set in X. Therefore, f is sb – continuous function.

Definition 2.13.12 A mapping $f: X \to Y$ is said to be soft b-irresolute (briefly s b-irresolute) if $f^{-1}((F, K))$ is sb-closed set in X, for every sb-closed set (F, K) in Y.

Theorem 2.13.13 A mapping $f : X \to Y$ is sb – irresolute mapping if and only if the inverse image of every sb – open set in Y is sb – open set in X.

Theorem 2.13.14 Every sb – irresolute mapping is sb – continuous mapping.

Proof Let $f: X \to Y$ is sb – irresolute mapping. Let (F, K) be a soft closed set in Y, then (F, K) is sb – closed set in Y. Since f is sb – irresolute mapping, $f^{-1}((F, K))$ is a sb – closed set in X. Hence, f is sb – continuous mapping.

Theorem 2.13.15 Let $f: (X, E, \tau) \rightarrow (Y, K, \upsilon), g: (Y, K, \upsilon) \rightarrow (Z, T, \lambda)$ be two functions. Then

(i) $g \circ f : X \to Z$ is sb-continuous, if f is sb-continuous and g is soft continuous.

(ii) $g \circ f : X \to Z$ is sb - irresolute, if f and g are sb - irresolute functions.

(iii) $g \circ f : X \to Z$ is sb-continuous if f is sb-irresolute and g is sb-continuous.

Proof

(i) Let (H,T) be soft closed set of Z. Since $g: Y \to Z$ is soft continuous, by definition $g^{-1}((H,T))$ is soft closed set of Y. Now $f: X \to Y$ is sb-continuous and $g^{-1}((H,T))$ is soft closed set of Y, so by definition 2.13.4, $f^{-1}(g^{-1}((H,T))) = (g \circ f)^{-1}((H,T))$ is sb-closed in X. Hence $g \circ f: X \to Z$ is sb-continuous.

(ii) Let $g: Y \to Z$ is sb – irresolute and let (H,T) be sb – closed set of Z. Since g is sb – irresolute by definition 2.13.12 , $g^{-1}((H,T))$ is sb – closed set of Y. Also $f: X \to Y$ is sb – irresolute, so $f^{-1}(g^{-1}((H,T))) = (g \circ f)^{-1}((H,T))$ is sb – closed. Thus, $g \circ f: X \to$ Z is sb – irresolute.

(iii)Let (H,T) be soft closed set of Z. Since g: $Y \to Z$ is sb-continuous, then $g^{-1}((H,T))$ is sb-closed set of Y. Also $f: X \to Y$ is sb-irresolute, so every s b-closed set of Y is sb-closed in X under f^{-1} . Therefore,

 $f^{-1}(g^{-1}((H,T))) = (g \circ f)^{-1}((H,T))$ is sb - closed set of X. Thus, $g \circ f : X \to Z$ is sb - continuous.

Theorem 2.13.16 4.18) Let $f: (X, E, \tau) \to (Y, K, \upsilon), g: (Y, K, \upsilon) \to (Z, T, \lambda)$ be two functions. Then, $g \circ f: X \to Z$ is s b – continuous if f is s b – irresolute and g is soft α -continuous.

Proof: Let (H,T) be soft closed set of Z. Since g: Y \rightarrow Z is sb – continuous, then $g^{-1}((H,T))$ is $s\alpha$ – closed set of Y and hence $g^{-1}((H,T))$ is sb – closed set of Y.

Also $f: X \to Y$ is sb-irresolute, so every sb-closed set of Y is sb-closed in X under f^{-1} . Therefore,

 $f^{-1}(g^{-1}((H,T))) = (g \circ f)^{-1}((H,T))$ is sb - closed set of X. Thus, $g \circ f : X \to Z$ is sb - continuous.

Definition 2.13.17 A mapping $f: X \to Y$ is said to be soft b – open (briefly sb – open) map if the image of every soft open set in X is sb – open set in Y:

Definition 2.13.18 A mapping $f: X \to Y$ is said to be soft b - closed (briefly sb - closed) map if the image of every soft closed set in X is sb - closed set in Y.

