The implication in (5) is not reversible, in general, as is shown in the following.

Example 2.31. Let FS(X, E), FS(Y,T) be classes of fuzzy soft sets and f: $FS(X, E) \rightarrow FS(Y,T)$ as defined in Example 2.22. For (5) define mappings $u: X \rightarrow Y$ and $\psi: E \rightarrow T$ as u(a)=y, u(b)=y, u(c)=z, $\psi(e_1)=t_1, \psi(e_2)=t_2, \psi(e_3)=t_2, \psi(e_4)=t_1.$ Choose two fuzzy soft sets in FS(Y,T) as $F_A = \{t_3 \setminus (x, 0.8), (y, 0), (z, 0)\},$ $G_B = \{t_3 \setminus (x, 0.3), (y, 0.1), (z, 0.5)\}.$

Then calculations give

 $f^{-1}(F_A) = \Phi \subseteq \Phi = f^{-1}(G_B)$, but $F_A \not\subset G_B$.

3. Fuzzy soft point and its neighborhood structure

Definition 3.1. A fuzzy soft point F_e over (U, E) is a special fuzzy soft set, defined by $F_e(a) = \mu_{F_e}$ if a = e; where $\mu_{F_e} \neq \overline{0}$ if $a \neq e$.

Definition 3.2. Let F_A be a fuzzy soft set over (U, E) and G_e be a fuzzy soft point over (U, E). Then we say that $G_e \in F_A$ if and only if $\mu_{G_e} \subseteq \mu_{F_A}^e = F_A(e)$ i.e., $\mu_{G_e}(x) \leq \mu_{F_A}^e(x)$ for all $x \in U$.

Definition 3.3. A fuzzy soft set F_A is said to be a neighborhood of a fuzzy soft point G_e if there exists $H_B \in \tau$ such that $G_e \in H_B \subseteq F_A$. Then clearly, every open fuzzy soft set is a neighborhood of each of its points.

Theorem 3.4. Let $F_A \in FS(U, E)$. Then $F_A \in \tau$ if and only if F_A is a neighborhood of each of its fuzzy soft points.

Proof. If $F_A \in \tau$, then obviously F_A is a neighborhood of each of its fuzzy soft points. Conversely, let F_A is a neighborhood of each of its fuzzy soft points. Then for any $F_e^{\alpha} \in F_A, \alpha \in \Gamma$, there exists $G_{A_e^{\alpha}}^{\alpha} \in \tau$ such that $F_e^{\alpha} \in G_{A_e^{\alpha}}^{\alpha} \cong F_A$. So that $\forall F_e^{\alpha} \cong \forall G_{A_e^{\alpha}}^{\alpha} \cong F_A = --$ (1)[where union is taken over the set of all $\alpha \in \Gamma$ and all $e \in E$]. We now show that $\forall F_e^{\alpha} = F_A$. Since each F_e^{α} (a) $\cong F_A(a)$, where $e \in E$ and $\alpha \in \Gamma$, there exists $\alpha \in \Gamma$ such that $F_e^{\alpha}(a) = F_A(a)$. Therefore $\forall F_e^{\alpha}(a) = F_A(a)$, where union is taken over the set of all $\alpha \in \Gamma$ and all $e \in E$. It implies that $\forall F_e^{\alpha} = F_A$. (2) From (1) and (2) we get $F_A = \forall G_{A_e^{\alpha}}^{\alpha}$. Again since each $G_{A_e^{\alpha}}^{\alpha} \in \tau, \forall G_{A_e^{\alpha}}^{\alpha} \in \tau$. Hence $F_A \in \tau$.

Definition 3.5. The collection of all neighborhoods of a point F_e over (U, E) is called the neighborhood system at F_e and it is denoted by η_{F_e} .

