(ح) ب - ناقش وارسم القطوع المخروطية التالية.
(ع) ب - ناقش وارسم القطوع المخروطية التالية.
(ع)
$$9y^2 + 25x^2 + 18y - 100x - 116 = 0$$
(ع) $2x^2 + 2y^2 - 28x + 12y + 114 = 0$
(ب) $(2x^2 + 2y^2 - 28x + 12y + 114 = 0$
(ب) $9x^2 + 6y^2 + 36y = 0$
(ح) $9x^2 + 6y^2 + 36y - 71 = 0$
(ح) $9x^2 + 16y^2 - 18x + 64y - 71 = 0$
(ح) $y^2 - x^2 - 4y + 8x - 21 = 0$

$$y = -x$$
 $y = -x$
 $y = -x^2$
 $y = -x^2$

Created with

1

 $\frac{25}{3}$: x = 0 , $y^2 - 6y + 2x + 5 = 0$ (5) $\frac{125}{6}$: x + y - 6 = 0 , $y = x^2 - 4x + 2$ (3) $\frac{64}{3}$: ج $y^2 = 7 - x$ ، $y^2 = x + 1$ (ذ) $\frac{9}{2}$: x + y = 4 ($x = 4y - y^2$ () $\frac{8}{3}$: $x = y^2 - 2y + 2$ ($x = -y^2 + 2y + 2$ () (س) $rac{64}{3}:$ ج . $y=rac{x^2}{2}+4$ ، $y=|x^2-4|$ (ش) $\frac{8}{3}$: ج . $y = x^2$, $y = -x^2 + 4x$ (ص) $6\pi - rac{9}{2}\sqrt{3}:$ ج . $x^2 + y^2 = 6x$ ، $x^2 + y^2 = 9$. $x^2 + y^2 = 6x$ ، $x^2 + y^2 = 9$ $rac{8}{3}\pi - 2\sqrt{3}:$ جد مساحة الجزء المشترك بين الدائرتين $x^2 + y^2 = 4y$ ، $x^2 + y^2 = 4$ - ج ه - جد حجم الجسم المتولد من دوران المساحة المحددة بالمنحنيات والمستقيمات التالية حول المحور المبين في كل منها. $8\pi: x \to x$ ، المحور x = 4 ، $y = \sqrt{x}$ (ز) x = 4 ، $y = \sqrt{x}$ $rac{9}{2}\pi$: ج : y=1 ، x=4 ، $y=\sqrt{x}$ (ب) $3\pi: -x = 0$, y = 4, y = 1, $x = \frac{2}{y}$ (z) $rac{64}{15}\sqrt{2}\ \pi:$ ج: x=3 ، $x=y^2+1$ (ث) $\frac{117}{5}\pi:$ ج : x = -x + 3 ، $y = x^2 + 1$ (ج) : y = -x + 3 ، $y = x^2 + 1$ (ج) $36\pi: -x$ ج: y = 0 ، $y = \sqrt{9 - x^2}$ (ح) $rac{2}{3}\pi$: ج : x=1 ، x=1 ، $x=rac{1}{2}\sqrt{y}$ (خ) x=1 ، $x=rac{1}{2}\sqrt{y}$ (د) $\frac{224}{15}\pi$: ج : x=4 مول المستقيم : y=2 ، x=0 ، $y=\sqrt{x}$ (د) $rac{48}{5}\sqrt{2}\pi:$ ج: x=4 ج: x=3 ، $x=y^2+1$ (ذ) (ذ) . x=3 (۲) y=-1 (۱) حول المستقيم (۲) $y=4x-x^2$ ، $y=x^2$ (ر) $\frac{32}{3}\pi$ (Y) 16π (V): τ $rac{162}{5}\pi:$, y=-1 , y=-x+3 ، $y=x^2+1$ (ز)

)