Theorem 2.13.19 If $f: X \to Y$ is soft closed function and $g: Y \to Z$ is sb-closed function, then $g \circ f$ is sb-closed function.

Proof For a soft closed set (F, A) in X, f((F, A)) is soft closed set in Y. Since g: $Y \rightarrow Z$ is sb-closed function, g(f((F, A))) is sb-closed set in Z. $g(f((F, A))) = (g \circ f)((F, A)))$ is sb-closed set in Z. Therefore, $g \circ f$ is sbclosed function.

Theorem 2.13.20 A map $f: X \to Y$ is sb-closed if and only if for each soft set (F, K) of Y and for each soft open set (F, A) of X such that $f^{-1}((F, K)) \cong (F, A)$, there is a sb-open set (G, K) of Y such $(F, K) \cong (G, K)$ and $f^{-1}((G, K)) \cong (F, A)$ **Proof:** Suppose f is sb-closed map. Let (F, K) be a soft set of Y, and (F, A) be a soft open set of X, such that $f^{-1}((F, K)) \cong (F, A)$. Then $(G, K) = (f((F, A)^c))^c$ is a sb-open set in Y such $(F, K) \cong (G, K)$ and $f^{-1}((G, K)) \cong (F, A)$.

Conversely, suppose that (F, B) is a soft closed set of X. Then $f^{-1}((f((F,B)))^c) \cong (F,B)^c$, and $(F,B)^c$ is soft open set. By hypothesis, there is a sb-open set (G, K)of Y such $(f(F,A))^c \cong (G,K)$ and $(G,K)^c \in$ $f^{-1}(G,K) \cong (F,B)^c$. Thus Hence $(F,B) \cong (f^{-1}(G,K))^c$. $f((F,B)) \cong f(f^{-1}((G,K)))^c) \cong (G,K)^c$, which implies $f((F,B)) = (G,K)^c$. Since $(G, K)^c$ is sb-closed set, f((F, B)) is sb-closed set. So f is a sb-closed map. **Theorem 2.13.21** Let $f: X \to Y, g: Y \to Z$ be two maps such that $g \circ f: X \to Z$ is sb – closed map.

- (i) If f is soft continuous and surjective, then g is sb closed map.
- (ii) If g is sb-irresolute and injective, then f is sb-closed map.

Proof

(i) Let (H, K) be a soft closed set of Y. Then, $f^{-1}((H, K))$ is soft closed set in X as f is soft continuous. Since $g \circ f$ is sb-closed map $(g \circ f)(f^{-1}((H, K))) = g((H, K))$ is sb-closed set in Z. Hence $g : Y \to Z$ is sb-closed map.

(ii) Let (H, E) be a soft closed set in X. Then $(g \circ f)((H, E))$ is sb-closed set in Z, and so $g^{-1}(g \circ f)((H, E)) = f((H, E))$ is sb-closed set in Y. Since g is sbirresolute and injective. Hence f is a s b-closed map.

Theorem 2.13.22 If (F, B) is s b – closed set in X and $f : X \to Y$ is bijective, soft continuous and s b – closed, then f((F, B)) is s b – closed set in Y.

Proof: Let $f((F,B)) \cong (F,K)$ where (F,K) is a soft open set in Y. Since f is soft continuous, $f^{-1}((F,K))$ is a soft open set containing (F,B). Hence containing $bcl^{s}((F,B)) \cong f^{-1}((F,K))$ as (F,B) is sb-closed set. Since f is sb-closed, $f(bcl^{s}((F,B)))$ is sb-closed set contained in the soft open set (F,K), which

implies $bcl^{s}(f(bcl^{s}((F,B)))) \cong (F,K)$ and hence $bcl^{s}(f(((F,B))) \cong (F,K))$. So f((F,B)) is sb-closed set in Y.

3. SOFT π GR-CLOSED SETS.

In this section, we first introduce the following definitions.