Theorem 3.6. The neighborhood system η_{F_e} at any point F_e over (U, E) satisfy the following properties

Created with

protessior

download the free trial online at nitropdf.com/professional

(i) $\eta_{F_e} \neq \phi$, (ii) $G_A \in \eta_{F_e} \Longrightarrow F_e \in \eta_{F_e}$, (iii) $G_A, H_B \in \eta_{F_e} \Longrightarrow G_A \breve{\wedge} H_B \in \eta_{F_e}$

Fuzzy Soft Sets Theory

(iv) $G_A \in \eta_{F_{\rho}}$ and $G_A \subseteq H_B \Rightarrow H_B \in \eta_{F_{\rho}}$.

Proof. (i) Since $\overline{E} \in \tau$ and $F_e \in \overline{E}$, thus $\overline{E} \in \eta_{F_e}$ and hence $\eta_{F_e} \neq \phi$

(ii) Obvious.

(iii) Since G_A and $H_B \in \eta_{F_e}$, there exist V_{A_1} and W_{B_1} in τ such that $F_e \in V_A \cong G_A$ and $F_e \in W_{B_1} \cong H_B$. Thus $\mu_{F_e}(x) \le \mu_{V_{A_1}}^e(x)$ and $\mu_{F_e}(x) \le \mu_{W_{B_1}}^e(x)$ for all $x \in U$. Therefore we have $\mu_{F_e}(x) = \min\{\mu_{V_{A_1}}^e(x), \mu_{W_{B_1}}^e(x)\}$ for all $x \in U$. So, $\mu_{F_e} \in \mu_{V_{A_1}}^e(x) \cap \mu_{W_{B_1}}^e(x) \stackrel{e}{}_{W_{B_1}}^e$. That is, $F_e \in V_A \land W_{B_1} \cong G_A \land H_B$. Again since $V_{A_1} \land W_{B_1} \in \tau$, $G_A \land H_B \in \eta_{F_e}$. (iv) Obvious.

Definition 3.7. The union of all fuzzy soft open subsets of F_A over (U, E) is called the interior of F_A and is denoted by int $f(F_A)$.

Example 3.8. Let $E = \{e_1, e_2, e_3\}, U = \{c_1, c_2, c_3\}$ and A, B, C be the subsets of E, where $A = \{e_1, e_2\}, B = \{e_2, e_3\}$ and $C = \{e_1, e_3\}$ and also let $\tau = \{\Phi, \overline{E}, F_A, G_B, H_{e_2}, I_E, J_B, K_{e_2}\}$ be a fuzzy soft topology over (U, E) where $F_A, G_B, H_{e_2}, I_E, J_B, K_{e_2}$ are fuzzy soft set over (U, E), defined as follows $\mu_{F_A}^{e_1} = \{0.5, 0.75, 0.4\}, \mu_A^{e_2} = \{0.3, 0.8, 0.7\},$ $\mu_{G_B}^{e_2} = \{0.4, 0.6, 0.3\}, \mu_B^{e_3} = \{0.2, 0.4, 0.45\},$ $\mu_{H_{e_2}} = \{0.3, 0.6, 0.3\},$ $\mu_I^{e_1} = \{0.5, 0.75, 0.4\}, \mu_I^{e_2} = \{0.4, 0.8, 0.7\}, \mu_{I_E}^{e_3} = \{0.2, 0.4, 0.45\},$ $\mu_{I_B}^{e_1} = \{0.4, 0.8, 0.7\}, \mu_B^{e_3} = \{0.2, 0.4, 0.45\},$ $\mu_{I_B}^{e_2} = \{0.3, 0.8, 0.7\}, \mu_B^{e_3} = \{0.2, 0.4, 0.45\},$ $\mu_{K_{e_2}} = \{0.3, 0.8, 0.7\}, \mu_B^{e_3} = \{0.2, 0.4, 0.45\},$

Now let us consider a fuzzy soft set L_E as follows

 $\mu_L^{e_1} = \{0.7, 0.8, \qquad \mu_L^{e_2} = \{0.4, 0.9, \qquad \mu_{L_E}^{e_3} = \{0.2, 0.3, 0.1\} . \\ 0.5_{\nu}^{\epsilon}\}, \qquad 0.7_{\nu}^{\epsilon}\},$

Therefore int $f(L_E) = F_A \lor H_{e_2} \lor K_{e_2} = F_A$

Proposition 3.9. int ${}^{f_s}(F_A \rtimes G_B) = \operatorname{int} {}^{f_s}(F_A) \rtimes \operatorname{int} {}^{f_s}(G_B)$.