Created with

2

٦- جد اطوال اقواس المنحنيات التالية. $rac{1}{2}(rac{3}{2}+\ln(2)):$. x=2 الى x=1 من $y=rac{1}{4}x^2-rac{1}{2}\ln(x)$ () $rac{1}{2}(e^2-e^{-2}):$ ج: x=2 الى x=0 من $y=rac{1}{2}(e^x+e^{-x})$ (ب) $\pi:$ x=3 (ت) x=0 ، من $y=\sqrt{36-x^2}$ (ت) $3 + \ln(2):$ y = 5 . y = 5 الى y = 2 ، $x = \ln(\frac{y^2 - 1}{2})$ (ث) $\ln\left(\left|\frac{e^{b}-e^{-b}}{e^{a}-e^{-a}}\right|\right): z \qquad y=b \quad y=a \quad x=\ln(\frac{e^{y}+1}{e^{y}-1}) \quad z = \ln(\frac{e^{y}+1}{e^{y}-1})$ $rac{4}{27}\left(244\sqrt{61}-5\sqrt{10}
ight):$ ج . t=3 الى t=1 الى $x=2t^{9/2}-4$ ، $y=t^3+1$ (ح) $\ln\left(rac{2+\sqrt{3}}{\sqrt{2}+1}
ight)$: ج . $y=rac{\pi}{4}$ الى $y=rac{\pi}{6}$ من $x=\ln(\sin(y))$ (خ) $rac{3}{2}a:$ ج . $heta=rac{\pi}{2}$ الى heta=0 الى $y=a\sin^3(heta)$ ، $x=a\cos^3(heta)$ (د) $rac{a}{2}(e^1 - e^{-1}):$, y = a الى y = 0 من $x = rac{a}{2}(e^{rac{y}{a}} + e^{-rac{y}{a}})$ (ذ) 4: r $0 \leq t \leq \pi$ $y = t + \sin(t)$ $x = \cos(t)$ 8a: ج . $\theta = 2\pi$ الی $\theta = 0$ ، من $y = a(1 - \cos(\theta))$ ، $x = a(\theta - \sin(\theta))$ (ز) $\pi^2: \qquad \quad . \ 0\leqslant t\leqslant \frac{\pi}{2} \ \ i \ \ y=8(\sin(t)-t\cos(t)) \ \ i \ \ x=8(\cos(t)+t\sin(t)) \ \ (z)$ $rac{53}{6}:$ ي y=3 . y=3 الى y=1 من $x=rac{y^3}{3}+rac{1}{4n}$ (غ) $rac{99}{8}:$ ج . $1\leqslant x\leqslant 8$ ، $y=rac{3}{4}x^{4/3}-rac{3}{8}x^{2/3}+5$ (ف) 2: ج . $-\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$ ، $x = \int_{0}^{y} \sqrt{\sec^{4}(t) - 1} dt$ (ق) الاك) $\frac{1}{2}\ln(3):$. $0\leqslant x\leqslant rac{\pi}{6}$ ، $y=\int_{a}^{x} an(t)dt$ (لا) $\gamma_{-1} = \frac{1}{2} \sqrt{1 - e^2 \sin^2(\theta)} d\theta$ هو $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ جيث ان $\sqrt{1 - e^2 \sin^2(\theta)} d\theta$ e هو الاختلاف المركزي . ٨ جد مساحة السطح المتولد من دوران قوس من كل منحني من المنحنيات التالية حول المحور المبين في كل منها. $2\pi a^2:$ ج : $x=rac{a}{2}$ المحور $x=-rac{a}{2}$ من $y=\sqrt{a^2-x^2}$ (1) $\pi(\sqrt{2} + \ln(\sqrt{2} + 1)):$ ج . y المحور x = 1 المحور $y = \ln(x)$ (ب) $\pi(2\sqrt{2} + \ln\left(\left|\frac{\sqrt{2}+1}{\sqrt{2}-1}\right|\right): z \to x$ المحور $x = \pi$ الى $x = \pi$ من $y = \sin(x)$ (ت)

3

Created with

$$\begin{aligned} \frac{\pi}{2}(\frac{1}{2}e^{2}+2-\frac{1}{2}e^{-2}): & \quad y = 1 \ \text{(b)} \ y = 1 \ \text{(b)} \ y = 0 \ \text{(c)} \ x = \frac{1}{2}(e^{y}+e^{-y}) \ \text{(c)} \\ & \quad \frac{99}{2}\pi: & \quad x = x \ \text{(c)} \ y = 3 \ \text{(c)} \ y = 0 \ \text{(c)} \ x = \frac{1}{3}(y^{2}+2)^{3/2} \ \text{(c)} \\ & \quad 2\pi a^{2}: & \quad x = \frac{1}{3}(y^{2}+2)^{3/2} \ \text{(c)} \\ & \quad 2\pi a^{2}: & \quad y = 3 \ \text{(c)} \ \theta = 0 \ \text{(c)} \ y = a \sin(\theta) \ \text{(c)} \ x = a \cos(\theta) \ \text{(c)} \\ & \quad (150\sqrt{10}-\frac{6}{5}\sqrt{2})\pi: & \quad y = \frac{\pi}{2} \ \text{(c)} \ \theta = 0 \ \text{(l)} \ y = \frac{3}{2}t^{2} \ \text{(c)} \ x = t^{3} \ \text{(c)} \end{aligned}$$

$$p = -4c$$
 $r = 2(1 - \cos(\theta))$
 $r = -4\cos(\theta)$
 $r = -4\cos(\theta)$
 $r = 2(1 - \cos(\theta))$
 $r = 4\sin(\theta)$
 $r = 4\sin(2\theta)$
 $r = 4\sin(\theta)$
 $r = 4\sin(\theta)$
 $r = 4\cos(\theta)$
 $r = 1 - \cos(\theta)$
 $r = 1 - \cos(\theta)$
 $r = 2(1 - \sin(\theta))$
 $r = 2(1 + \cos(\theta))$
 $r = 2(1 - \sin(\theta))$
 $r = 1 - \sin(\theta)$
 $r = 1 + \sin(\theta)$
 $r = 1 - \sin(\theta)$
 $r^2 = 4\sin(\theta)$
 $r = \sqrt{2}$
 $r^2 = \sqrt{2}\cos(\theta)$
 $r^2 = \sqrt{2}\cos(\theta)$
 $r^2 = \sqrt{2}\sin(\theta)$
 $r = 1$
 $r^2 = 2\sin(2\theta)$
 $r = 1$
 $r = 1$

- \ +

4

Created with

nitro^{PDF} professional