Definition:3.1

A subset (A, E) of a soft topological space X is called

- (i) a soft rg -closed set if $cl^s(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.
- (ii) a soft π^* g-closed if cl^s (int (A, E)) $\cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.
- (iii) a soft π ga-closed if $\alpha cl^{s}(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.
- (iv) a soft π gp-closed if $pcl^{s}(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.
- (v) a soft $\pi g b$ closed if $bcl^{s}(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.
- (vi) a soft π gs-closed if $scl^s(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft π open.

Definition:3.2

A soft subset (A, E) of a soft topological space X is called a soft π gr-closed set in X if $rcl^{s}(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$, where (U, E) is soft π - open in X. The family of all soft π gr-closed sets of X is denoted by S π GRC(X).

Result :3.3

Every soft regular closed set is soft π gr-closed but not conversely.

Example:3.4

Let $X = \{a, b, c, d\}, E = \{e_1, e_2\}$. Let $F_1, F_2, ..., F_6$ are functions from E to P(X) and are defined as follows:

$$\begin{split} F_1(e_1) &= \{c\}, F_1(e_2) = \{a\}, \\ F_2(e_1) &= \{d\}, F_2(e_2) = \{b\}, \\ F_3(e_1) &= \{c, d\}, F_3(e_2) = \{a, b\}, \\ F_4(e_1) &= \{a, d\}, F_4(e_2) = \{b, d\}, \\ F_5(e_1) &= \{b, c, d\}, F_5(e_2) = \{a, b, c\}, \\ F_6(e_1) &= \{a, c, d\}, F_6(e_2) = \{a, b, d\}. \end{split}$$

Then $\tau = \{\Phi, (X, E), (F_1, E), (F_2, E), \dots, (F_6, E)\}$ is a soft topology and elements in τ are soft open sets. The soft closed sets are its relative complements. Here the soft set $(H, E) = \{\{b, c, d\}, \{a, b, c\}\}$ is soft π gr-closed but not soft regular closed.

Remark:3.5

The concept of soft closed and soft π gr-closed are independent.

Example:3.6

In Example 3.4, (i) the soft set $(A, E) = \{\{a\}, \{d\}\}\)$ of a soft topological space X is soft closed but not soft π gr-closed in X.

(ii)the soft subset $(H, E) = \{ \{ b, c, d \}, \{ a, b, c \} \}$ is soft π gr-closed but not soft closed in X.

Remark: 3.7

The concept of soft g-closed and soft π gr-closed are independent.

Example:3.8

In Example 3.4, (i) the soft set $(A, E) = \{\{a\}, \{d\}\}\}$ of a soft topological space X is soft g-closed but not soft π gr-closed in X.

(ii) the soft subset $(H, E) = \{ \{b, c, d\}, \{a, b, c\} \}$ is soft π gr-closed but not soft gclosed in X.

Theorem: 3.9

nitro^{PDF} profession

Every soft π gr-closed set is soft π ga-closed, soft π gp-closed, soft π g *b*-closed, soft π gs-closed, soft π g-closed and soft π^* g-closed but not conversely. **Proof:** Straight forward.

Example : 3.10

In example 3.4, i) The soft set $(A, E) = \{\{a\}, \{d\}\}\)$ of a soft topological space X is soft $\pi g\alpha$ -closed and soft π g-closed but not soft π gr-closed.

ii) The soft set $(F, E) = \{ \{a\}, \{b\} \}$ of a soft topological space X is soft π g b - closed, soft π gp-closed and soft π gs-closed but not soft π gr-closed.

iii) The soft subset $(G, E) = \{\{c\}, \{d\}\}\)$ of topological space X is soft π^* g-closed but not soft π gr-closed.

Theorem :3.11

Every soft π gr-closed set is soft rg-closed.

Proof: Straight forward

The converse of the above theorem is not true as we see the following example.

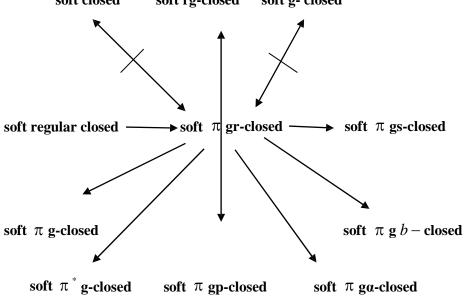
Example:3.12

In example 3.4, the soft subset $(A, E) = \{\{a\}, \{d\}\}\)$ of a soft topological space X is soft rg-closed but not soft π gr-closed in X.