Proof. Since $F_A \ \Bar{\wedge} G_B \ \Bar{\subseteq} F_A$, thus int ${}^{f_8}(F_A \ \Bar{\wedge} G_B) \Bar{\subseteq}$ int ${}^{f_8}(F_A)$. Similarly, int ${}^{f_8}(F_A \ \Bar{\wedge} G_B) \Bar{\subseteq}$ int ${}^{f_8}(G_B)$. Therefore int ${}^{f_8}(F_A \ \Bar{\wedge} G_B) \Bar{\subseteq}$ int ${}^{f_8}(F_A) \Bar{\wedge}$ int ${}^{f_8}(G_B)$. Let $H_C \ \Bar{\epsilon} \ \mbox{such that} \ H_C \ \Bar{\subseteq}$ int ${}^{f_8}(F_A) \Bar{\wedge}$ int ${}^{f_8}(G_B)$. Then $H_C \Bar{\subseteq}$ int ${}^{f_8}(F_A)$ and $H_C \ \Bar{\subseteq}$ int ${}^{f_8}(G_B)$. That is $H_C(e) \Bar{\subseteq} F_A(e) \Bar{\cap} G_B(e) = (F_A \ \Bar{\wedge} G_B)(e)$ for all $e \Bar{\in} E$. So, $H_C(e) \Bar{\subseteq} F_A(e) \Bar{\cap} G_B(e) = (F_A \ \Bar{\wedge} G_B)(e)$ for all $e \Bar{\in} E$. Thus $H_C \ \Bar{\subseteq} (F_A \ \Bar{\wedge} G_B)$. So $H_C =$ int ${}^{f_8}(H_C) \ \Bar{\subseteq}$ int ${}^{f_8}(F_A \ \Bar{\wedge} G_B)$ This implies that int ${}^{f_8}(F_A) \Aar{\wedge}$ int ${}^{f_8}(G_B) \Bar{\subseteq}$ int ${}^{f_8}(F_A \ \Bar{\wedge} G_B)$.

Definition 3.10. Let $F_A \in FS(U, E)$ be a fuzzy soft set. Then the intersection of all closed sets, each containing F_A , is called the closure of F_A and is denoted by $cl^{f_s}(F_A)$.

Example 3.11. Let us consider the example 3.8 and a fuzzy soft set L_{e_a} , where

$$\mu_{L_{e_2}} = \{0.5, 0.2, 0.6\}. \text{ Then } L_{G_B^c e_2} \cong . \text{ Therefore } cl^{fs}(L_{e_2}) = G_B^c \land H_{e_2}^c = G_B^c .$$

4. Fuzzy soft compact spaces

Definition 4.1. Let Ψ be a collection of fuzzy soft sets. Then we say that Ψ is a cover of a fuzzy soft set F_A if $F_A \cong \forall \{ G_B : G_B \in \Psi \}$. Further, if each member of Created with

 Ψ is a fuzzy soft open set. Then we say that Ψ is a fuzzy soft open cover. Also, if *H* is a subfamily of Ψ which is also a cover. Then we say *H* is a subcover of Ψ .

Definition 4.2. Assume that (X, E, τ) is fuzzy soft topological space and $F_A \in FS(X, E)$. Then we say that F_A is a fuzzy soft compact if and only if for each fuzzy soft open cover of F_A has a finite subcover. Moreover, for any fuzzy soft topological space (X, E, τ) is said to be compact if each fuzzy soft open cover of \overline{E} has a finite subcover.

Example 4.3. A fuzzy soft topological space (X, E, τ) is compact if X is finite.

Example 4.4. Let (X, E, τ) and (Y, T, σ) be two fuzzy soft topological spaces and $\tau \subseteq \sigma$. Then, fuzzy soft topological space (X, E, τ) is compact if (Y, T, σ) is compact.

Proposition 4.5. Let G_B be a fuzzy soft closed set in fuzzy soft compact space (X, E, τ) . Then G_B is also compact.

Proof. Let $\Gamma = \{ F_{A_i}^i : i \in I \}$ be any open covering of G_B , where I an index set. Then $\overline{E} \subseteq (\bigvee_{i \in I} F_{A_i}^i) \lor G_B^{\ c}$, that is, F_A^i together with fuzzy soft open $G_B^{\ c}$ is a set open covering of \overline{E} . Therefore there exists a finite subcovering $F_{A_1}^1, F_{A_2}^2, \dots, F_{A_n}^n, G_B^{\ c}$. Hence we obtain $\overline{E} \subseteq F_{A_1}^1, {}^{\sim}F_{A_2}^2 \lor \dots \lor F_{A_n}^n \lor G_B^{\ c}$. Therefore, we get $G_B \subseteq F_{A_1}^1, {}^{\sim}$

 $F_{A_2}^2 \quad \forall \dots \forall F_{A_n}^n \quad \forall G_B^c$ which clearly implies $G_B \subseteq F_{A_1}^1 \quad \forall F_{A_2}^2 \quad \forall \dots \forall F_{A_n}^n$ since G_B $\land G_B^c = \Phi$. Hence G_B has a finite subcovering and so is compact.

Definition 4.6. Let (X, E, τ) be a fuzzy soft topological space over X and $x, y \in X$ such that $x \neq y$. If there exist fuzzy soft open sets F_A and G_B such that $x \in F_A$, $y \in G_B$ and $F_A \stackrel{\sim}{\wedge} G_B = \Phi$, then (X, E, τ) is called a fuzzy soft Hausdorff space.

Proposition 4.7. Let G_B be a fuzzy soft compact set in fuzzy soft Hausdorff space (X, E, τ) . Then G_B is closed.

Proof. Let $x \in G_B^{\ c}$. For each $y \in G_B$, we have $x \neq y$, so there are disjoint fuzzy soft open sets $F_A^{\ y}$ and $H_C^{\ y}$ so that $x \in F_A^{\ y}$ and $y \in H_C^{\ y}$. Then $\{H_C^{\ y} : y \in G_B\}$ is an fuzzy soft open cover of G_B . Let $\{H_C^{\ y_1}, H_C^{\ y_2}, ..., H_C^{\ y_3}\}$ be a finite subcover. Then

 $\overset{n}{\bigwedge} F_{A}^{y_{i}} \text{ is an open set}$ x and contained in G_{B}^{c} . Thus G_{B}^{c} is fuzzy soft i=1 containing

open and G_B is closed.

Theorem 4.8. Let (X, E, τ) and (Y, T, σ) be fuzzy soft topological spaces and $(u, \psi) : (X, E, \tau) \rightarrow (Y, T, \sigma)$ continuous and onto fuzzy soft function. If (X, E, τ) is fuzzy soft compact, then (Y, T, σ) is fuzzy soft compact,

Proof. To prove that (Y,T,σ) is a fuzzy soft compact, we will use Theorem 2.28. and Theorem 2.30. Let $F_{A_i}^i$ be any open covering of \overline{T} , i.e., $\overline{T} \subseteq \bigcup_{i \in I} F_{A_i}^i$. Then $(u,\psi)^{-1}$ $(\overline{T}) \subseteq (u,\psi)^{-1}(\bigvee_{i \in I} F_{A_i}^i)$ and $(\overline{E}) \subseteq \bigvee_{i \in I} ((u,\psi)^{-1}(F_{A_i}^i))$. So $(u,\psi)^{-1}(F_{A_i}^i)$ is an open covering of \overline{E} . As (X, E, τ) is compact, there are I, 2, ..., n in I such that $\overline{E} \subseteq \bigvee_{i=1}^n ((u,\psi)^{-1}(F_{A_i}^i))$. Since (ϕ, ψ) is surjective, we have