Remark:3.13

The relationship between soft π gr-closed sets and soft sets are represented diagrammatically as follows:

Dr. Shuker Mahmood Khalil // Department of Mathematics, College of Science, University of Basra, Iraq // E-mail: (shuker.alsalem@gmail.com) // 2018// Soft Soft Sets Theory



Remark:3.14

The union of two soft π gr-closed sets is again a soft π gr-closed set.

Remark:3.15

The intersection of two soft π gr-closed sets need not be soft π gr-closed and is shown in the following example.

Example:3.16

In example 3.4, The soft sets $(I, E) = \{\{b, d\}, \{b, d\}\}$ and $(J, E) = \{\{a, c, d\}, \{a, b, c\}\}$ are soft π gr-closed sets in X but their intersection $(K, E) = \{\{d\}, \{b\}\}\}$ is not soft π gr-closed in X.

Theorem:3.17

If (A, E) is soft π -open and soft π gr-closed, then it is soft regular closed.

Created with

Initro

PDF

professional

download the free trial online at nitropdf.com/professional

Proof: Suppose (A, E) is soft π -open and soft π gr-closed. Then $rcl^{s}(A, E) \cong (A, E)$. But $(A, E) \cong rcl^{s}(A, E)$. Hence $rcl^{s}(A, E) = (A, E)$. The above implies (A, E) is soft regular closed.

Result :3.18

If (A, E) is soft π -open and soft π gr-closed, then it is soft closed.

Proof: By (Theorem 3.17) we have (A, E) is soft regular closed and hence soft closed in X.

Theorem:3.19

If a soft subset (A, E) of a soft topological space X is soft π gr-closed set and (A, E) $\cong (B, E) \cong rcl^{S}(A, E)$. Then (B, E) is also soft π gr-closed subset of X. **Proof:** Let (A, E) be a soft π gr-closed set in X and $(B, E) \cong (U, E)$, where (U, E) is soft π -open. Since $(A, E) \cong (B, E)$, $(A, E) \cong (U, E)$. Since (A, E) is soft π gr-closed, thus $rcl^{S}(A, E) \cong (U, E)$. Given $(B, E) \cong rcl^{S}(A, E)$. Then $rcl^{S}(B, E) \cong rcl^{S}(A, E) \cong (U, E)$. Hence $rcl^{S}(B, E) \cong (U, E)$ and hence (B, E) is soft π gr-closed.

Theorem:3.20

If (A, E) is soft π gr-closed, then $rcl^{s}((A, E)) - (A, E)$ does not contain any nonempty soft π -closed set.

Proof: Let (F, E) be a non-empty soft π -closed set such that $(F, E) \cong rcl^s$ (A, E) - (A, E). The above implies $(F, E) \cong X - (A, E)$. Since (A, E) is soft π grclosed, X - (A, E) is soft π gr-open. Since (F, E) is soft π -closed set, X - (F, E)is soft π -open. Since $rcl^s (A, E) \cong X - (F, E)$, $(F, E) \cong X - rcl^s (A, E)$. Thus

 $(F, E) \cong \Phi$, which is a contradiction. The above implies $(F, E) = \Phi$ and hence rcl^{s} ((A, E)) - (A, E) does not contain non-empty soft π -closed set.

Corollary:3.21

Let (A, E) be a soft π gr-closed set. Then (A, E) is soft regular closed iff rcl^{s} ((A, E)) - (A, E) is soft π -closed.

Proof : Let (A, E) be soft regular closed. Then $rcl^{s}(A, E) = (A, E)$ and $rcl^{s}((A, E)) - (A, E) = \Phi$, which is soft π -closed. On the other hand, let us suppose that $rcl^{s}((A, E)) - (A, E)$ is soft π -closed. Then by theorem 3.20, $rcl^{s}((A, E)) - (A, E) = \Phi$. The above implies $rcl^{s}(A, E) = (A, E)$. Hence (A, E) is soft regular closed.