Dr. Shuker Mahmood Khalil // Department of Mathematics, College of Science, University of Basra, Iraq // E-mail: (shuker.alsalem@gmail.com) // 2018//

Fuzzy Soft Sets Theory

$$\overline{T} = (u, \psi)(\overline{E}) \subseteq (u, \psi)(\bigvee_{i=1}^{n} (u, \psi)^{-1} (F_{A_{i}}^{i})) = \bigvee_{i=1}^{n} ((u, \psi)(u, \psi)^{-1} (F_{A_{i}}^{i})) = \bigvee_{i=1}^{n} F_{A_{i}}^{i}.$$
 So we have
$$\overline{T} \subseteq \bigvee_{i=1}^{n} F_{A_{i}}^{i}, \text{ i.e., } \overline{T} \text{ is covered by a finite number of } \underset{F_{A_{i}}}{i}.$$
 Hence σ is compact.

Definition 4.9. Let (X, E, τ) and (Y, T, σ) be two fuzzy soft topological spaces. A fuzzy soft mapping $(u, \psi): (X, E, \tau) \rightarrow (Y, T, \sigma)$ is called fuzzy soft closed if $(u, \psi)(F_A)$ is fuzzy soft closed set in (Y, T, σ) , for all fuzzy soft closed set F_A in (X, E, τ) .

Theorem 4.10. Let (X, E, τ) be a fuzzy soft topological space and (Y, T, σ) be a fuzzy soft Hausdorff space. Fuzzy soft mapping (u, ψ) is closed if fuzzy soft mapping $(u, \psi): (X, E, \tau) \rightarrow (Y, T, \sigma)$ is continuous.

Proof. Let G_B be any fuzzy soft closed set in (X, E, τ) . By theorem 4.5 we have G_B is compact. Since fuzzy soft mapping (u, ψ) is continuous, fuzzy soft set $(u, \psi)(G_B)$ is compact in (Y, T, σ) . As (Y, T, σ) is fuzzy soft Hausdorff space, fuzzy soft set $(u, \psi)(G_B)$ is closed. Then Fuzzy soft mapping (u, ψ) is closed.

Definition 4.11. A family Γ of fuzzy soft sets has the finite intersection property if the intersection of the members of each finite subfamily of Γ is not the null fuzzy soft set.

Theorem 4.12. A fuzzy soft topological space is compact if and only if each family of fuzzy soft closed sets with the finite intersection property has a nonnull intersection. **Proof.** Let Γ be any family of fuzzy soft closed subset such that $\overline{\wedge} \{F_{A_i}^i : F_{A_i}^i \in \Gamma, i \in I\} = \Phi$. Consider $\Omega = \{(F_{A_i}^i)^c : F_{A_i}^i \in \Gamma, i \in I\}$. So Ω is a fuzzy soft open cover of \overline{E} . As fuzzy soft topological space is compact, there exists a finite

Dr. Shuker Mahmood Khalil // Department of Mathematics, College of Science, University of Basra, Iraq // E-mail: (shuker.alsalem@gmail.com) // 2018//

subcovering $(F^1)^c$, $(F^2)^c$, $(F^n)^c$. Then $\stackrel{n}{\wedge} F^i = \overline{E - \bigvee}_{i=1}^n F^i = \overline{E - E} = \Phi$. Hence Γ ..., $A_1 = A_2$, A_n , $i=1, A_i$, $i=1, A_i$

can not have finite intersection property.

Conversely, Assume that a fuzzy soft topological space is not compact. Then any fuzzy soft open cover of \overline{E} has not a finite subcover. Let $\{F_{A_i}^i : i \in I\}$ be fuzzy soft open cover of \overline{E} . So $\bigvee_{i=1}^n F_{A_i}^i \neq \overline{E}$. Therefore $\bigwedge_{i=1}^n (F_{A_i}^i)^c \neq \Phi$. Thus, $\{(F_{A_i}^i)^c : i \in I\}$ have finite intersection property. By using hypothesis, $\underset{i \in I}{\prec} F_{A_i}^i \neq \Phi$ and we have $\underset{i \in I}{\lor} F_{A_i}^i \neq \overline{E}$. This is a contradiction. Thus the fuzzy soft topological space is compact.