3. 22 SOFT π GR-OPEN SETS.

Let us introduce the following definitions.

Definition: 3.22.1

A soft set (A, E) is called a soft π gr- open set in a soft topological space (X, E, τ) if the relative complement $(A, E)^c$ is soft π gr-closed in (X, E, τ) and the family of all soft π gr-open sets in a soft topological space (X, E, τ) is denoted by S π GRO(X)

Remark: 3.22.2

For a soft subset (A, E) of (X, E), $rcl^{s}((X, E) - (A, E)) = (X, E) - rint^{s}(A, E)$.

Theorem: 3.22.3

The soft subset (A, E) of (X, E) is soft π gr-open iff $(F, E) \cong r$ int^s (A, E)whenever (A, E) is soft π -closed and $(F, E) \cong (A, E)$.

Proof: Let (F, E) be soft π gr-open. Let (F, E) be soft π -closed set and $(F, E) \cong$

(A, E). Then $(X, E) - (A, E) \cong (X, E) - (F, E)$. where (X, E) - (F, E) is soft π

-open. Since (A, E) is soft π gr-open, (X, E) - (A, E) is soft π gr-closed. Then $rcl^{s}((X, E) - (A, E)) \cong (X, E) - (F, E)$. Since $rcl^{s}((X, E) - (A, E)) =$ $(X, E) - rint^{s}(A, E) \Longrightarrow (X, E) - rint^{s}(A, E) \cong (X, E) - (F, E)$. Hence (F, E) $\cong rint^{s}(A, E)$. On the other hand, let (F, E) be soft π -closed and $(F, E) \cong$ (A, E) implies $(F, E) \cong rint^{s}(A, E)$. Let $(X, E) - (A, E) \cong (U, E)$, where (X, E) - (U, E) is soft π -closed. By hypothesis, $(X, E) - (U, E) \cong rint^{s}(A, E)$. Hence $(X, E) - rint^{s}(A, E) \cong (U, E)$. since $rcl^{s}((X, E) - (A, E)) = (X, E)$ $rint^{s}(A, E)$. The above implies $rcl^{s}((X, E) - (A, E)) \cong (U, E)$, whenever (X, E) -(A, E) is soft π -open. Hence (X, E) - (A, E) is soft π gr-open in (X, E).

Theorem: 3. 22.4

If $r \operatorname{int}^{S}(A, E) \cong (B, E) \cong (A, E)$, and (A, E) is soft π gr-open, then (B, E) is soft π gr-open.

Proof: Given $r \operatorname{int}^{s}(A, E) \cong (B, E) \cong (A, E)$. Then $(X, E) - (A, E) \cong (X, E) - (B, E) \cong rcl^{s}((X, E) - (A, E))$. Since (A, E) is soft π gr-open, (X, E) - (A, E) is soft π gr-closed. Then (X, E) - (B, E) is also soft π gr-closed. Hence (B, E) is soft π gr-open.

Remark: 3. 22.5

For any soft set (A, E), $rint^{s} (rcl^{s} ((A, E)) - (A, E)) = \Phi$.

Theorem: 3. 22.6

If $(A, E) \cong (X, E)$ is soft π gr-closed, then $rcl^{s}(A, E) - (A, E)$ is soft π gr-open.

Proof: Let (A, E) be soft π gr-closed and let (F, E) be a soft π -closed set such that $(F, E) \cong rcl^{s}((A, E)) - (A, E)$. Then $(F, E) = \Phi$. So, $(F, E) \cong$ $rint^{s}(rcl^{s}((A, E)) - (A, E))$. Hence $rcl^{s}((A, E)) - (A, E)$ is soft π gr-open.

Theorem: 3. 22.7

The intersection of two soft π gr- open sets is again a soft π gr-open set. **Proof:** Straight forward.

Remark: 3. 22.8

The union of two soft π gr-open sets need not be a soft π gr-open set and is shown in the following example.

Example: 3. 22.9

Let $(B, E) = \{\{a, c\}, \{a, c\}\}$ and $(C, E) = \{\{b\}, \{d\}\}\$ are two soft π gr-open sets. Then their union $(D, E) = \{\{a, b, c\}, \{a, c, d\}\}\$ is not soft π gr-open in (X, E, τ) .

3.23. SOFT π GR- $T_{1/2}$ -SPACES.

Let us introduce the following definitions.

Definition: 3.23.1

A soft topological space (X, E, τ) is a soft π gr- $T_{1/2}$ -space if every soft π gr-closed set is soft regular closed.

Theorem: 3.23.2

For a soft topological space (X, E,τ), the following conditions are equivalent.
(i) The soft topological space (X, E,τ) is soft π gr- T_{1/2}-space.
(ii) Every singleton of (X, E) is either soft π -closed or soft regular open.

Proof:

(i) \Rightarrow (ii): Let (A, E) be a soft singleton set in (X, E) and let us assume that (A, E) is not soft π -closed. Then (X, E) - (A, E) is not soft π open and hence (X, E) - (A, E) is trivially soft π gr-closed. Since in a soft π gr- $T_{1/2}$ -space, every soft π gr-closed set is soft regular closed. Then (X, E) - (A, E) is soft regular closed. Hence (A, E) is soft regular open.

(ii) \Rightarrow (i) : Assume that every singleton of a soft topological space (X, E) is either soft π -closed or soft regular open. Let (A, E) be a soft π gr-closed set in (X, E). Obviously, $(A, E) \subseteq rcl^s (A, E)$. To prove $rcl^s (A, E) \subseteq (A, E)$, let $(F, E) \in rcl^s (A, E)$, where (F, E) is singleton set, we want to show $(F, E) \in (A, E)$. Now, we have two cases (since (F, E) is either soft π -closed or soft regular open).

Case (i): when (F, E) is soft π -closed, suppose (F, E) does not belong to (A, E). Then $(F, E) \subseteq rcl^{s}((A, E)) - (A, E)$, which is a contradiction to the fact that $rcl^{s}((A, E)) - (A, E)$ does not contain any non-empty soft π -closed set. Therefore, $(F, E) \in (A, E)$. Hence $rcl^{s}(A, E) \subseteq (A, E)$. Then (A, E) is soft regular closed and hence every (A, E) soft π gr-closed set is soft regular closed. Hence the soft topological space (X, E) is soft π gr- $T_{1/2}$ -space.

Case(ii): when (F, E) is soft regular open in (X, E), we have $(F, E) \prod (A, E) \neq \Phi$. (since $(F, E) \in rcl^{s}(A, E)$). Hence $(F, E) \in (A, E)$. Therefore, $rcl^{s}(A, E) \subseteq (A, E)$. Then $rcl^{s}(A, E) = (A, E)$, thus (A, E) is soft regular closed and hence (X, E) is soft π gr- $T_{1/2}$ -space.

Theorem: 3.23.3

(i) $SRO(X, E, \tau) \cong S\pi RGO(X, E, \tau)$

(ii) A soft topological space (X, E, τ) is π gr- $T_{1/2}$ -space iff $SRO(X, E, \tau) = S\pi$ GRO (X, E, τ)

Proof:

(i) Let (A, E) be soft regular open. Then (X, E) - (A, E) is soft regular closed and so soft π gr-closed. Hence (A, E) is soft π gr-open and hence $SRO(X, E, \tau) \cong S\pi GRO(X, E, \tau)$

(ii) Necessity: Let (X, E, τ) be π gr- $T_{1/2}$ -space. Let $(A, E) \in S\pi GRO(X, E, \tau)$. Then (X, E) - (A, E) is soft π gr-closed. Since the space soft π gr- $T_{1/2}$ -space, (X, E) - (A, E) is soft regular closed. The above implies (A, E) is soft regular open in X. Hence $S\pi GRO(X, E, \tau) = SRO(X, E, \tau)$.

Sufficiency: Let $S\pi GRO(X, E, \tau) = SRO(X, E, \tau)$. Let (A, E) be soft π gr-closed. Then (X, E) - (A, E) is soft π gr-open. Thus $(X, E) - (A, E) \in SRO(X, E, \tau)$ and hence (A, E) is soft regular closed.