5. Q-neighborhood structure and accumulation point

Definition 5.1. A fuzzy soft point G_e is said to be a quasi-coincident with F_A , denoted by $G_e q F_A$ if and only if $\mu_{G_e}(x) + \mu_{F_A}^e(x) > 1$ for some $x \in U$.

Definition 5.2. A fuzzy soft set H_A is said to be a quasi-coincident with F_B , denoted by $H_A \neq F_B$ if and only if $\mu_{H_A}^e(x) + \mu_{F_B}^e(x) > 1$ for some $x \in U$ and $e \in A \cap B$.

Definition 5.3. A fuzzy soft set F_A is called a Q-neighborhood of G_e if and only if there exists $H_B \in \tau$ such that $G_e q H_B$ and $H_B \subseteq F_A$.

Proposition 5.4. $H_B \cong F_A$ if and only if H_B and F_A^c are not quasi-coincident. In particular, $G_e \in H_B$ if and only if G_e is not a quasi-coincident with H_B^c .

Proof. This follows from the fact:

$$H_{B} \stackrel{\simeq}{\subseteq} F_{A} \iff \mu_{H_{B}}^{e}(x) \leq \mu_{F_{A}}^{e}(x) \text{ for all } x \in U \text{ and } e \in E \iff$$
$$\mu_{H_{e}}^{e}(x) + \mu_{c}(x) = \mu_{H_{B}}^{e}(x) + 1 - \mu_{F_{A}}^{e}(x) \leq 1 \text{ for all } x \in U \text{ and } e \in E.$$

Proposition 5.5. Let ζ_{G_e} be a family of Q-neighborhood of a fuzzy soft point G_e in a fuzzy soft topological space τ .

(i) If $F_A \in \zeta_{G_e}$, then G_e is quasi-coincident with F_A ,

(ii) If $F_A \in \zeta_{G_e}$ and $F_A \cong H_B$, then $H_B \in \zeta_{G_e}$,

(iii) If $F_A \in \zeta_{G_e}$, then there exists $H_B \in \zeta_e$ such that $H_B \subseteq F_A$ and $H_B \in \zeta_{I_d}$ for every fuzzy soft point I_d which is quasi-coincident with H_B .

Proof. (i) suppose $F_A \in \zeta_{G_e}$. Then there exists $I_C \in \tau$ such that $G_e q I_C$ and $I_C \subseteq F_A$. That is, $\mu_{G_e}(x_0) + \mu_{I_C}^e(x_0) > 1$ for some $x_0 \in U$. Again $\mu_{I_C}^e(x) \leq \mu_{F_A}^e(x)$ for all $x \in U$. Therefore $\mu_{G_e}(x_0) + \mu_{F_A}^e(x_0) \geq \mu_{G_e}(x_0) + \mu_{I_C}^e(x_0) > 1$. Hence G_e is quasicoincident with F_A .

(ii) obvious.

(iii) Suppose $F_A \in \zeta_{G_e}$. Then there exists $H_B \in \zeta_{G_e}$ such that $G_e q H_B$ and $H_B \cong F_A$. That is, there exists $H_B \in \zeta_{G_e}$ such that $G_e q H_B$ and $H_B \cong F_A$. Let I_d be any fuzzy soft point which is quasi-coincident with H_B . Therefore $H_B \in \zeta_{I_d}$.

Proposition 5.6. Let $\{F_{A_j}^j\}_{j\in\Gamma}$ be a family of fuzzy soft sets over (U, E). Then a fuzzy soft point G_e is quasi-coincident with $\lor F_{A_j}^j$ if and only if $G_e \neq F_{A_j}^j$ for some $j \in \Gamma$.

Proof. Obvious.

Theorem 5.7. A subfamily β of a fuzzy soft topology τ over (U, E) is a base for τ if and only if for each fuzzy soft point G_e and for each Q-neighborhood F_A of G_e , there exists a member $H_B \in \beta$ such that $G_e q H_B$ and $H_B \subseteq F_A$.

Proof. First we suppose that β is a base for τ . Let G_e be a fuzzy soft point and F_A be a Q-neighborhood of G_e . Then there exists $I_C \in \tau$ such that $G_e q I_C$ and $I_C \subseteq F_A$. Since $I_C \in \tau$ and β is a base for τ , by theorem 2.19, I_C can be expressed as $\bigvee_{j \in J} H_{B_j}$, where $H_{B_j} \in \beta$ for all $j \in J$. Therefore G_e is a quasi-coincident with $\bigvee_{j \in J} H_{B_j}$. So there exists some H_{B_j} such that $G_e q H_{B_j}$ and $H_{B_j} \subseteq F_A$. This proves the necessary part of the theorem. We shall now prove the sufficient part of the theorem. If possible, let β is not a base for τ . Then there exists $F_A \in \tau$ such that $G = \forall \{H_B \in \beta \mid H_B \subseteq F_A\} \neq F_A$. Therefore there exists $e \in E$ such that $G = \forall \{H_B \in \beta \mid H_B \subseteq F_A\} \neq F_A$. Therefore there exists $e \in E$ such that $\mu_G^e(x) < \mu_{F_A}^e(x)$ for some $x \in U$. Thus $\mu_{I_{F_A}}^e(x) + 1 - \mu_{F_A}^e(x) > 1$. That $I_{e} q F_{A}$ where $\mu_{I_e}(x) = 1 - \mu_{F_A}^e(x)$. So by the given condition there exists $H_B \in \beta$ such that $I_e q H_B$ and $H_B \subseteq F_A$. Since $H_B \in G$, it follows that $\mu_{F_A}^e(x) \leq \mu(x)$. That is $\mu_{B_A}^e(x) = 0$.

 $\mu_{H_B}^e(x) + \mu_e(x) \le 1$, which contradicts the fact that $I_e \neq H_B$. This completes the proof.

Theorem 5.8. A fuzzy soft point $G_e \in cl^{fs}(F_A)$ if and only if each Q-neighborhood of G_e is a quasi-coincident with F_A .

Proof. $G_e \in cl^{f_s}(F_A)$ if and only if for every closed set H_B containing $F_A, G_e \in H_B$ i.e., $\mu_{H_B}^e(x) \ge (x)$ for all $x \in U$. That is, $G \in cl^{f_s}(F)$ if and only if $1 - \mu_{H_B}^e(x) \le 1 - \mu_{G_e}(x)$ for all $x \in U$ and for all closed set $F_A \subseteq H_B$. Therefore $G_e \in cl^{f_s}(F_A)$ if and only if for any fuzzy soft for any fuzzy

 $\mu_{I_c}^e(x) \leq 1 - \mu_{G_e}(x)$ for all $x \in U$. In other words, for every fuzzy soft open set I_c satisfying $\mu_{I_c}^e(x) > 1 - \mu_{G_e}(x)$ for some $x \in U$, I_c is not contained in F_A^c . Again I_c is not contained in F_A^c if and only if I_c is a quasi-coincident with F_A . We have thus proved that $G_e \in cl^{fs}(F_A)$ if and only if every open Q-neighborhood I_c of G_e is quasi-coincident with F_A , which is evidently equivalent to what we want to prove.

Definition 5.9. A fuzzy soft point G_e is called an adherence point of a fuzzy soft set F_A if and only if every Q-neighborhood of G_e is a quasi-coincident with F_A .

Proposition 5.10. Every fuzzy soft point of F_A is an adherence point of F_A .

Proof. Obvious

Definition 5.11. A fuzzy soft point G_e is called an accumulation point of a fuzzy soft set F_A if G_e is an adherence point of F_A and every Q-neighborhood of G_e and F_A are quasi-coincident at some fuzzy soft point different from e, whenever $G_e \in F_A$. The union of all accumulation points of F_A is called the derived set of F_A , denoted by F_A^{d} .