EXERCISES

- **4.1**) Let (F, A), (G, B), and (H, C) be three soft sets over U, then
- (i) $(F, A) \coprod ((G, B) \coprod (H, C)) = ((F, A) (\coprod (G, B)) \coprod (H, G),$

(ii) $(F, A) \prod ((G, B) \prod (H, G)) = ((F, A) \prod (G, B)) \prod (H, G),$

(iii) $(F, A) \coprod ((G, B) \prod (H, C)) = ((F, A) \coprod (G, B)) \prod ((F, A) \coprod (H, C)),$

(iv) $(F, A) \prod ((G, B) \coprod (H, C)) = ((F, A) \prod (G, B)) \coprod ((F, A) \prod (H, C)).$

4.2) Let X be a soft topological space. Then,
(i) An arbitrary union of s b - open sets is a s b - open set.
(ii) An arbitrary intersection of s b - closed sets is a s b - closed set.
4.3) In a soft topological space X, (F, A) is s b - closed (s b - open) set if and only if (F, A) = bcl^s (F, A) ((F, A) = bint^s (F, A)).

4.4) In a soft topological space *X* the following relations hold;

- (i) $bcl^{s}(F,A) \coprod bcl^{s}(G,B) \subseteq bcl^{s}((F,A) \coprod (G,B)),$
- (ii) $bcl^{s}((F,A) \prod (G,B)) \cong bcl^{s}(F,A) \prod bcl^{s}(G,B)$,
- (iii) $bint^{s}(F,A) \coprod bint^{s}(G,B) \cong bint^{s}((F,A) \coprod (G,B)),$
- (iv) $bint^{s}((F,A) \prod (G,B)) \cong bint^{s}(F,A) \prod bint^{s}(G,B)$.

4.5) Let (F, A) be a s b – open set in a soft topological space X.

- (i) If (F, A) is a sr-closed set then (F, A) is a sp-open set.
- (ii) If (F, A) is a sr-open set then (F, A) is a ss-open set.

4.6) Let (F, A) (be a s b – open set in a soft topological space X.

(i) If (F, A) is a sr-closed set then (F, A) is a ss-closed set.

(ii) If (F, A) is a sr-open set then (F, A) is a sp-closed set.

4.7) For any s b – open set (F, A) in soft topological space X, $cl^{s}(F, A)$ is sr-closed set.

4.8) For any s b – closed set (F, A) in a soft topological space X, int ^s (F, A) is sr-open set.

4.9) Let (F, A) be a s b – open (s b – closed) set in a soft topological space X, such that int ${}^{s}(F, A) = \Phi$. Then, (F, A) is a sp-open set.

4.10) Let (F, A) be a s b – open (s b – closed) set in a soft topological space X, such that $cl^{s}(F, A) = \Phi$. Then, (F, A) is a ss-open set.

4.11) Let (F, A) be a set of a soft topological space X. Then,

(i) $sbcl((F, A)) \cong sscl((F, A)) \prod spcl((F, A))$,

(ii) $ssint((F, A)) \coprod spint((F, A)) \cong sbint((F, A))$.

4.12) Let X be a soft topological space. If (F, A) is an soft open set and (G, B) is a s b – open set in X. Then $(F, A) \prod (G, B)$ is a s b – open set in X.

4.13) Let X be soft topological space. If (F, A) is an sa-open set and (G, B) is a s b –

open set in X. Then $(F, A) \prod (G, B)$ is a s b – open set in X.

4.14) (F, A) is s b – open (s b – closed) set in X if and only if (F, A) is the union (intersection) of ss-open set and s b – open set in X.

4.15) Every soft continuous function is soft β -continuous function.

4.16) A mapping $f: X \to Y$ is s b – irresolute mapping if and only if the inverse image of every soft β -open set in Y is soft b – open set in X.

4.17) Every s b – irresolute mapping is soft β -continuous mapping.

Created with **nitro**^{PDF*}professional download the free trial online at nitropdf.com/professional