Theorem 5.12. $cl^{fs}(F_A) = F_A \lor F_A^d$

Proof. Let $\rho = \{G_e : G_e \text{ is an adherent point of } F_A \}$. Then by theorem 5.8, $cl^{fs}(F_A) = \breve{\lor}\rho$. Now $G_e \in \rho$ if and only if either $G_e \in F_A$ or $G_e \in F_A^d$. Hence $cl^{fs}(F_A) = \breve{\lor}\rho = F_A \breve{\lor} F_A^d$.

Corollary 5.13. A fuzzy soft set $F_A \in FS(U, E)$ is closed in a fuzzy soft topological space (U, E, τ) if and only if F_A contains all its accumulation points. **Proof.** Obvious from the theorem 5.12.

EXERCISES

5.1) Let (U, E, ψ) be a fuzzy soft topological space and β be a sub collection of ψ such that every member of ψ is a union of some members of β . Then β is a fuzzy soft base for the fuzzy soft topology ψ on (U, E).

5.2) A collection of fuzzy soft sets over (U, E) is a subbase for a suitable fuzzy soft topology ψ if and only if

(i) $\Phi \in \Omega$ or Φ is the intersection of a finite number of members of .

(ii) $\overline{E} = \overline{\vee} \Omega$.

5.3) Let $(u, \psi) : (X, E, \tau) \to (Y, T, \sigma)$ be a fuzzy soft continuous closed mapping from fuzzy soft compact space (X, E, τ) on to fuzzy soft space (Y, T, σ) . Then (u, ψ) (G_B) is fuzzy soft compact set in (Y, T, σ) , if G_B is a fuzzy soft closed set in fuzzy soft compact space (X, E, τ)

5.4) Let $(u, \psi) : (X, E, \tau) \rightarrow (Y, T, \sigma)$ be a fuzzy soft continuous from fuzzy soft compact space (X, E, τ) on to fuzzy soft Hausdorff space (Y, T, σ) . Then $(u, \psi)(G_B)$ is fuzzy soft compact set in (Y, T, σ) , if G_B is a fuzzy soft closed set in fuzzy soft compact space (X, E, τ)

5.5) Let $(u, \psi) : (X, E, \tau) \rightarrow (Y, T, \sigma)$ be a fuzzy soft continuous from fuzzy soft compact space (X, E, τ) on to fuzzy soft Hausdorff space (Y, T, σ) . Then $(u, \psi)(G_B)$ is fuzzy soft closed set in (Y, T, σ) , if G_B is a fuzzy soft closed set in fuzzy soft compact space (X, E, τ)

5.6) Let ζ_{G_e} be a family of Q-neighborhood of a fuzzy soft point G_e in a fuzzy soft topological space τ . If H_B is not quasi-coincident with $F_A \in \zeta_{G_e}$, then $H_B^c \in \zeta_{G_e}$. **5.7)** H_B and F_A are quasi-coincident if and only if F_A^c doesn't contain H_B .

5.8) Let $\{F_{A_j}^j\}_{j\in\Gamma}$ be a family of fuzzy soft sets over (U, E). Then a fuzzy soft point G_e is not quasi-coincident $\forall F_{A_j}^j$ if and only if G_e and $F_{A_j}^j$ are not quasi-with

coincident for all $j \in \Gamma$.

Created with

5.8) A subfamily β of a fuzzy soft topology τ over (U, E) is a base for τ if and only if for each fuzzy soft point G_e and for each Q-neighborhood F_A of G_e , there exists a member $H_B \in \beta$, where H_B is quasi-coincident with G_e but not quasi-coincident with F_A^c .

5.9) A fuzzy soft point $G_e \notin cl^{f_s}(F_A)$ if and only if there exists Q-neighborhood of G_e is not quasi-coincident with F_A .

5.10) A fuzzy soft point $G_e \notin cl^{fs}(F_A)$ Each Q-neighborhood of G_e is quasicoincident with F_A if and only if G_e is not quasi-coincident with $(cl^{fs}(F_A))^c$.

